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Abstract—The dynamic characteristics of Internet of

Things (IoT) systems create major challenges for threat detection

systems that rely on machine learning models. Over time, shifts in

the statistical distribution of data can lead to drastic performance

degradation. This phenomenon is known as concept drift. When

this problem occurs, traditional static systems require human

intervention to manually retrain, leaving the network vulnerable

in the meantime. In this paper, we propose an unsupervised

system for online detection of anomalous traffic generated by

malware-infected IoT devices. The proposed multi-tier system

explicitly accounts for concept drift, automatically retraining only

when necessary. We thoroughly tested the system by performing

an extensive experimental evaluation using the real-world IoT-23

dataset, which includes network traffic generated by IoT devices as

well as malicious network traffic generated by devices infected with

different types of malware. We also compared our approach with

other state-of-the-art work, and the results showed the remarkable

performance achieved by the system using key metrics such as

F1 score, accuracy, false positive rate and false negative rate.

Index Terms—Concept Drift, Online Threat Detection, IoT,

Unsupervised Learning, Cybersecurity

I. INTRODUCTION

The amount of information collected by sensors and Internet-
connected devices is growing fast with the recent and rapid
adoption of Internet of Things (IoT) and related technologies,
such as smart cities [1], smart homes, and industrial IoT. At
the same time, efficient data analytics and machine learning
techniques to make predictions and support decision-making
are in high demand by private enterprises and governments.
Meanwhile, there has been a dramatic increase in cyber-attacks
that affect networks, computers, information systems, and IoT
devices. This is evidenced by Kaspersky’s 2021-22 report [2],
which documents how the number of malware attacks targeting
IoT devices increased by nearly 60% year-over-year. In addition,
collected data are subject to numerous factors that inevitably
reduce their quality and reliability: sensory data are affected
by noise and, if they come from users’ devices, could also
be manipulated by selfish users [3]–[5]. Moreover, the data is
also naturally subject to the phenomenon of concept drift [6],
[7], i.e., its statistical properties may change unexpectedly over
time, invalidating any previous training of machine learning
systems and paving the way for a new category of errors and
inaccuracies. For example, imagine a threat detection system
that monitors network traffic from IoT devices which measure
certain user health parameters, such as heart rate or blood

oxygen levels. Such devices exchange alerts with each other
and with fog nodes when any of these parameters deviate
from the normal range for a healthy person. In the system’s
training phase, it learns to distinguish between benign traffic
(normal health alerts) and suspicious traffic. Suspicious traffic
could be identified as, for example, a device that repeatedly
sends the same alert values outside the normal range, which
could suggest a malware infection that is generating false
readings. However, threat detection systems like this faced an
unexpected challenge during the COVID-19 pandemic. Many
users had persistently unusual, yet stable readings due to the
virus, leading their devices to repeatedly issue identical alerts
for a prolonged period. A threat detection system not calibrated
for this type of scenario might mistakenly flag such devices as
infected and their traffic as malicious. In reality, what occurred
was a concept drift, the alteration of statistical properties of the
target variable. This change required a retraining phase with
the new data. Once the health emergency is over, a system
like this should be able to adapt back to its original mode of
operation, ideally without retraining again.

In this paper, we propose an online unsupervised anomaly-
based threat detection system for IoT network environments
which explicitly handles concept drifts. The architecture of the
system is multi-tiered and employs drift detection modules and
an ensemble of unsupervised models to detect anomalies. Our
goal is to minimize the number of model re-training in case of
concept drift, while still ensuring high accuracy. To this end,
we propose to explicitly handle the phenomenon of recurring
concept drift, which is inevitable in many real-world cases.
Our system does not discard old models. On the contrary, it
keeps them because they can be reused in the future in case of
recurring drifts. The system will only train a new model if the
new data cannot be handled by any of the previous models.

To validate our approach, we have performed a compre-
hensive evaluation of our system. This is done through a
variety of tests on a recent real-world dataset containing data
from actual IoT devices (IoT-23 dataset [8]). The system is
also compared to other state-of-the-art work to demonstrate
its effectiveness, and the results show that it is remarkably
capable of maintaining high accuracy while being completely
unsupervised and reducing the frequency of model retraining.

The key contributions of this paper are as follows: (1) we
designed an innovative unsupervised anomaly-based threat



detection system, which specifically addresses recurring concept
drifts; (2) we modified several known static unsupervised
anomaly detection techniques to enhance their efficiency in
analyzing data streams in real time; (3) we worked towards
minimizing the quantity of anomaly detection models that
require re-training, while ensuring that their performance levels
remain high; (4) we extensively validated our system with a
real-world IoT dataset and compared to other state-of-the-art
work to demonstrate its effectiveness.

The remainder of the paper is structured as follows. Sec-
tion II discusses related work. Section III proposes our novel
architecture for unsupervised threat detection with concept
drift handling. Our experimental evaluation is presented in
Section IV, while Section V draws our conclusions.

II. RELATED WORK

The IoT ecosystem consists of a wide range of Internet-
connected smart devices such as home appliances, light bulbs,
network cameras, and sensors that can contribute to the
realization of complex intelligent environments [9], [10]. As
mobile and IoT devices continue to grow in popularity, they are
becoming increasingly targeted by attackers. Likewise, studies
on this particular type of malware detection are increasing
and becoming more specialized for IoT devices as opposed to
detection systems for traditional computer networks [11], [12].

In environments that are constantly evolving, such as IoT
networks, the distribution of input or output data may shift
unpredictably over time. This change is referred to as concept
drift [13], [14] and can originate from various sources. The
first form of drift, often referred to as virtual drift, happens
when there is a shift in the input data distribution without a
corresponding change in the predictions. The second form of
drift, known as actual drift, occurs when the distribution of the
input data remains consistent but the predictions vary, leading
to changes in the decision boundary. In practical scenarios,
however, these two forms of drift are likely to occur together,
which happens when both the input data distribution and
the predictions change at the same time. Another commonly
referenced categorization for concept drift scenarios relates to
how the data distribution evolves over time. Typically, four
potential types of drift are identified: (1) sudden, which occurs
due to unexpected events; (2) incremental, which can result
from continuous sensor degradation or user preferences that
evolve over time; (3) gradual, where the new concept initially
alternates with the previous one; (4) recurring, where previous
concepts return cyclically.

Concept drift in this particular domain can be triggered by
anomalous traffic produced by a new type of malware that
the system has not yet encountered, or by a change in the
distribution of benign traffic generated by the devices.

Although growing in number in recent years, papers that
explicitly address both IoT malware detection and concept
drift are not very common. In [15], the authors propose a
system for detecting malware and concept drift in IoT sensor
network traffic using statistical techniques. However, one of the
limitations of this approach is the use of supervised techniques.
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Figure 1. Architecture of the proposed system.

The number of real data labels required by the system and the
time frame in which these labels must be available is unrealistic
in an online context. In fact, for the system to work properly, it
would require constant labeling by a domain expert as new data
comes in for analysis, at superhuman speeds. This problem is
common to other work in the intrusion detection and concept
drift literature, such as [16]. To overcome this limitation,
the proposed system adopts an unsupervised approach to
detect both concept drifts and anomalous traffic caused by
malware in IoT devices. As regards unsupervised drift detection,
IForestASD [17] evaluates incoming data in batches, employing
a parameter that indicates the anomaly rate that should not be
exceeded in these batches. However, in an unsupervised setting
without additional data knowledge, selecting a suitable value
for this parameter becomes challenging. The authors of [18]
circumvent this problem by suggesting a number of strategies.
Their final recommendation is to use the KSWIN [19] drift
detection method on incoming data features to detect concept
drift and then adjust the model before the evaluation stage.

The key shortcoming of these approaches is neglecting
potential recurrence of concept drifts. In contrast to other works,
our system is able to detect and handle recurring concept
drifts, thereby minimizing the number of retraining phases.
Furthermore, a common limitation of many anomaly detection
systems discussed in the literature is their limited suitability for
online applications. To address this issue, we have also adapted
state-of-the-art anomaly detection techniques to improve real-
time analysis of streaming data.

III. SYSTEM ARCHITECTURE

This section outlines the multi-layer design of our online
unsupervised threat detection system, which is shown in
Fig. 1. The system is based on two concept drift (CD)
detection modules and an ensemble of anomaly detection (AD)
models. One of these models is currently in use, while the
rest encapsulate the history of past AD models, and can be
reused when recurring concept drift occurs. This is possible
because the system has the ability to reconfigure itself by
independently selecting which models to use depending on the
context [20]. The proposed system can be deployed to a server
that monitors the traffic flow of an IoT network and tries to
detect suspicious events generated by infected devices. Working
directly on data streams poses additional challenges that must
be addressed. These include time and memory constraints, and
the aforementioned concept drift management. To address time
constraints, the data are analyzed sequentially. This approach



minimizes the amount of time elapsed from the receipt of
new data to its evaluation and allows the system to make its
predictions on new samples that have not yet been used for
training. This strategy, called test-then-train, is known in the
literature as Prequential Evaluation [21].

A fixed-size sliding window approach is used to deal with
memory constraints, whereby only the last two batches of the
most recent data are stored at any given time. Specifically, the
system uses a sliding window (W) of fixed size w containing
the data batches Bn�1 and Bn. It also uses a list called ml of
fixed size N, which is composed of AD models. In addition
to providing the predicted outcome, each AD model includes
a measure of the confidence associated with that particular
prediction [22]. We use the term CDd to represent the concept
drift detection module that operates on the input data, and
CDm to signify the module that works on the confidence level
of the model’s predictions. Let us define M as the current
model and clmi as the confidence list for each model mi. All
the clmi confidences are inserted in a list called lcl.

The workflow of the system is shown in Fig. 1 and detailed
step by step in Algorithm 1. Some utility variables are
initialized in lines 1-3. Specifically, nc is used to check whether
a new batch of data has been received. bf, idf, and cdf are
boolean variables that report whether the system has received
the first batch of data, whether drift has been detected in
the input data features, and whether drift has been detected
between the confidence lists of the model training data and the
confidence list of the last batch of data, respectively.

In lines 4-9, according to the prequential evaluation strategy,
new input data is evaluated immediately. The predictions are
added to the list of predictions of the Ŷ system. In lines 10-13,
each incoming value is added to the list W using the sliding
window mechanism; nc is also updated. If a new batch of data
has not yet been evaluated and saved (line 14), the workflow
resumes from line 4. Otherwise, two possible scenarios may
occur. If this is the first batch of data (B0), the first model
m with that batch of data is created and trained in lines 16-
21; then, m is added to ml, its confidence list on the training
data is added to lcl, and finally m is set as the current model.
Alternatively, if this is not the first batch of data (Bn), CDd

checks for concept drift between Bn�1 and Bn in lines 23-25.
If no drift is detected, nc is reset and the workflow continues
from line 4. If any drift is detected, the confidence list of
the batch that caused the drift is extracted for each model
mi, and it is then compared with the confidence list of the
model training data saved in lcl (lines 27-30). If one of the
models does not cause drift (lines 31-33), it is set as the current
model, M, after which nc is reset and the workflow continues
from line 4. Conversely, if no model is suitable to evaluate
the new concept, a new model m is created and trained from
the last batch of data (lines 34-41). If ml has not reached its
maximum size N, m is added to ml, and its confidence list on
the training data is added to lcl; otherwise, the first model is
discarded from ml and its confidence list is removed from lcl
before proceeding with these operations. Finally, m is set as the
current model (M). To implement both concept drift detection

Algorithm 1 System workflow
Require: �: data-stream; N: max number of models in ml;

w: max length of W; mt: model type;
CDd: concept drift detection module for input data;
CDm: concept drift detection module for model confidence.

Ensure: Ŷ : the list of system predictions.
1: Ŷ  [ ]; W  [ ]; ml [ ]; lcl  [ ]; nc 0
2: bf  True; idf  False; cdf  True; M  None
3: for x 2 � do

4: if M 6= None then

5: ŷ  M.predict(x)
6: else

7: ŷ  0
8: Ŷ .append(ŷ)
9: if len(W) == w then

10: W.remove head()
11: W.append(x) ; nc  nc+1
12: if nc � dw/2e then

13: if bf == True then

14: m  new model of type mt ; m.partial fit(W)
15: clm m.predict confidence(W)
16: ml.append(m) ; lcl.append(clm)
17: M  m ; bf = False
18: else

19: Bn�1  W [0 : bw/2c] ; Bn  W [dw/2e : w]
20: idf  CDd.detect drift(Bn�1,Bn)
21: if idf == True then

22: for mi 2 ml do

23: clBn  mi.predict confidence(Bn)
24: clmi  lcl[i]
25: cdf  CDm.detect drift(clmi ,clBn )
26: if cdf == False then

27: M  mi ; break
28: if cdf == True then

29: m  new model of type mt ; m.partial fit(Bn)
30: clm m.predict confidence(Bn)
31: if len(ml) == N then

32: ml.remove head() ; lcl.remove head()
33: ml.append(m) ; lcl.append(clm) ; M  m
34: nc  0
35: return Ŷ

modules (CDd and CDm), we adopt the KSWIN [19] method.
KSWIN utilizes the principles of the Kolmogorov-Smirnov
(KS) statistical test [23]. This is a non-parametric test which
functions without the need for presuming anything about the
data distribution from which the samples are drawn. However,
this test is restricted to dealing with one-dimensional data, as
it works by calculating the absolute difference between the
distributions of two sets of one-dimensional data.

As our work involves multiple features, it is crucial to modify
the KSWIN method to fit our case, especially for CDd. The
workaround suggested in [18], [24] is to run the KSWIN
method on each feature individually. However, this strategy
has an inherent limitation: it is possible for small variations
to occur simultaneously on many features, leading to concept
drift. This drift may go undetected by a system that focuses
on only one feature at a time. To tackle this issue, we have
chosen to construct a new synthetic feature that considers
the changes across all the other features simultaneously. The
KSWIN method is then employed to examine the shifts in the



Figure 2. Accuracy and F1-score of the proposed system vs. Amin et al.

distributions of all features, including the synthetic one. If a
drift is observed in at least one feature, the system considers
training a new model or restoring a previously trained model.
For this study, we have experimentally selected the normalized
sum of squares of the base features as our synthetic feature.

The anomaly detection module consists of an ensemble of
unsupervised models. In this paper, the unsupervised anomaly
detection models LOF, IF, OCSVM and ELEN (selected from
the most widely used and studied models in the literature
[25]), have been used and compared. The Local Outlier Factor
(LOF) is an anomaly detection algorithm that primarily relies
on density measurements, making it especially effective for
handling datasets characterized by irregular distributions [26].
Isolation Forest (IF) is an unsupervised anomaly detection
algorithm based on the assumption that anomalous data
correspond to points that are rare and far from the center
of clusters of normal data [27]. One Class Support Vector
Machine (OCSVM) [28] derives a function that yields positive
values in areas with high point densities, and negative values
when the densities are low. Elliptic Envelope (ELEN) [29]
constructs a hypothetical elliptical boundary around a specified
dataset. Any values within this envelope are deemed as standard
data, conversely, other values are classified as outliers.

These are static methods designed to operate when the entire
dataset is available or when a statistically significant train set
has been collected. Many approaches have been proposed in
the literature to use these methods with streaming data, but
they all present shortcomings and are not suitable for handling
data with concept drifts, as demonstrated in [7].

Our system addresses these challenges by adopting a
hybrid strategy. We assume that, for each batch of data used
for retraining, the frequency of anomalies is relatively low
compared to the overall set of observations. In this context,
unsupervised models can be employed to learn the statistical
distribution of normal traffic and identify malicious traffic
that deviates from this distribution. However, a shift in data
distribution due to concept drift can lead to a degradation in
system performance, as shown in Fig. 6 and later discussed in
Sec. IV. To avoid this, the proposed system proactively tackles
concept drift before the anomaly detection algorithm comes into
play, using specially designed detection modules. In addition,
the system retains a historical record of models to dramatically
reduce the need to train new ones. The quantity of models
retained in the historical record carries significant weight: a
larger pool of models increases the likelihood that one will be

Figure 3. FPR and FNR of the proposed system vs. Amin et al.

suitable for the input data, which significantly cuts down on
the number of models requiring training. This is particularly
advantageous in scenarios involving recurring concept drift. For
the proposed system, the computational complexity of the CDd

module is O(w) and, in case of drift detection, the complexity
of the CDm module results in N· (O(w) + CCP(w)) cost, where
CCP represents the computational cost of model prediction,
which is generally much lower than the computational cost of
model training.

IV. EXPERIMENTAL EVALUATION

This section will detail the performance of the proposed
system, presenting a series of tests performed on real-world
datasets and comparing our approach with state-of-the-art work
to test its validity. The system is evaluated with the main
metrics used in the literature, namely accuracy, F1 score, False
Positive Rate (FPR) and False Negative Rate (FNR).

The experiments reported below have been performed on
datasets extracted from IoT-2023 [8], which is a collection of
multiple datasets that provide a wide variety of network traffic
data from actual IoT devices, both uninfected and infected
with various malware. Each experiment was performed with
the maximum number of stored models in the history set to 5.
All experiments were repeated for each of the unsupervised
models listed earlier in Section III, while varying the relevant
hyperparameters and the window size w (from a minimum
of 25 to a maximum of 300). Furthermore, the experiments
were repeated with and without the concept drift detection
to test their actual effectiveness. The first set of experiments
we present concerns the comparison between the model that
obtained the best results with our proposed system and four
different models described in [15]. This work was chosen
for comparison due to its recency and relevance. It provides
a comprehensive set of evaluation metrics for assessing the
performance of an online system in the presence of concept
drift and uses the IoT-2023 dataset, as we do. To perform
our experiments coherently with the results reported in [15],
we used a dataset created by merging four sub-datasets of
IoT-2023, with 5075 records. 2.5% of these records belong to
the malicious class. All attacks encountered in the experiments
are treated as unknown, similar to zero-day attacks.

For the setting under consideration, the anomaly detection
model that achieved the best performance for our system is
the LOF with window size w=200. Fig. 2 and 3 show the
comparison between this unsupervised system and the four



Figure 4. Accuracy and F1-score of anomaly-detection models for our system
in a dataset with severe concept drift.

different supervised models presented in [15]. Please note that
the y-axis range of Figure 3 was adjusted to 0-20 instead of
0-100 to enhance the visual representation of the results.

The proposed system, although using an unsupervised model,
achieves an accuracy of 94.2%, surpassing two of the compared
supervised models and obtaining results very close to AminSVM
and AminLSTM. Remarkable results were also obtained by our
system with respect to the F1 score (95.6%), outperforming all
other systems. The same is true for the FNR (in this case, the
lower the better), where the proposed system achieves 0.78%,
outperforming all other systems. In contrast, such accurate
detection of the malicious class results in a slightly higher
value for the FPR, where the system achieves 6%. This trade-
off seems inevitable, and can be attributed to the unsupervised
nature of the model. The dataset used in this comparison
presents only a moderate amount of drift. Nevertheless, the
proposed system has proven to be remarkably robust even
with little to no drift, resulting in high performance under
all circumstances. We conducted a second set of experiments
comparing the four types of unsupervised models proposed
for our system in Section III. This set of experiments was
performed on a modified version of the previous dataset, which
was obtained by merging it with additional sub-datasets, also
from the IoT-2023 dataset collection. It explicitly presents both
sudden and recurring concept drift in its data distribution,
caused by changes in the network structure, the types of
IoT devices in use, and the emergence of new malicious
traffic from novel malware. This scenario is both realistic and
suitable for further testing the system under more challenging
conditions and evaluating the need for concept drift detection
and adaptation mechanisms [30]. Fig. 4 and Fig. 5 show
the results obtained by each model in our system with drift
detection enabled, when using the best possible parameters for
each model. The two models which achieved the best results
are LOF and IF (both with window size w=75). IF obtained
86.2% accuracy and 92.1% F1 score with a low FNR of 3.1%
and a relatively low FPR of 14.0%, which is still remarkable,
considering that the modified dataset contains a considerable
amount of drift, which poses a major challenge to anomaly
detection systems. LOF, on the other hand, obtains 91.1%,
95.1%, 21%, 9.4% for accuracy, F1 score, FNR, and FPR,
respectively. Although accuracy and F1 score are higher for
LOF, the low FNR obtained by IF makes it the most reliable

Figure 5. FPR and FNR of anomaly-detection models for our system in a
dataset with severe concept drift.

Figure 6. Confusion matrices of our best system (IF) without and with concept
drift detection.

system, in the considered scenario, since false negatives must be
avoided at all costs. The other two models tested (OCSVM and
ELEN) exhibit low performance in the detection of malicious
and benign classes, respectively, as can be seen from the FPR
and FNR values obtained. Interestingly, for the dataset with
moderate presence of drift, performance is better with a large
window. The large window is more representative but slower to
detect drift than the small window, which is less representative
but reduces the time between the occurrence of concept drift
and its detection and adaptation. A small window is preferable
when the dataset has a strong presence of drift. Finally, Fig. 6
shows the confusion matrices obtained by IF without drift
detection (on the left) and with drift detection (on the right).
For the system without concept drift detection, the appearance
of new malicious traffic is not particularly harmful because its
statistical distribution is still different from that of the benign
traffic on which the model was originally trained, but concept
drift on benign traffic is particularly harmful because it causes
misclassifications that result in high FPR. Unsurprisingly, given
that the dataset contains severe concept drift, explicit drift
management results in significantly improved performance,
especially for the benign class. By automatically adapting to
new benign network traffic coming from a new type of IoT
device, the system avoids mistaking it for malicious traffic, in
contrast to the system without drift detection.

The entire dataset was processed in 83 batches of size w=75.
Concept drift in the incoming data was detected 24 times.
In such cases, the system reused an existing model 75% of
the time. This confirms the importance of handling recurring
concept drift, which allowed the system to avoid unnecessary
retraining when an already known concept occurred.

V. CONCLUSIONS

In this work, we introduced a novel system that fuses
unsupervised anomaly detection and concept drift detection



methodologies, employing traditionally static algorithms in
a hybrid manner to effectively work with streaming data.
Moreover, we devised a unique approach to expressly handle
recurring concept drift, by retaining a historical record of
previous models which drastically reduces the necessity for
re-training. To verify the correctness of our methodology, we
performed an extensive evaluation of our system through a
series of experiments on two real-world datasets. The results
prove the effectiveness of the proposed system in identifying
malicious traffic generated by malware, regardless of the
presence or absence of concept drift, by always achieving
high performance. These results are comparable and sometimes
superior to supervised systems in the literature. However, the
proposed system is much more realistic than its supervised
counterparts, which often make assumptions that are not
feasible in practice in terms of obtaining instantaneous feedback
on previous data provided by experts who are supposed to
work at inhuman speeds. As future work, the system could be
extended to dynamically use data windows of variable size, in
order to exploit the trade-off between fast response to drift and
representativeness of the training set discussed in Section IV.
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