

NDS LAB - Networking and Distributed Systems

http://www.dicgim.unipa.it/networks/

NEP-IDS: a Network Intrusion Detection System Based

on Entropy Prediction Error

A. Augello, G. Lo Re, D. Peri, P. Thiyagalingam

In Proceedings of the 2024 IEEE 49th Conference on Local Computer

Networks (LCN)

DOI: https://doi.org/10.1109/LCN60385.2024.10639755

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite

from the work.

Publisher: IEEE

https://doi.org/10.1109/LCN60385.2024.10639755

DRAFT

NEP-IDS: a Network Intrusion Detection System
Based on Entropy Prediction Error

Andrea Augello, Giuseppe Lo Re, Daniele Peri, and Partheepan Thiyagalingam
{andrea.augello01, giuseppe.lore, daniele.peri, partheepan.thiyagalingam}@unipa.it

Engineering Department, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy

Abstract—Intrusion Detection Systems (IDSs) are used to
intercept unauthorized access and malicious activity in computer
networks. However, cyber-attacks are becoming more sophis-
ticated, using evasion techniques to prevent signature-based
detection. The rise of previously unseen attacks poses a critical
challenge to IDSs. In this work, we present a lightweight approach
to anomaly detection in network traffic that exploits the entropy
of packet header features to reveal attacks. Detection is performed
through a predictive model and a sliding window cumulative sum
algorithm. The experimental evaluation, conducted on various
attacks, indicates our system’s effectiveness in detecting attacks
generating both high and low amounts of traffic, maintaining a
low false alarm rate.

I. INTRODUCTION

The rapid evolution of the digital landscape has brought
with it an increase in the complexity and frequency of
cyberattacks. Numerous cyber-attacks are reported every year
and attackers create more and more sophisticated techniques
to break into computer networks [1]. These attacks, which are
often sophisticated and stealthy [2], pose significant threats to
information systems worldwide. At the same time technology
systems are becoming more pervasive than ever before. As such,
the development of effective detection methods is of paramount
importance. Network traffic analysis is a critical component of
cybersecurity, monitoring network availability and activity to
identify anomalies and potential security issues [3]. However,
traditional methods of network traffic analysis often fall
short in the face of modern, complex cyber threats, thus
requiring the use of Intrusion Detection Systems (IDSs) [4] to
identify suspicious patterns or anomalies. IDSs provide real-
time monitoring and analysis of network traffic to detect and
prevent unauthorized access and malicious activities.

Due to evolving attacks, many challenges need to be
addressed in the field of IDS, notably: reducing computational
costs, improving transparency of results, and improving effec-
tiveness against new types of attacks [5].

In this work, we present a Network Entropy Prediction
Error-based Intrusion Detection System (NEP-IDS). Entropy,
a concept borrowed from information theory, provides a
measure of randomness or uncertainty in a set of data. In
the context of network traffic, entropy can be used to quantify
the unpredictability of traffic patterns. Anomalies, such as those
caused by cyberattacks, often disrupt these patterns, leading to
changes in entropy. By monitoring these changes, cyberattacks
can be effectively detected in their early stages.

The main contributions of this work are the following:

• The system is based on a predictive model that can be
trained on a relatively small amount of data and can be
quickly deployed on a new network.

• Unlike most entropy-based IDSs, NEP-IDS’s predictive
model extends its effectiveness beyond typical high-
volume Denial of Service (DoS) attacks.

• NEP-IDS is lightweight, requiring only a minimal set of
features, and can be used online, with constant time and
memory requirements.

• NEP-IDS is suitable for semi-supervised settings, high-
lighting traffic for further inspection or manual labeling,
thanks to its interpretable output and low false alarm rate.

We show the applicability and effectiveness of NEP-IDS using
a public dataset.

The rest of this work is organized as follows. Section II
broadly reviews the state of the art in the field of IDS. Section
III outlines our IDS components and operation. Section IV
presents the experimental results. Finally, Section V reports
our conclusions and discusses future research directions.

II. RELATED WORKS

An IDS is a system security component that identifies
malicious network traffic [6]. IDSs can be broadly classified
into two categories [7]: Signature-based IDSs (SIDSs) and
Anomaly-based IDSs (AIDSs). SIDSs detect attacks using
pattern-matching techniques [8]. They store information from
previously detected attacks in a database and raise an alarm
when the oncoming network traffic matches a known attack
signature. With labeled data, a model can be trained for
accurate traffic classification [9]. Supervised IDSs, however,
require large amounts of labeled data, and cannot adapt to new
threats. The increasing frequency of polymorphic variants of
malware and targeted attacks negatively affects their real-world
effectiveness [1]. Thus, even if they perform well, effective
techniques to recognize unknown attacks are still required [10].

AIDSs overcome this limitation by modeling normal system
behavior and detecting attacks as deviations from this model.
Since using human experts to label traffic data is time-
consuming and expensive, and collecting large real-world
datasets containing a wide range of attacks is difficult, keeping
supervised IDSs up to date is a challenging task. An attractive
solution to this issue is using an AIDS in parallel with the
supervised IDS. The anomaly detection system can identify
malicious traffic that eludes the classifier. Then this traffic can
be manually labeled and used to update the classifier [11].

DRAFT

AIDSs can be classified by the methods used to construct
behavior models [7]. Knowledge-based techniques use sources
of information such as human experts to create rules defin-
ing normal system activity. However, inconsistencies may
arise when merging information from multiple sources [12].
Machine Learning AIDS, on the other hand, are trained on
large quantities of data to improve accuracy and require less
human dependence. In the right configuration, they can be
run on devices with limited computational capabilities while
maintaining good detection accuracy [13]. However, machine
learning models are often black-boxes, their decision-making
process is opaque [14], and interpreting the reason of a packet
classification is difficult.

AIDS can also be classified by the data they analyze. Flow
counting schemes, primarily used for DoS detection [15],
summarize network information in IP flows [16] but struggle
with real-time analysis of encrypted traffic [17]. Information
theory-based schemes analyze traffic using metrics such as
entropy to measure the randomness of incoming traffic [18]
and to assess whether the state of a network changed compared
to some normalcy baseline. These approaches typically have
low computational overhead, can handle a large amount of data
in real-time, have few false positives, and need few assumptions
on the underlying traffic generating mechanisms [19]. While
fast at detecting large-scale events like DoS attacks [20], [21],
[22], they struggle with small-scale, low-volume attacks [23].

Entropy-based IDSs typically set an entropy threshold that,
when passed, labels traffic as malicious. For example, Dis-
tributed Denial of Service (DDoS) attacks decrease the entropy
of the packet destination IP, revealing the ongoing attack [24].
Additionally, multiple thresholds can be combined to perform
complex decisions, e.g., by using the entropy of different
features to differentiate DDoS attacks from flash events [25].
Various entropy metrics, even when computed for the same
features, can provide a richer context to classifiers, enhancing
their performance against botnet-like malware attacks [26].
However, this approach is effective mainly against high-traffic
attacks.

Fixed entropy thresholds require case-by-case tuning and
regular updates due to changing network and attack character-
istics, limiting their widespread use. Instead, adaptive bounds
based on recent samples can improve DDoS detection [27].
Using multiple time windows can account for periodic traffic
variations. Entropy is computed in various reference time
frames, and new samples are compared to these baselines.
Significant deviations can indicate abnormal states [26]. Good
performances for DDoS detection was also achieved using
probability distribution divergences of the incoming traffic
compared to baseline network traffic [28]. Similarly to the
proposed NEP-IDS, these techniques rely on establishing a
baseline for the normal traffic and detecting deviations from it.
However, since they do not use a predictive model, they are
not as flexible in adapting to realistic network traffic variations.
Additionally, low-volume attacks tend to escape detection, as
in any given instant they do not significantly alter the entropy
of the network traffic, and their effect is only noticeable after

Packets Feature
Extraction

< IP, port > Bloom
filter

Distinct

pairs
log

(
Distinct
pairs

)
Hartley Entropy

HE(tn)HE(tn−1)HE(tn−2)HE(tn−3)HE(tn−4). . .

LSTM -
H̃E(tn)

P
red

iction
error

enen−1en−2en−3en−4en−5en−6en−7. . .

CUSUM
Alerts

Fig. 1: Schematic diagram of the proposed system. The Long
Short-Term Memory (LSTM) is first trained on benign traffic
data. Then, the cumulative sum (CUSUM) algorithm is used
to detect anomalies in the prediction error.

compounding over time.

III. NEP-IDS ARCHITECTURE

NEP-IDS is designed to detect anomalies in network traffic
by leveraging the packet header information entropy. The
system’s architecture and components are illustrated in Fig. 1.
NEP-IDS uses a predictive model to estimate future network
traffic entropy, comparing predictions with actual entropy to
identify anomalies (Section III-B). The predictive model is a
Long Short-Term Memory (LSTM), a type of Recurrent Neural
Network that can learn long-term dependencies in sequential
data, making it resilient to input noise and ideal for time series
prediction.

NEP-IDS operates in real-time, extracting header information
from all the packets in transit through the network. The
destination port and IP destination address of each packet
are recorded and used to compute the Hartley Entropy (HE)
of the “packet destination” variable. The entropy computation
pipeline is highlighted in gray in Fig. 1 and is analyzed in
greater detail in Section III-A.

The sequence of the computed entropy values is then used
by the LSTM model to predict upcoming entropy values. The
prediction is compared to the actual entropy, and the prediction
errors are used as input for a sliding window cumulative sum
(CUSUM) algorithm. The CUSUM chart is a statistical method
used to detect anomalies. When the cumulative sum of the
prediction errors exceeds a threshold, the system raises an alert,
indicating a potential cyberattack.

In the following subsections, the main components of
NEP-IDS and the rationale behind their design are further
analyzed.

A. Hartley Entropy

Entropy is an information theory concept that quantifies the
expected amount of information produced by a random variable.
Usually, the entropy of a random variable X is computed using

DRAFT

Shannon’s entropy as H(X)=−∑|X|
i=1 pi log(pi), where pi is

the probability of the variable taking the i-th value. However,
Shannon’s entropy is not suitable for network anomaly detection
and is rarely used in IDSs [29]. The contribution of an event
to Shannon’s entropy is small for events with very high or low
probability as pi and log(pi) are close to 0, respectively. For
network anomaly detection, however, multiple rare events (e.g.,
those generated by a port scan) and events with high frequency
(e.g., the effect of a DDoS attack) are those linked to attacks.
Moreover, attacks with a small volume footprint are almost
negligible from a Shannon entropy point of view, making
this entropy unsuitable for all low-volume attacks. Thus, IDSs
often use Rényi’s generalized entropy as in Eq. (1), which has
a tunable parameter α to adjust sensitivity to rare/common
events.

Hα(X) =
1

1− α
log

|X|∑

i=1

pαi (1)

Positive α values highlight frequent events, while negative
values emphasize rare ones. For α = 0, Rényi’s entropy is
also known as Hartley Entropy (HE), and is computed as per
Eq. (2).

HE(X) = H0(X) =
1

1− 0
log

|X|∑

i=1

p0i = log |X| (2)

HE equally weights all nonzero probability events, making
it a general-purpose detection metric, not tailored for a specific
attack class, and thus suitable for our aims. In NEP-IDS, we
compute the entropy over the destination <IP, port> pairs.
These features are a subset of some commonly used features
in entropy-based IDSs [28]. Ignoring additional header fields
speeds up computation and reduces the memory footprint. We
focus on packet destinations, as sources can be easily spoofed or
vary widely in attacks, while the destinations inside the security
perimeter remain consistent. It is worth noting that most works
tend to exclude these features, as a supervised classifier might
learn to associate specific machines with attacks [30]. NEP-IDS
is not subject to this limitation, as the header information is not
directly fed to the LSTM model. Instead, all the pairs recorded
in a time interval are used to compute a single entropy value
that reflects the overall network state.

The computation of HE only requires the number of possible
events |X|, not their probability distribution. Since only the
number of distinct <IP, port> pairs is needed to compute the
HE of the “packet destination” variable, the system can be
optimized to require constant time and memory to compute
the entropy each time interval. NEP-IDS uses a Bloom filter to
efficiently select distinct <IP, port> pairs in each time interval,
ensuring constant time and memory costs for HE computation.
A Bloom filter is a space-efficient probabilistic data structure
that tests set membership using a bit array and multiple hash
functions [31]. Initially, the Bloom filter is a bit array of length
m set to zero. A set of k hash functions is defined, each of
which maps some set element to one of the m array positions,
generating a uniform random distribution. To insert an element,

0

2

4

6

8

10

12

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

E
nt

ro
py

[b
it

s]

Time

Fig. 2: HE of legitimate traffic on the first day of the dataset.
The line represents the mean entropy, and the highlighted area
spans six standard deviations.

it’s hashed by the k functions, and the corresponding positions
(modulo m) are set to one. k and m are chosen through Eq. (3),
where p is the desired false positive probability for n elements.

k = − log2(p), m = −n log2(p)

ln(2)
(3)

When an <IP, port> pair is received, it is hashed and the bits
at the identified positions are checked. This operation requires
constant time, regardless of the number of elements in the filter.
If any bits are zero, the pair is added to the filter, and the distinct
pair counter is incremented. Otherwise, the pair is considered
present and ignored. Periodically, the HE is computed as the
logarithm of the counter. After this computation, the counter
and the Bloom filter are reset.

B. Prediction error

While many works use static entropy thresholds, this
approach falls short in real-world scenarios where network
behavior varies significantly throughout the day. This variation
is to be expected, since network traffic is influenced by time-
dependent user behavior and scheduled bandwidth-intensive
processes. Network entropy alone, however, is not informative
enough to understand the pattern of the network traffic [32]. The
high entropy variability, shown in Fig. 2, complicates threshold
setting. A low threshold causes many false alarms, while a
high one misses attacks. It is also worth noting that, even
with the wide bounds of the six standard deviations interval in
the figure, many instances of legitimate traffic fall outside the
interval.

To address this, rather than directly using the HE value
for anomaly detection, NEP-IDS uses a predictive model to
estimate future entropy. Said predictive model is an LSTM
model with three recurrent layers having hidden size 5, and
two fully connected layers with the same hidden size and
Rectified Linear Unit (ReLU) activation. The LSTM is trained
on entropy sequences from attack-free periods to learn the
network’s behavior.

At time tn+1 the LSTM has processed the observed entropy
for each interval in the t0–tn range. We expect the predicted
entropy H̃E(tn+1) to be, on average, closer to the actual value
HE(tn+1) when the network is not influenced by ongoing

DRAFT

attacks. We assume attacks alter network dynamics, causing
the model, trained on legitimate traffic, to predict less accurately.
The prediction error et = H̃E(t) − HE(t) can indicate
anomalies more effectively than raw entropy.

C. Anomaly detection module

In order to detect anomalies, NEP-IDS employs a sliding
window cumulative sum (CUSUM) algorithm. The CUSUM
algorithm is a sequential statistical hypothesis testing technique
that detects shifts in the mean of a monitored variable, in our
case the LSTM prediction error et = H̃E(t) − HE(t). This
algorithm entails computing the cumulative sum of differences
between expected and observed values for all samples from the
process start to the current sample under analysis. An alarm
is raised when the sum exceeds a threshold. If the variable is
normally distributed, the CUSUM score is near zero in normal
conditions but increases when an anomaly shifts the mean.

To quickly return to normal levels post-anomaly, we use a
sliding window mechanism [33] that only considers recent
samples. At startup, all available samples are used until
k samples are available. Then, the window starts sliding,
computing the sum from emax(0,n−k) instead of e0 and using
only the latest k samples. In the experiments, k is set to consider
the latest 45 minutes of data.

NEP-IDS detects negative shifts in prediction error, assuming
that an ongoing attack will increase HE over the LSTM
prediction, which is trained on normal traffic. The CUSUM
score to detect negative shifts is computed as in Eq. (4).

Smax(0,n−k) = 0

Sn+1 = max(0, Sn +E[e]− en+1)
(4)

The CUSUM score, initialized at zero, updates with each
sample en+1 by adding the difference between the expected
and observed prediction errors. Traffic is labeled as anomalous
if the CUSUM score St in a given time frame t exceeds a
predefined threshold, rejecting the null hypothesis of no attack.

Finally, the complete NEP-IDS algorithm is summarized in
Algorithm 1

IV. EXPERIMENTAL EVALUATION

To demonstrate NEP-IDS’ effectiveness, we need a dataset
with diverse attacks and normal traffic in a network with
multiple devices, containing raw network traffic for extracting
packet header information and timestamps. Therefore, we
evaluated NEP-IDS on the CIC-IDS2017 dataset [34]. This
open-source dataset is a comprehensive and widely used dataset
for network intrusion detection systems. It comprises ample
realistic data, containing benign traffic, common attacks from
various operating systems, and raw network traffic captures in
a packet-based format.

The dataset spans five days, with benign traffic on Monday
and diverse attacks thereafter. We use Monday’s data, free of
attacks, to train and tune our system. This approach is more
representative of real-world scenarios than using attack-free
intervals from across the entire dataset, as the training data in a
deployed system would be collected pre-deployment. This test

Algorithm 1 NEP-IDS anomaly detection algorithm

Input: traffic stream, LSTM model, average prediction error,
threshold, window size

Output: Anomaly alert
1: Create an empty Bloom filter BF
2: distinctCounter ← 0
3: errors← []
4: for packet in traffic stream do
5: Extract packet header information: destination port and

IP
6: if <IP, port> /∈ BF then
7: distinctCounter ← distinctCounter + 1
8: Add <IP, port> to BF
9: if interval has ended then

10: HE ← log(distinctCounter)
11: distinctCounter ← 0
12: RESET BF
13: H̃E ← LSTM.PREDICT_ENTROPY()
14: e← H̃E −HE
15: APPEND e to errors
16: S ← 0
17: for i← 0 to min(windowSize, |errors|) do
18: S ← max(0, S +E[e]− errors[i])
19: if S > threshold then
20: return Anomaly alert
21: LSTM.UPDATE_STATE(HE)

configuration illustrates that NEP-IDS can be quickly trained
and deployed on a new network in a few hours without requiring
extensive training data. To implement this configuration, the
LSTM was initially trained on the first 5h 30m of Monday’s
traffic. The training was performed using the Adam optimizer
and mean squared error loss function. Subsequently, the
remaining 2h 30m were used as test data to characterize
the statistical properties of the LSTM reconstruction error
on previously unseen data.

Although setting thresholds at 2 or 3 standard deviations
is a common practice in anomaly detection, percentile-based
thresholding is more effective when the standard deviation is
much larger than the mean, as with our CUSUM scores [29].
Thus, the threshold is set to classify 98% of the Monday test
data as benign. This specific threshold value was selected
according to the procedure described by the authors of [35].

In the following subsections, we evaluate the effectiveness
of the NEP-IDS algorithm comparing it to a system using only
entropy to classify incoming traffic (Singh et al. [28]). Then
we perform an ablative analysis to assess the impact of the
various components of the system. First, we keep the LSTM
prediction error but ignore the historical error information
leveraged by the CUSUM algorithm. Finally, we test the full
system with the removal of the sliding window mechanism,
using the entire dataset to compute the CUSUM score. These
comparisons underscore our integrated architecture’s effective-
ness, outperforming the isolated components typically used in

DRAFT
0

5

10

15

20

10:00 12:00 14:00 16:00

Time

2017-07-03

0

5

10

15

20

10:00 12:00 14:00 16:00

Time

2017-07-04

0

5

10

15

20

10:00 12:00 14:00 16:00

Time

2017-07-05

0

5

10

15

20

10:00 12:00 14:00 16:00

Time

2017-07-06

0

5

10

15

20

10:00 12:00 14:00 16:00
Time

2017-07-07

Fig. 3: Distribution of the CUSUM score as computed through
Eq. (4). Points outside the shaded area are deemed malicious
and are clearly distinguishable from normal traffic.

the literature.

A. Performance of NEP-IDS

We first provide a qualitative evaluation of NEP-IDS by
showing the CUSUM score across all test data intervals in
Fig. 3. This visual representation provides an insight into
NEP-IDS’s ability to detect attacks. In this representation, green
and red points denote intervals without and with malicious
activity, respectively. The shaded area represents the 98th
percentile of the training data’s CUSUM score, setting the
detection threshold. Points outside this area are flagged as
anomalies.

The figure shows that the CUSUM score of malicious traffic
is easily distinguishable from normal traffic, with most attacks
corresponding to sharp peaks in the CUSUM score. Conversely,
the score assigned to benign traffic appears to be mostly flat,
with occasional increases being small and short-lived. This
ease of interpretation is a desirable property for an IDS as
it allows a human operator to quickly assess the situation,
estimate the beginning of the attack, and take appropriate action.
Additionally, if human experts are tasked with labeling the
traffic, by providing a clear visual representation of the system’s

output, NEP-IDS can help them quickly identify the intervals
that lead up to an attack which require further inspection.

For a quantitative evaluation of the performance, in total,
out of 35.5 hours of test data, 06:03:40 were labeled by
our system as anomalous. Among the intervals classified as
anomalous, only one 21-minute interval did not include any
malicious traffic. Out of the total 09:05:00 of malicious traffic,
attacks corresponding to 08:43:00 of traffic had at least one
corresponding interval labeled as anomalous, resulting in a
weighted detection rate of 95.9%.

Table I presents the time before each attack was detected
by NEP-IDS. NEP-IDS failed to detect only the XSS and
SQL Injection attacks. Despite the SQL Injection attack’s
distinct entropy distribution (significant with p < 0.05), its
short duration (2 minutes) didn’t allow the CUSUM score to
surpass the alert threshold. NEP-IDS did not detect the XSS
attack as its entropy and prediction error were statistically
similar to normal traffic (p > 0.1). In general, the median
delay from attack start to anomaly detection was 11 minutes
and 30 seconds, resulting in more than half of the total attack
duration occurring after the alert.

The longest detection time was for the two-stage PortScan
attack on Friday 2017-07-07 from 13:55 to 15:29. In the first
stage from 13:55 to 14:35 the firewall rules prevented additional
traffic, so NEP-IDS could not detect the attack. With firewall
rules off from 14:51 to 15:29, the second stage was detected
in 6 minutes. Given the high incidence of port scan attacks in
the wild [36], this is a desirable outcome, as NEP-IDS only
raised an alert for the successful scan, while no alert was
needlessly raised when the attack was intercepted by other
security mechanisms in the network. Thus, NEP-IDS can be
easily used as a complementary system to existing security
measures, providing additional complementary insights into
network traffic.

B. Comparison with entropy thresholding approaches

Setting entropy thresholds to raise alarms is a common
approach in network anomaly detection, thus we consider
a strategy that relies on this technique as a baseline for
comparison. Specifically, we implement the approach described
by Singh et al. in [28] that computes the Information Distance
(ID) between the incoming traffic and the baseline traffic. First,
this technique establishes a normalcy baseline using the mean
and standard deviation of the entropy of benign traffic during
the training period. Then, for the test data, the ID is computed
as ID = HE − µ. Values of ID outside the ±3σ range are
labeled as anomalies.

Fig. 4a shows the entropy distributions during normal and
attack activities. The large overlap between these distributions
makes ID, and by extension entropy, an ineffective anomaly
detection metric. Only the DoS Hulk and PortScan attacks
ever had an information distance greater than three standard
deviations (3σ). Additionally, just 6.8% of all data points
beyond the 3σ bounds were associated with malicious activities,
highlighting entropy’s limited discriminatory power. At the
same time, 93.2% of all the data points outside the 3σ range

DRAFT

TABLE I: Time before NEP-IDS detected each attack and attack duration.

Attack Time before detection (NEPEIDS) Time before detection (Error Thresholding) Attack duration

FTP-Patator 00:07 Not detected 01:03
SSH-Patator 00:31 00:04 01:02
DoS Slowloris 00:20 00:22 00:23
DoS Slowhttptest 00:02 Not detected 00:22
DoS Hulk 00:00 00:00 00:24
DoS GoldenEye 00:00 Not detected 00:09
Heartbleed 00:10 Not detected 00:20
Brute Force 00:25 00:22 00:45
XSS Not detected 00:20 00:20
SQL Injection Not detected 00:01 00:02
Infiltration 00:57 00:53 01:26
Bot 00:13 Not detected 00:58
PortScan 01:02 00:59 01:31
DDoS 00:05 Not detected 00:20

were not associated with any malicious traffic. Therefore, using
entropy thresholds for anomaly detection leads to high false
alarms and low detection rates, underscoring its unsuitability
for general-purpose intrusion detection.

The distinct entropy distribution experienced during the
DDoS also aligns with literature that primarily uses entropy to
detect DoS and high-volume DDoS attacks. Nevertheless, this
entropy stayed within normal ranges, evading detection. This
confirms our hypothesis that realistic network traffic’s natural
variability makes entropy-based anomaly detection thresholds
too lax. By contrast, the score from NEP-IDS (Fig. 4b) is
distinct from the normalcy baseline for most attacks, reducing
overlap with legitimate traffic and improving distinguishability.

We quantify this improvement in distinguishability through
the detectability index. The detectability index d′e [37] measures
the separation between two distribution means in units of
the average standard deviation as d′e = 2·|µ1−µ2|

σ1+σ2
, with µ1

and µ2 representing the means, and σ1 and σ2 the standard
deviations of the two distributions being compared. Computing
d′e provides a quantitative measure of how well the distributions
can be differentiated. d′e values near 0 suggest indistinguishable
distributions, while higher values indicate easier sample differ-
entiation. This analysis is reported in Table II. Except for the
DoS Slowloris, all attacks’ detectability improved or remained
nearly unchanged by using the NEP-IDS score instead of ID,
with DoS GoldenEye’s increasing sixfold.

C. Comparison with plain prediction error

The prediction error of the LSTM model is a better indicator
of malicious activity than the entropy value even without further
processing. Contrary to using the entropy alone, when relying
only on the prediction error and setting the same 3σ threshold
more than half of the attacks in the test data are correctly
detected.

Table I also reports the time elapsed before the detection of
each attack using the prediction error. Interestingly, XSS and
SQL Injection attacks, the only two categories that NEP-IDS
could not detect, were detected by naive error thresholding.
Nevertheless, NEP-IDS was able to detect more attacks with a
lower false alarm rate. Moreover, the CUSUM mechanism in
NEP-IDS does not significantly delay the detection of attacks:

TABLE II: Detectability index for various attacks, comparing
Singh et al. and NEP-IDS scores with and without the sliding
window mechanism.

Singh et al. [28] NEP-IDS No sliding window

FTP-Patator 1.10 2.42 1.22
SSH-Patator 0.56 0.52 0.26
DoS slowloris 0.74 0.32 0.48
DoS Slowhttptest 0.91 1.84 0.35
DoS Hulk 1.01 3.05 2.16
DoS GoldenEye 1.51 9.31 5.84
Heartbleed 0.79 1.09 0.20
Web Attack – Brute Force 0.83 1.09 0.06
Web Attack – XSS 0.12 0.57 0.01
Web Attack – SQL Injection 0.61 0.91 0.33
Infiltration 0.77 0.90 0.12
Bot 0.54 1.27 0.55
PortScan 0.89 0.86 0.14
DDoS 1.96 1.59 2.04
All malicious 0.79 1.05 0.48

for most of the detected attacks there was no substantial
increase in the time elapsed before an attack was detected
using NEP-IDS compared to prediction error thresholding. This
result demonstrates that the detection performance improvement
brought by the CUSUM mechanism in NEP-IDS does not
come at the cost of a decreased responsiveness and real-time
capabilities of the system.

The prediction error of the LSTM model for all the test data
is reported in Fig. 5. The shaded area denotes a 6σ interval
around the mean error. From the figure it is possible to see
that, despite the prediction error being more effective than
the entropy value at detecting attacks, it still does not easily
distinguish normal traffic from traffic influenced by the presence
of malicious activities. A more in-depth analysis shows that
most malicious traffic falls within the 6σ interval and, of all
the data points that exceeded the threshold, 74.4% were still
false positives.

D. Effect of the sliding window in the anomaly detection
module

Finally, we assessed the sliding window mechanism’s impact
on the CUSUM algorithm. A comparison of the detectability
with and without the mechanism is reported in Table II. Without
the sliding window mechanism, the CUSUM algorithm’s slower

DRAFT
0

0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

All malicious

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

Bot

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

DDoS

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

DoS GoldenEye

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

DoS Hulk

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

DoS Slowhttptest

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

DoS slowloris

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

FTP-Patator

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

Heartbleed

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

Infiltration

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

PortScan

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

SSH-Patator

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

Brute Force

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

Sql Injection

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

Singh et al. Information Distance

XSS

(a) HE-based Information Distance distribution of benign (green) and
malicious (red) traffic.

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

All malicious

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

Bot

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

DDoS

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

DoS GoldenEye

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

DoS Hulk

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

DoS Slowhttptest

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

DoS slowloris

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

FTP-Patator

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

Heartbleed

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

Infiltration

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

PortScan

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

SSH-Patator

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

Brute Force

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

Sql Injection

0
0.2
0.4
0.6

Fr
eq

ue
nc

y

CUSUM Score

XSS

(b) NEP-IDS CUSUM score distribution of benign and malicious
traffic.

Fig. 4: Distribution of the Information Distance and CUSUM
score assigned by NEP-IDS for benign and malicious traffic.

return to normalcy worsens most attacks’ detectability. The
slower return to normalcy results from the score incorporating
prediction errors from intervals with attacks. This results in
the system remaining in an alert state for a long time after the
attack is over, potentially hindering the detection of subsequent
attacks and increasing the false alarm rate. If the sliding window

−0.3
0

0.3

10:00 12:00 14:00 16:00

Time

2017-07-03

−0.3
0

0.3

10:00 12:00 14:00 16:00

Time

2017-07-04

−0.3
0

0.3

10:00 12:00 14:00 16:00

Time

2017-07-05

−0.3
0

0.3

10:00 12:00 14:00 16:00

Time

2017-07-06

−0.3
0

0.3

10:00 12:00 14:00 16:00
Time

2017-07-07

Fig. 5: Distribution of the LSTM prediction error. The shaded
area is a 6σ interval around the mean. Most malicious traffic
falls within this interval.

mechanism is not included in the CUSUM algorithm, the
false alarm rate rises to 14.4% of the considered intervals,
demonstrating the usefulness of this addition.

The limitations of the normal CUSUM are also visible in
Fig. 6, where the performance of the algorithm without the
sliding window mechanism is compared to the full NEP-IDS
detection mechanism, shown in black. The figure illustrates
how the CUSUM score of the algorithm without the sliding
window mechanism is slower to return to normalcy after the
attack is over, resulting in a higher false alarm rate. On the other
hand, when the score is rising for an ongoing attack, the two
algorithms have similar performance. Therefore, the addition
of the sliding window mechanism does not constitute a trade-
off between detection performance and responsiveness, as it
improves the system’s ability to return to normalcy post-attack
without hindering the detection of ongoing attacks.

Two notable examples of the importance of the sliding
window mechanism are on Tuesday 2017-07-04 for the FTP-
Patator attack at 9:20-10:20 and the DDoS attack on Friday at
15:56-16:16. NEP-IDS returns to normalcy in 30 minutes post-
Patator attack, while the system without the sliding window
mechanism stays on alert for over 2 hours. Such a needlessly
long alert state would result in considerable confusion for a

DRAFT
0
5
10
15
20
25
30

10:00 12:00 14:00 16:00

Time

2017-07-03

0
5
10
15
20
25
30

10:00 12:00 14:00 16:00

Time

2017-07-04

0
5
10
15
20
25
30

10:00 12:00 14:00 16:00

Time

2017-07-05

0
5
10
15
20
25
30

10:00 12:00 14:00 16:00

Time

2017-07-06

0
5
10
15
20
25
30

10:00 12:00 14:00 16:00
Time

2017-07-07

Fig. 6: Performance comparison with and without the sliding
window mechanism. NEP-IDS (black) has fewer false alarms
and recovers faster post-attack.

human operator and unnecessary resource consumption for
manual inspection.

In the case of the DDoS attack, the system without the
sliding window mechanism is still in the alert state caused by
the PortScan attack that ended at 15:29. A user inspecting the
system at 15:56 would thus assume that the previous attack is
still ongoing, potentially not noticing that a subsequent DDoS
attack is now causing the system to remain in an alert state.
Conversely, the full NEP-IDS detection mechanism correctly
separates the two attacks, returning to normalcy after the
PortScan attack and then raising a new alert for the DDoS.

Fig. 7 shows a sensitivity analysis of the window size.
Increased window size does not significantly affect the respon-
siveness of the system, as the time before detection remains
stable. On the other hand, the extra alert duration increases
almost linearly with the window size, as the system takes
longer to return to normalcy after an attack. The 45 minutes
window size used in the experiments was chosen as the smallest
window that prevented the system from raising multiple alerts
for the same attack.

0 10 20 30 40 50 60 70 80 90

0

20

40

Window size [minutes]

M
in
u
te
s

Mean time before detection
Mean time before return to normalcy

Fig. 7: Effect of the window size on the time before detection
and extra alert duration.

V. CONCLUSIONS

This work introduces NEP-IDS, an anomaly-based network
IDS that leverages entropy prediction error, addressing the
growing challenge of identifying novel cyber-attacks that would
bypass traditional signature-based detection techniques.

NEP-IDS leverages packet header entropy for anomaly
detection in network traffic, incorporating a predictive model
and a statistical testing algorithm to detect ongoing attacks. We
evaluated NEP-IDS on a diverse set of attacks, revealing its
effectiveness in maintaining a low false alarm rate, while still
detecting a broader range of attacks compared to conventional
entropy-based systems.

NEP-IDS is very lightweight, requiring only minimal fea-
tures, packet destination IP and port, without needing deep
packet inspection or flow reconstruction. NEP-IDS is suitable
for real-time use due to its constant resource needs. In our
experimental evaluation, NEP-IDS outperformed traditional
entropy-thresholding methods, expanding the repertoire of
detectable attacks while maintaining efficient performance.
The system demonstrates adaptability to evolving network
conditions, making it a valuable addition to the field of intrusion
detection.

As cyber threats continue to evolve, the need for more
sophisticated and robust intrusion detection systems will
continue to grow. NEP-IDS is a promising step in this direction,
providing transparent, robust, and efficient detection against
unknown attacks. Future works will investigate the application
of our approach to stealthier attacks and the use of more
complex change detection techniques, and will attempt to
decrease the time before attack detection and the alert duration
after the attack ends.

REFERENCES

[1] Symantec, “Internet security threat report volume 22.”
[2] M. Imran, H. U. R. Siddiqui, A. Raza, M. A. Raza, F. Rustam, and

I. Ashraf, “A performance overview of machine learning-based defense
strategies for advanced persistent threats in industrial control systems,”
Computers & Security, vol. 134, p. 103445, 2023.

[3] A. Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, “A comparative
study on online machine learning techniques for network traffic streams
analysis,” Computer Networks, vol. 207, p. 108836, 2022.

DRAFT

[4] T. Sommestad, H. Holm, and D. Steinvall, “Variables influencing the
effectiveness of signature-based network intrusion detection systems,”
Information Security Journal: A Global Perspective, vol. 31, no. 6,
pp. 711–728, 2022.

[5] G. Kocher and G. Kumar, “Machine learning and deep learning methods
for intrusion detection systems: recent developments and challenges,”
Soft Comput., vol. 25, no. 15, pp. 9731–9763, 2021.

[6] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” J. Netw. Comput. Appl., vol. 36, no. 1,
pp. 16–24, 2013.

[7] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersec., vol. 2, no. 1, pp. 1–22, 2019.

[8] V. Agate, F. M. D’Anna, A. De Paola, P. Ferraro, G. Lo Re, and
M. Morana, “A Behavior-Based Intrusion Detection System Using
Ensemble Learning Techniques,” in ITASEC 2022, 2022.

[9] C. Yang, “Anomaly network traffic detection algorithm based on infor-
mation entropy measurement under the cloud computing environment,”
Cluster Comput., vol. 22, pp. 8309–8317, July 2019.

[10] D. Liao, R. Zhou, H. Li, M. Zhang, and X. Chen, “GE-IDS: an
intrusion detection system based on grayscale and entropy,” Peer-to-
Peer Networking and Applications, vol. 15, pp. 1521–1534, May 2022.

[11] X. Meng, Y. Wang, S. Wang, D. Yao, and Y. Zhang, “Interactive
Anomaly Detection in Dynamic Communication Networks,” IEEE/ACM
Transactions on Networking, vol. 29, pp. 2602–2615, Dec. 2021.

[12] L. Bouzar-Benlabiod, L. Meziani, A. Chebieb, N.-E. Rim, and Z. Mellal,
“Experts’ knowledge merging to reduce ids alerts number,” in 2016
International Conference on Collaboration Technologies and Systems
(CTS), pp. 418–423, 2016.

[13] K. Liu, Z. Fan, M. Liu, and S. Zhang, “Hybrid intrusion detection method
based on k-means and cnn for smart home,” in 2018 IEEE 8th Annual
International Conference on CYBER Technology in Automation, Control,
and Intelligent Systems (CYBER), pp. 312–317, 2018.

[14] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nat. Mach. Intell.,
vol. 1, pp. 206–215, 05 2019.

[15] T. Jafarian, M. Masdari, A. Ghaffari, and K. Majidzadeh, “A survey and
classification of the security anomaly detection mechanisms in software
defined networks,” Cluster Comput., vol. 24, no. 2, pp. 1235–1253, 2021.

[16] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers & Security, vol. 70, pp. 238–254,
2017.

[17] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, pp. 1–99, 2018.

[18] Y. Chen, “Anomaly network traffic detection algorithm based on
information entropy measurement under the cloud computing environment
[j/ol],” 2018.

[19] G. Fernandes, J. J. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi, and
M. L. Proença, “A comprehensive survey on network anomaly detection,”
Telecommunication Systems, vol. 70, pp. 447–489, Mar. 2019.

[20] A. S. S. Navaz, V. Sangeetha, and C. Prabhadevi, “Entropy based
anomaly detection system to prevent ddos attacks in cloud,” CoRR,
vol. abs/1308.6745, 2013.

[21] İ. Özçelik and R. R. Brooks, “Deceiving entropy based dos detection,”
Computers & Security, vol. 48, pp. 234–245, 2015.

[22] A. Wagner and B. Plattner, “Entropy based worm and anomaly detection
in fast ip networks,” in 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise (WETICE’05),
pp. 172–177, 2005.

[23] M. A. Aladaileh, M. Anbar, A. J. Hintaw, I. H. Hasbullah, A. A.
Bahashwan, T. A. Al-Amiedy, and D. R. Ibrahim, “Effectiveness of
an entropy-based approach for detecting low- and high-rate ddos attacks
against the sdn controller: Experimental analysis,” Applied Sciences,
vol. 13, p. 775, Jan 2023.

[24] R. Swami, M. Dave, and V. Ranga, “Defending DDoS against Software
Defined Networks using Entropy,” in 2019 4th International Conference
on Internet of Things: Smart Innovation and Usages (IoT-SIU), pp. 1–5,
Apr. 2019.

[25] S. Behal and K. Kumar, “Detection of DDoS attacks and flash events
using novel information theory metrics,” Computer Networks, vol. 116,
pp. 96–110, Apr. 2017.

[26] P. Bereziński, B. Jasiul, and M. Szpyrka, “An Entropy-Based Network
Anomaly Detection Method,” Entropy, vol. 17, pp. 2367–2408, Apr.
2015.

[27] J. David and C. Thomas, “DDoS Attack Detection Using Fast Entropy
Approach on Flow- Based Network Traffic,” Procedia Computer Science,
vol. 50, pp. 30–36, Jan. 2015.

[28] J. Singh and S. Behal, “A Novel Approach for the Detection of
DDoS Attacks in SDN using Information Theory Metric,” in 2021
8th International Conference on Computing for Sustainable Global
Development, pp. 512–516, Mar. 2021.

[29] A. A. Amaral, L. d. S. Mendes, B. B. Zarpelão, and M. L. P. Junior,
“Deep IP flow inspection to detect beyond network anomalies,” Computer
Communications, vol. 98, pp. 80–96, Jan. 2017.

[30] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “Et-bert: A
contextualized datagram representation with pre-training transformers
for encrypted traffic classification,” in Proceedings of the ACM Web
Conference 2022, pp. 633–642, 2022.

[31] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, p. 422–426, jul 1970.

[32] C. Wang, X. Li, and E. Bertino, “Network temperature: A novel statistical
index for networks measurement and management,” ACM T. Internet
Techn., vol. 22, no. 3, pp. 1–20, 2022.

[33] E. Ahmed, A. Clark, and G. Mohay, “A Novel Sliding Window Based
Change Detection Algorithm for Asymmetric Traffic,” in 2008 IFIP
International Conference on Network and Parallel Computing, pp. 168–
175, 2008.

[34] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.,”
in ICISSp, vol. 1, pp. 108–116, 2018.

[35] M. T. Tun, D. E. Nyaung, and M. P. Phyu, “Network anomaly detection
using threshold-based sparse,” in Proceedings of the 11th International
Conference on Advances in Information Technology, pp. 1–8, 2020.

[36] B. Hartpence and A. Kwasinski, “Combating tcp port scan attacks
using sequential neural networks,” in 2020 International Conference
on Computing, Networking and Communications (ICNC), pp. 256–260,
IEEE, 2020.

[37] A. J. Simpson and M. J. Fitter, “What is the best index of detectability?,”
Psychol. Bull., vol. 80, no. 6, p. 481, 1973.

