
NDS LAB - Networking and Distributed Systems
https://sites.unipa.it/networks/ndslab

Detecting Zero-Day Attacks under Concept Drift: An
Online Unsupervised Threat Detection System

Article

Accepted version

A. De Paola, S. Drago, P. Ferraro, G. Lo Re

Proceedings of the Italian Conference on Cybersecurity (ITASEC
2024) - CEUR WORKSHOP PROCEEDINGS

It is advisable to refer to the publisher’s version if you intend to cite
from the work.

Publisher: CEUR-WS

Detecting Zero-Day Attacks under Concept Drift: An

Online Unsupervised Threat Detection System

Alessandra De Paola1,2, Salvatore Drago3,
Pierluca Ferraro1,2, and Giuseppe Lo Re1,2

1
Department of Engineering, University of Palermo, Italy

2
Cybersecurity National Lab, CINI - Consorzio Interuniversitario Nazionale per l’Informatica

3
IMT School for Advanced Studies Lucca, Italy

alessandra.depaola@unipa.it, salvatore.drago@imtlucca.it
pierluca.ferraro@unipa.it, giuseppe.lore@unipa.it

Abstract

In recent years, there has been significant interest towards mechanisms for detecting

cyber-security threats. However, the dynamic nature of modern systems and networks

poses significant challenges for threat detection systems exploiting machine learning mod-

els, since shifts in data’s statistical distribution over time, known as concept drift, can

cause severe performance degradation. In this scenario, traditional static systems often

need manual retraining by human operators, leaving networks exposed to vulnerabilities in

the interim. Moreover, the challenge of detecting zero-day attacks through semi-supervised

or unsupervised models remains a critical aspect that has garnered much attention in the

literature. This work introduces an unsupervised online threat detection system designed to

identify anomalous tra�c indicative of zero-day attacks, while explicitly handling concept

drift by automating retraining processes only when necessary. An extensive experimental

evaluation on the real-world IoT-23 dataset, encompassing network tra�c from IoT de-

vices and malicious tra�c from malware-infected devices, showcases the system’s e�cacy,

showing superior performance in real-time threat detection compared to traditional static

approaches.

1 Introduction

The digital age has seen an exponential rise in cyber-attacks targeting networks, computers,
information systems, and IoT devices. Consequently, cybersecurity has become essential as
the integration of such technologies into our daily lives continues to evolve, and ensuring their
security is paramount. As a result, interest in developing systems for detecting cybersecurity
threats has grown steadily. Intrusion Detection Systems (IDS) are a prime example of systems
extensively studied, and many works [1, 2] in the literature have demonstrated remarkable per-
formance in distinguishing between benign and malicious tra�c, exploiting supervised machine
learning algorithms like deep neural networks [3] and decision trees [4, 5]. These algorithms are
capable of learning complex separation criteria between di↵erent types of tra�c and generalizing
from the training dataset.

Yet, the rapid evolution and growing complexity of digital systems pose new challenges.
The dynamic nature of these environments, compounded by the continuous emergence of new
threats, particularly zero-day attacks, necessitates more adaptable solutions. Recent research
has thus concentrated on two areas in particular. The first is the development of zero-day
detection mechanisms using semi-supervised models that can accurately classify malicious data
by detecting di↵erences from the benign data on which they are trained. The second area
concerns the phenomenon of concept drift [6, 7], where the statistical properties of input data

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

may unexpectedly change over time, leading to the obsolescence of previously trained machine
learning models and the emergence of new errors and inaccuracies. Such drifts can occur,
for example, when the benign tra�c pattern of a corporate network shifts due to alterations
in network topology, infrastructure changes, the introduction or removal of services, software
updates, or changes in employee behavior prompted by new corporate policies. Notably, zero-
day attacks can significantly deviate from the statistical distribution of known malicious tra�c,
thus often evading detection by even the most sophisticated supervised systems. In real-world
scenarios, these changes can be sudden, and the same type of statistical input distribution, or
concept, can be recurrent. Consider, for example, a click-day event or the shift from in-person
to remote work or education and vice versa, during pandemic periods.

Responding to these challenges, this work introduces a novel online unsupervised anomaly
detection system aimed at identifying zero-day attacks within network environments, with a
specific focus on addressing concept drifts. The system’s architecture is multi-layer and incor-
porates drift detection mechanisms alongside an unsupervised anomaly detection model. The
primary objective is to reduce the necessity for frequent model re-training in response to con-
cept drift, while simultaneously maintaining high detection accuracy. A distinctive feature of
the proposed approach is the management of recurring concept drifts, a common occurrence
in dynamic real-world scenarios. Unlike conventional drift-aware systems, which may discard
outdated models, our system retains them for potential future reuse, recognizing the cyclic
nature of certain drift patterns. A new model is trained only when all existing models prove to
be inadequate for incoming data streams, ensuring e�cient use of resources.

The e↵ectiveness of the proposed system was extensively evaluated using the IoT-23
dataset [8], which includes real-world data from IoT devices, allowing for a rigorous evalua-
tion in realistic conditions. The system is also compared to a static approach to demonstrate
its e↵ectiveness, highlighting its ability to adapt to novel threats with high accuracy and with
reduced re-training frequency, while being fully unsupervised.

The principal contributions of this paper are summarized as follows: (1) introduction of an
online unsupervised anomaly detection system specifically designed to handle recurring concept
drifts in zero-day attack scenarios; (2) adaptation of the traditional technique of semi-supervised
static anomaly detection with AutoEncoder for unsupervised real-time data stream analysis;
(3) reduction in the frequency of required re-training for anomaly detection models, without
compromising detection accuracy; (4) comprehensive validation of the proposed system using
a real-world dataset.

The remainder of the paper is structured as follows. Section 2 reviews related work, while
Section 3 details the proposed architecture. Section 4 presents the experimental setup and
findings, leading to Section 5, where we draw our conclusions and suggest directions for future
research.

2 Related Work

In modern networks, which include a mix of personal and IoT devices, the distribution of input
or output data can change unpredictably over time. This phenomenon, known as concept drift,
has been identified as a significant challenge in machine learning and cybersecurity [9, 10].
Concept drift can arise from various sources and is broadly categorized into two types: virtual
drift, where the distribution of input data changes without a↵ecting the output predictions, and
actual drift, which is characterized by stable input data distributions but changing predictions,
leading to alterations in the decision boundary. Often, these drifts occur at the same time,
resulting in simultaneous changes in both input data distribution and output predictions.

2

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

Figure 1: Types of Concept Drift.

Another critical classification of concept drift scenarios is based on the evolution pattern of
data distribution over time, typically identified as sudden, incremental, gradual, and recurring
drifts, each with distinct characteristics, as shown in Fig. 1.

Despite the growing number of studies, research explicitly addressing both threat detection
systems and concept drift remains relatively scarce. The authors of [9] describe the most
commonly used workflow in literature for managing concept drift via sliding windows and three
distinct phases: real-time evaluation of each new record by the model, detection of concept drift,
and adaptation to any detected drift. Concept drift detection is typically based on the model’s
error rate; a system’s performance degradation is attributed to concept drift, triggering an
adaptation phase that often includes supervised retraining with data causing the performance
decline. However, this approach’s reliance on error rates for drift detection requires knowledge
of the actual data labels for comparison with predictions, a requirement that is impractical in
online contexts due to the unrealistic expectations for real-time labeling by domain experts.

This challenge is common across the literature on intrusion detection methods that are aware
of concept drift, as seen in works such as [11]. The proposed system overcomes this limitation
by adopting an unsupervised approach for detecting both concept drifts and anomalous tra�c.

In the context of unsupervised drift detection, the authors of [12] assess incoming data
in batches, using a parameter to limit the anomaly rate in these batches. However, select-
ing an appropriate value for this parameter is di�cult without additional data knowledge in
an unsupervised setting. The authors of [13] address this issue by recommending the use of
KSWIN [14] for incoming data feature drift detection, allowing for model adjustments prior to
the evaluation.

A notable gap in these methodologies is their failure to account for the potential recurrence of
concept drifts. Unlike these approaches, our system is designed to detect and manage recurring
concept drifts e↵ectively, reducing the frequency of retraining phases. Moreover, many anomaly
detection systems discussed in the literature are not well-suited for online applications.

3

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

Figure 2: Proposed Architecture.

For detecting zero-day attacks, AutoEncoders are often used in a semi-supervised man-
ner [15] to model benign tra�c data’s principal characteristics, which constitutes the training
set. Additionally, a threshold for distinguishing between benign and malicious tra�c is empir-
ically defined during the training phase. This procedure does not fit the operational require-
ments of the proposed system for online functionality, as detailed in Section 3.1. To address
this, we have adapted advanced anomaly detection techniques using AutoEncoders to enhance
the real-time analysis of streaming data.

3 Proposed Architecture

This section presents the architecture of the unsupervised threat detection system, as illus-
trated in Fig. 2. The architecture integrates three core components: the Input Drift Detection
(IDD) module, which monitors the statistical distribution of incoming data; the Unsupervised
Anomaly Detection (UAD) module; the Output Drift Detection (ODD) module that detect
drifts based on the anomaly scores of such models. These components allow the system to
handle sudden and recurring concept drift, autonomously identifying shifts in data distribution
indicative of new, previously unencountered concepts that were not captured during the initial
training phase of the model.

To mitigate performance degradation caused by such drifts, the system checks its memory
for a pre-existing model capable of addressing the new concept, thereby minimizing the need
for retraining. In the absence of an applicable model, the system proceeds to train a new one
tailored to the data causing the concept drift. Furthermore, the architecture is designed to
manage streaming data, addressing the inherent challenges of real-time data processing.

A practical implementation of this architecture could be envisioned in a server setup dedi-
cated to the continuous monitoring of network tra�c, aiming to detect and isolate suspicious
activities that may signify compromised devices. To this end, the design of the system also
factors in memory and temporal constraints typical of real-time threat detection scenarios.

To account for temporal constraints, data processing is performed in a sequential manner.
Such a methodology significantly reduces the latency between the acquisition of new data
and its subsequent analysis, allowing the system to provide predictions on novel samples not
previously used for training. This approach, often referred to as the “test-then-train” approach,
is commonly known as Prequential Evaluation [16]. As soon as a new record is available,

4

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

the system immediately evaluates it with the anomaly detection model currently in use, as
indicated by the green dotted path in Fig. 2. This data is then saved for potential concept
drift identification and, if required, for the retraining of the model, as depicted by the orange
continuous path in Fig. 2.

To address memory limitations, a fixed-size sliding window technique is used; the adopted
approach ensures that only the two most recent batches of data are retained at any point in
time, e↵ectively managing the system’s memory resources. The sliding window W used by
the system has a constant dimension 2w, containing the two most recent data batches Bn�1

and Bn, where each batch Bi contains w elements. Additionally, the system is constrained to
maintain a finite set of N models within UAD, alongside an array of anomaly scores derived
from the data on which these models were originally trained.

The first unsupervised anomaly detection model used by the system is trained on the first
batch of data, B0. From that point on, each new record xi is evaluated and labeled through the
current model before being incorporated into the sliding window W . When a new batch of data
Bn has been stored in W , the system tries to detect potential drifts through the IDD module.
If IDD detects concept drift between the last two batches of data, then Bn is re-evaluated by
each model in UAD to obtain the lists of anomaly scores for each model.

Hence, for each model, the system retains anomaly score lists for both the training data and
the new data that caused the drift. The ODD detection module is then employed to analyze
these lists for each model. In scenarios where drift is detected for all models, a new model is
trained with Bn and it is set as the currently used model for future evaluations. If the list
of models is full, the oldest one is replaced to accommodate the new one. Conversely, if a
pre-existing model in UAD is found to be drift-resistant by ODD, it is selected as the model to
use.

Our methodology for incorporating concept drift detection into both the IDD and ODD

modules utilizes the KSWIN algorithm [14], which is based on the Kolmogorov-Smirnov (KS)
statistical test principles [17]. KS is a non-parametric test, useful for its independence from un-
derlying data distribution assumptions, although it traditionally applies only to one-dimensional
data by evaluating the maximum di↵erence in the distribution functions of two sets of data. The
KSWIN method can be implemented within the ODD module by comparing one-dimensional
distributions of reconstruction errors. Given the multidimensional nature of our data, we
adapted KSWIN for IDD with a necessary modification, as advised in [13], by applying the
algorithm individually to each feature. Whenever drift is detected in any feature, the system
considers the need to either initiate training on a new model or reinstate a previously trained
model.

3.1 Unsupervised Anomaly-Detection: AutoEncoder

In this work, an AutoEncoder (AE) has been chosen as the base model for unsupervised anomaly
detection within the UAD module. AutoEncoders are specialized forms of artificial neural
networks adept at learning e�cient and meaningful encodings of a dataset’s feature space. This
is achieved through two principal functions: an encoder that transforms the input into a reduced
encoded form, and a decoder that attempts to recreate the original input from this encoded
representation.

For anomaly detection purposes, AutoEncoders are generally employed in a semi-supervised
manner to model and replicate the principal characteristics of benign tra�c data, which forms
the basis of the training set. The dataset is initially partitioned into training and testing
subsets, with the training subset further refined to include only benign records. These records

5

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

Algorithm 1: AutoEncoder training.
Input :

B: batch of data used for training;
Output:

model: new AutoEncoder model with trained encoder (e�) and decoder (d✓);
sc: Standard Scaler of model;
↵: threshold.

1 model AE()
2 �,✓ Random weights initialization
3 sc StandardScaler()
4 sc sc.fit(B)
5 Bt sc.transform(B)
6 Train, V alidation split(Bt)
7 model,�,✓ model.fit(Train, Validation)
8 r model.predict(Bt)
9 ↵ µ(r) + 2�(r)

Algorithm 2: AutoEncoder testing.
Input :

xi: i-th record of network tra�c;
model: selected AE model with encoder(e�) and decoder(d✓);
sc: Standard Scaler of selected model;
↵: threshold.

1 xsi sc.transform(xi)
2 r(i) model.predict(xsi)
3 if r(i) > ↵ then

4 xi is anomaly
5 end

6 else

7 xi is not anomaly
8 end

are used to fine-tune the AutoEncoder, enabling it to reconstruct benign tra�c data accurately
while failing to reconstruct anomalous data, which it has not encountered during training. This
discrepancy in its reconstruction capability, particularly evident during the testing phase when
malicious records are introduced, signals the presence of anomalies [15].

The reconstruction error is defined as follows:

r(i) = kxi � d✓(e�(xi))k. (1)

Equation 1 is computed as the absolute di↵erence between the original data point xi and its
reconstruction d✓(e�(xi)), where d✓ denotes the decoding function and e� the encoding function.
During the testing phase, this metric is employed as an anomaly score; if the score exceeds a
threshold value ↵, the record is deemed anomalous. The threshold value ↵ is determined based
on the model’s performance across the entire training dataset, with the objective of e↵ectively
distinguishing between benign and malicious tra�c.

Unlike the semi-supervised static operation described so far, in the proposed system the
AutoEncoder is utilized in a fully unsupervised manner. The online nature of the problem and
the specific application domain preclude the assumption that the system can access ground
truth data about the current window in time for training. Therefore, it is not feasible to
guarantee that the model is exposed exclusively to benign tra�c. However, it can be assumed
that, in a fixed period, the frequency of anomalies compared to the entire set of observations

6

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

Decoder

Input Output

Encoder

|𝕏| |𝕏|

Figure 3: AutoEncoder architecture.

is very low, to such an extent that the impact of these anomalies during the training phase is
negligible.

In this work, all the AutoEncoders used share the structure described in Fig. 3. The encoder
comprises two hidden layers with dimensions of 128 and 64, respectively, while the decoder is
structured with two hidden layers having dimensions of 64 and 128, respectively. The latent
space is characterized by 8 dimensions. The Gaussian Error Linear Unit (GELU) serves as the
activation function for all layers except for the output layer, which employs a linear function.
During the training phase, the Mean Absolute Error (MAE) related to the reconstruction error
is used as the loss function. The MAE is defined as follows:

MAE =

PN
i=0 r(i)

N
(2)

A detailed description of the training phase is provided in Algorithm 1. Lines 1 and 2
initialize a new AutoEncoder with the previously described structure and random weights for
both the encoder and decoder. Line 3 involves the creation of a new Standard Scaler, which is a
preprocessing tool that normalizes the data by removing the mean and scaling to unit variance,
ensuring that each feature contributes equally to the distance computations. This is crucial for
models sensitive to the magnitude of features. Each AutoEncoder in the set of models available
to the system is paired with a Standard Scaler, fitted on the batch of data on which the new
model is to be trained (line 4), and is then used to transform the training data batch (line 5)
as well as each new data record before it is evaluated by the model.

The training data batch is first scaled and then split between the training set (80%) and the
validation set (20%), as shown in line 6. After the training phase (line 7), the reconstruction
error r, as defined in Eq. 1, is calculated for each data point in the training batch (line 8) and
used to determine the threshold value ↵ (line 9).

Unlike in semi-supervised operation, the selection of ↵ cannot be based on the system’s
performance on the training batch in terms of correctly labeling anomalous tra�c, since ground
truth data is not available. In this work, assuming that the distribution of the reconstruction

7

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

error r for the training data, and thus for benign tra�c, can be approximated by a normal
distribution, ↵ is set to µ(r)+2�(r), the mean plus two standard deviations of the reconstruction
error distribution. This choice has been deemed appropriate based on experimental evaluations
reported in Section 4.

Algorithm 2 describes the evaluation phase for a new record. In line 1, the record xi is
transformed using the specific model’s Standard Scaler, then, in line 2, the reconstruction error
r(i) is calculated. If r(i) exceeds the threshold value ↵ (line 3), chosen during the training phase
for that model, it is labeled as an anomalous tra�c record (line 4); otherwise, it is labeled as
benign tra�c (line 7).

4 Experimental Evaluation

This section evaluates the proposed system’s performance utilizing a comprehensive suite of
metrics, including accuracy, F1-score, false positive rate (FPR), and false negative rate (FNR),
in line with established scientific standards.

The experiments leverage the IoT-2023 dataset collection [8], a repository of network tra�c
data including heterogeneous IoT devices in both secure and compromised conditions due to
various malware threats. Specifically, the experiments are performed on a modified subset of
the IoT-2023 collection, integrating data from an expanded range of IoT devices and malware
instances. This subset includes both sudden and recurring concept drifts, presenting a chal-
lenging environment for the evaluation of a threat detection system. Given the system’s online
and unsupervised nature, and its initial training on tra�c presumed mainly benign, all attacks
encountered in the experiments are treated as unknown, similar to zero-day attacks. This fea-
ture highlights the system’s capability to identify and respond to novel threats without prior
knowledge, simulating a real-world scenario where each attack poses a novel challenge.

To address the significant class imbalance present in the dataset, the weighted F1-score was
adopted as the metric of choice. Unlike the standard F1-score, which does not account for
true negatives and may provide a skewed perspective in the presence of unbalanced classes, the
weighted F1-score incorporates the prevalence of each class. This adjustment ensures a more
accurate representation by emphasizing the importance of more frequently occurring classes [18].

All experiments utilize the AutoEncoder (AE) architecture described in Sec. 3.1. The AE
models, developed using Keras and TensorFlow, are trained through backpropagation, employ-
ing the Adam optimizer with a learning rate set to 0.001. To enhance training e�ciency and
prevent overfitting, an early stopping mechanism was implemented. This mechanism, activated
after the tenth epoch, monitors the Mean Absolute Error (MAE) on the validation set, with
a patience parameter of 5 epochs, terminating training if no improvement is observed. The
training is further bounded by a maximum duration of 100 epochs or 300 seconds.

Experiments were repeated by varying several hyperparameters of the AE architecture,
including the size w of the data window (from a minimum of 150 to a maximum of 500), the
batch size during training (ranging between 16 and the largest power of two less than w),
and the maximum number of stored models N in the UAD module (ranging from 1 to 15).
Moreover, the experiments were also conducted with two di↵erent methodologies in addition
to the proposed one: a conventional static approach, which involves a single initial training
phase with no drift detection technique (referred to as Static), and a dynamic approach where
the model is retrained upon each detected concept drift without explicitly addressing recurring
concept drift (referred to as Detect Drift and Retrain, or DDR).

Results, illustrated in Figure 4, highlight the superior performance of the proposed sys-
tem under optimal parameter configurations for each evaluated method. Notably, the static

8

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

Figure 4: Accuracy, F1-score, FPR and FNR of the static approach, DDR and proposed system.

approach exhibits a high False Positive Rate (FPR), misclassifying 23.4% of benign tra�c as
malicious. This high value arises despite selecting a threshold ↵ aiming for a 5% FPR, based on
the assumption of a normal distribution of benign tra�c, as discussed in Sec. 3.1. Conversely,
both the DDR and the proposed system closely align with this FPR target, achieving rates of
8% and 7%, respectively, showing their e�cacy in adapting to dynamic tra�c patterns.

These findings highlight the dynamic nature of benign tra�c, which evolves over time, lead-
ing to concept drifts. When tra�c patterns gradually change, the performance of the static
system degrades, because its model and ↵ threshold no longer reflect the current input data
distribution. This results in lower accuracy and F1-score (76.7% and 86.3%, respectively), com-
pared to the other approaches. Indeed, systems equipped to adapt to these shifts in distribution
by detecting and adjusting to concept drift maintain their performance e�cacy. The DDR ap-
proach and the proposed system obtain accuracy rates of 92.3% and 92.7%, and F1-scores of
95.5% and 95.7%, respectively, demonstrating their superior adaptability over the static model.
Both methods exhibit an increase in the FNR, attributable to the misidentification of concept
drift by the IDD module amidst data noise, leading to the detection of a non-existent concept
drift and thus unnecessary model retraining and threshold recalibration.

The proposed system, however, mitigates this issue, achieving a lower FNR of 15% com-
pared to DDR’s 27%. By recognizing the current model as appropriate for the “false drift”
detected by the IDD module, the proposed system avoids unnecessary retraining and threshold
adjustments. This capability results in slightly higher accuracy results (92.7%) compared to
DDR (92.3%) while reusing an existing model 30% of the time, thus optimizing computational
resource usage. Minimizing evaluation delay is crucial for online threat detection systems,
especially in environments where data arrival patterns are unpredictable, as detailed in Sec. 3.

Table 1 illustrates the execution times of the three approaches, relative to the static system
that is considered as a baseline (1.0x execution time). While the static system exhibits the
fastest execution time due to its lack of retraining, the trade-o↵ in accuracy (92.3% for the
proposed system versus 76.7% for the static system) justifies the slight increase in execution time
(14% on average). The proposed system represents an optimal compromise, as it significantly
outperforms the static approach and slightly exceeds the performance of the DDR system in

9

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

Table 1: Execution times of the three approaches.
Drift Detection Strategy Reused Models Time
Static - 1.00x
Always retrain (DDR) 0% 1.19x
Proposed system 30% 1.14x

terms of accuracy and F1-score, while exhibiting reduced execution times compared to the DDR

approach that continually re-trains without addressing recurring concept drifts.

5 Conclusions and Future work

This work explored the challenges of detecting and managing concept drift in the realm of
threat detection for network tra�c streams. A novel system was introduced, combining unsu-
pervised anomaly detection with concept drift detection techniques for increasing its resilience
against zero-day attacks. The system applies AutoEncoder anomaly detection algorithms, typ-
ically used in static, semi-supervised contexts, to an online unsupervised setting, enhancing its
practical usability in streaming data scenarios. A key contribution of the proposed approach
is the explicit management of recurring concept drifts by maintaining a repository of previous
models, significantly reducing the need for frequent re-training.

The validity of the proposed methodology was rigorously tested through comprehensive
evaluations on a real-world dataset. Since the system is trained primarily on benign tra�c, it
treats all detected attacks as novel, similar to zero-day threats, reflecting real-world conditions
where many attacks are unforeseen. The empirical results highlight the system’s capability to
accurately identify malicious tra�c, even in the face of concept drift and unknown attacks,
consistently achieving high accuracy and F1 scores. These outcomes not only outperform those
of static approaches but also highlight the critical importance of e↵ectively managing concept
drift to prevent abrupt performance deterioration. Furthermore, the proposed system’s perfor-
mance exceeds that of a method that always retrain its models in both accuracy evaluations and
execution speed, highlighting the often-overlooked significance of addressing recurring concept
drift.

For future directions, the system could be enhanced by incorporating a concept drift de-
tection module designed to operate directly in the multidimensional space of input features.
This improvement aims to improve the system’s resilience to noise and increase e�ciency by
minimizing false detections of concept drift.

References

[1] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. Intrusion detec-

tion system: A comprehensive review. Journal of Network and Computer Applications, 36(1):16–

24, 2013.

[2] Ravi Vinayakumar, Mamoun Alazab, KP Soman, Prabaharan Poornachandran, Ameer Al-Nemrat,

and Sitalakshmi Venkatraman. Deep learning approach for intelligent intrusion detection system.

Ieee Access, 7:41525–41550, 2019.

[3] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A deep learning approach for

network intrusion detection system. In Proceedings of the 9th EAI International Conference on

10

Detecting Zero-Day Attacks under Concept Drift De Paola, Drago, Ferraro, and Lo Re

Bio-inspired Information and Communications Technologies (formerly BIONETICS), pages 21–26,

2016.

[4] Nabila Farnaaz and MA Jabbar. Random forest modeling for network intrusion detection system.

Procedia Computer Science, 89:213–217, 2016.

[5] Vincenzo Agate, Felice Maria D’Anna, Alessandra De Paola, Pierluca Ferraro, Giuseppe Lo Re,

and Marco Morana. A behavior-based intrusion detection system using ensemble learning tech-

niques. In ITASEC, 2022.

[6] Firas Bayram, Bestoun S Ahmed, and Andreas Kassler. From concept drift to model degradation:

An overview on performance-aware drift detectors. Knowledge-Based Systems, 245:108632, 2022.

[7] Vincenzo Agate, Salvatore Drago, Pierluca Ferraro, and Giuseppe Lo Re. Anomaly detection for

reoccurring concept drift in smart environments. In 18th International Conference on Mobility,

Sensing and Networking (MSN), pages 113–120. IEEE, 2022.

[8] Sebastian Garcia, Agustin Parmisano, and Maria Jose Erquiaga. IoT-23: A labeled dataset with

malicious and benign IoT network tra�c (1.0.0) [Data set]. Zenodo.

[9] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A

survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

[10] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under

concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):2346–

2363, 2018.

[11] Deepa Mulimani, Shashikumar G Totad, Prakashgoud Patil, and Shivananda V Seeri. Adaptive

ensemble learning with concept drift detection for intrusion detection. In Data Engineering and

Intelligent Computing: Proceedings of ICICC 2020, pages 331–339. Springer, 2021.

[12] Zhiguo Ding and Minrui Fei. An anomaly detection approach based on isolation forest algorithm

for streaming data using sliding window. IFAC Proceedings Volumes, 46(20):12–17, 2013.

[13] Maurras Ulbricht Togbe, Yousra Chabchoub, Aliou Boly, Mariam Barry, Raja Chiky, and Maroua

Bahri. Anomalies detection using isolation in concept-drifting data streams. Computers, 10(1):13,

2021.

[14] Christoph Raab, Moritz Heusinger, and Frank-Michael Schleif. Reactive soft prototype computing

for concept drift streams. Neurocomputing, 416:340–351, 2020.

[15] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using recon-

struction probability. Special lecture on IE, 2(1):1–18, 2015.

[16] Joao Vinagre, Aĺıpio Mário Jorge, Conceição Rocha, and Joao Gama. Statistically robust evalu-

ation of stream-based recommender systems. IEEE Transactions on Knowledge and Data Engi-

neering, 33(7):2971–2982, 2019.

[17] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American

statistical Association, 46(253):68–78, 1951.

[18] David MW Powers. Evaluation: From precision, recall and f-factor to roc, informedness, marked-

ness & correlation. Journal of Machine Learning Technologies, 2(1):37–63, 2011.

11

