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Abstract. Federated Learning (FL) is a distributed machine learn-
ing paradigm facilitating participants to collaboratively train a model
without revealing their local data. However, when FL is deployed into
the wild, some intelligent clients can deliberately deviate from the
standard training process to make the global model inclined toward
their local model, thereby prioritizing their local data distribution. We
refer to this novel category of misbehaving clients as selfish. In this
paper, we propose a Robust aggregation strategy for the FL server to
mitigate the effect of Selfishness (in short RFL-Self). RFL-Self incor-
porates an innovative method to recover (or estimate) the true updates
of selfish clients from the received ones, leveraging robust statistics
(median of norms) of the updates at every round. By including the re-
covered updates in aggregation, our strategy offers strong robustness
against selfishness. Our experimental results, obtained on MNIST
and CIFAR-10 datasets, demonstrate that just 2% of clients behaving
selfishly can decrease the accuracy by up to 36%, and RFL-Self can
mitigate that effect without degrading the global model performance.

1 Introduction
With an aim to train a Machine Learning (ML) model in a privacy-
preserving manner, the researchers in [25] introduced Federated Learn-
ing (FL) framework, and since then it has drawn interest from the ML
community. Being a distributed learning paradigm, FL enables each
participant (or client) to train the model locally and send only model
weights (parameters) to a central server for aggregation, thereby en-
abling learning from distributed heterogeneous devices without shar-
ing their sensitive data. FL has been adopted in many contexts, such
as, medical records management [30], activity recognition [9], and
smart homes [15]. Despite the advantages of FL, the lack of oversight
over the training process can have serious implications. For instance, a
client may deviate from the normal training [22], negatively affecting
the underlying model. The deviation may be caused by a malicious
client who wants to disrupt training [18], or by a normal client who
has insufficient resources [16, 29]. Malicious clients may introduce
noise in the model to prevent convergence, as in byzantine attacks,
or optimize for a secondary objective, e.g., a backdoor [33]. As the
server lacks control over the clients, preventing their harmful actions
can be challenging.

The issue of malicious or adversarial clients is a very active field
of FL. Broadly, two common approaches exist: (i) detect and remove
the clients deviating from normal behavior [22, 36] and (ii) mitigate
the impact of the misbehaving clients via robust aggregation [3, 24].
For instance, the server in [13] excluded the contribution of colluding
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Figure 1: An example to show how selfish clients try to alter their
updates to steer the global model toward their local optima.

malicious clients who send similar updates. Robust aggregation strate-
gies, employing statistics such as median and trimmed estimators, also
exhibit good performance in the presence of byzantine clients without
needing to identify them [11]. As long as the percentage of malicious
clients stays below a certain threshold, the defense mechanism in [8]
can theoretically provide the correct classification.

In this paper, we focus on a previously unexplored type of misbe-
having client, the selfish client. Unlike malicious clients who intend
to compromise the model, a selfish client is interested in making the
global model prioritize its local data distribution. The resultant model
may cause performance degradation for normal clients, especially in
non-Independent and Identically Distributed (IID) settings, though
it is not the goal of the selfish client. Figure 1 depicts an example
of how selfishness deviates the global model from reaching the op-
timum. Typically, each participating client sends updates toward its
local optimum, which the FL server aggregates to obtain a global
optimum. However, a client behaving selfishly (shown by the ‘red’
arrows) sends updates that differ in magnitude and direction from the
ones it would send usually.

Selfish updates cannot be directly included in the aggregation as
that would lead to a deviated global model. However, unlike malicious
clients, selfish clients do not have any malign intent. Their updates
cannot be completely discarded as doing so would disregard their valu-
able contributions. This also discourages the adoption of prior defense
methods (against malicious clients) [18, 16, 33] to deal with the self-
ishness issue. To the best of our knowledge, we are the first to tackle
selfish clients in FL. We make the following major contributions:

• We introduce a novel concept of selfishness, caused by so-called
selfish clients, in FL. Under non-IID settings, the presence of selfish
clients is unavoidable as some intelligent clients can notice the
difference between global and local optimum, and can try to exploit
it in their favor.

• We propose an innovative Robust aggregation strategy that enables
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the FL server to mitigate the Selfishness effect from the training
process (RFL-Self) without affecting the overall performance of
the global model. In RFL-Self, the server aims to recover the true
updates from the received selfish updates before aggregation.

• Through extensive experiments on two widely used datasets for FL
benchmarking, MNIST and CIFAR-10, we analyze the detrimental
impact of selfish clients and demonstrate the effectiveness of RFL-
Self for varying levels of selfishness and number of selfish clients.

The paper is organized as follows. We first describe our selfish
client behavior model and objective. Then, we introduce a selfish
behavior implementation, assess the impact of selfish clients on FL,
and present a mitigation method. We then discuss experimental results
and finally conclude the paper.

2 Preliminaries and Problem Description
In FL, the goal of the server is to find an optimal global model w∗

satisfying the optimization problem:

w∗ = argmin
w

F (w) ≜
1

k

∑
i∈[k]

Fi(w)

 , (1)

where Fi(w) is the loss function of i-th client and [k] is the set of all
clients. To solve this optimization problem, at each communication
round t, each client i computes a local update δti through Stochastic
Gradient Descent (SGD). The updates are then sent to the server which
computes a global update δt[k] =

1
k

∑
i∈[k] δ

t
i as the average of all the

local updates and obtains a new global model as wt+1 = wt + δt[k]
for next round t+ 1. To avoid overburdening the notation, from now
on we omit the round superscript when clear from context.

2.1 Selfish Client

The optimization objective in Eq. (1) aims to learn a globally optimal
model rather than providing an optimal model for each client. In
non-IID settings, the local optima of each client might differ from the
global one. Some intelligent clients might notice this difference and
be interested in obtaining a global model closer to their local optima.
We refer to these savvy clients as selfish in FL. Through their actions,
the global model ceases to be optimal for the whole system.

It is worth noting that using a personalized model for each
client [32] would ensure that each client obtains a locally optimal, for
instance by training multiple models for different groups of similar
clients [2]. However, since selfish clients try to influence the global
model at inference time, personalization techniques are unsuitable for
their goals, as local fine-tuning has no impact on the performance of
the global model. Thus, in this work we focuses on the case where
a single global model is trained for all clients, which is the most
common FL setup.
Selfish versus malicious clients: The notion of selfish clients com-
pletely differs from the malicious ones (adversaries) that are well
defined in the literature [6]. Selfish behavior does deviate from nor-
mal behavior, but the objective is not explicitly in contrast with the
global objective. Selfish clients lack nefarious intent, such as engag-
ing in model poisoning attacks or preventing model convergence, as
malicious clients do. Unlike backdoor attackers [33], selfish clients do
not optimize the model for an additional objective different from the
main task. The term “selfish” has been used in the context of FL in a
complementary way in [23], where it refers to a server that strives to
favor a subset of clients over others, which is the opposite problem to

the one addressed in this work. Additionally, in certain works, “selfish”
denotes typical malicious clients [35].

Further, in communication networks, selfish clients are those wish-
ing to reap benefits from a system without contributing [28]. In FL,
these clients are commonly defined as “free-riders” [12] who wish to
obtain a model without engaging in the training process, exhibiting
a completely different behavior than the one addressed in this work.
A subset of researchers has utilized the term “selfish” to denote free-
riders in their work [1, 31]. However, the problem tackled in these
studies is unrelated to the one addressed in this paper. As far as we
are aware, this study is the first to address a similar issue.

2.2 Problem Description

A selfish client s ∈ [k] mainly aims to craft local updates such that,
after aggregating the local updates from all the clients, the global
model incurs a lower loss on its local data. The client s can formulate
the objective for their local update as

δ̂s = argmin
δ

{
Fs

(
ŵ ≜ w +

δ[k]\{s} + δ

k

)}
, (2)

where the input to the objective function Fs(·) is not the global
weights w but the crafted weights ŵ and two additional additive
terms. The first term

δ[k]\{s}
k

involves knowing the sum of all the lo-
cal updates of the rest of the clients, which is generally not known. The
first term δ

k
can be easily computed for any given k, but determining

the optimal δ is not straightforward.
Though the selfish clients do not intentionally aim to pollute the

training process, their actions are not innocent. When clients have non-
IID data, the updates from selfish clients can considerably diverge
the global model from the global optimum, causing performance
degradation for normal clients.

To this end, the problem at hand is two-fold:

1. From selfish client perspective: solving the optimization problem
in Eq. (2) given the global model weights w and k. Similar to [4],
we assume clients know the total number of FL participants (k).

2. From server perspective: Alleviating the effect of selfishness on
the global model through robust aggregation. Since selfish behav-
ior differs from existing works on outliers and malicious clients,
separate analysis and countermeasures are warranted.

Due to the non-poisonous intent of the selfish clients, we can nei-
ther totally omit their updates from the aggregation nor include them
directly, which makes the problem interesting and challenging com-
pared to dealing with malicious clients.

3 Proposed Approach
To introduce selfish clients in the FL context, we first propose a
novel way to estimate selfish model updates and then present a robust
aggregation method to mitigate the effect of selfishness on the global
model. This work considers two types of clients: normal and selfish.
Each client has heterogeneous data and selfish clients do not collude.

3.1 Client Side: Computing Selfish Updates

To improve accuracy on its local data distribution, a selfish client
needs to reduce the distance between global model updates δ[k] (see
Eq. (2)) and the local model updates δs trained on local data. To do
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Figure 2: (a) A visualization for how a selfish client can estimate δ̂s
through model replacement. (b) Effect of α on the aggregated model
and selfish update vector of a single selfish client. The aggregated
model ŵ is obtained when δ̂s is included in the aggregation.

so, at each round, the selfish client estimates δ̂s using the received
global model w and prior knowledge of k. It is worth noting that even
if k is not known, the selfish client can still easily craft its updates
approximating k, e.g., by jointly estimating it with δ[k]\{s}. This
alternative is further discussed in the Appendix (Algorithm 2).

We propose an innovative strategy for the selfish client to estimate
δ̂s to decrease the distance between the aggregated update δ[k] and
δs. The idea behind our strategy is partly inspired by the model re-
placement attacks [5], in which a malicious client attempts to replace
the global model with its local model to neutralize the effect of other
participants. The selfish client sends δ̂s in place of its true update δs,
however, unlike model replacement attacks, it does not have malicious
intent. A key distinction between model replacement attacks and self-
ish updates lies in their objectives. Model replacement attacks aim
to manipulate the model towards a backdoor or impede convergence.
Conversely, selfish updates seek to enhance the model performance
based on (at least) some clients’ data. In a perfect IID setting, we
expect selfish updates to coincide with the true update, making the
model converge to the same correct solution, unlike model replace-
ment attacks. Part (a) of Figure 2 depicts how the selfish client’s
update δ̂s can deviate from the updates sent by normal clients. By
sending δ̂s, the training advances toward a global model closer to the
selfish client’s local optimum.
Challenge: To be effective, the selfish client needs to know the update
δ[k]\{s} resulting from the sum of the other clients’ updates. Obtaining
this knowledge is generally not possible in a standard FL framework
due to privacy concerns. Since we assume that the server is trustworthy
and it communicates with clients via a secure channel, selfish clients
cannot acquire δ̂[k]\{s}, thereby making it challenging to solve Eq. (2)

To deal with the above challenge, a selfish client can instead es-
timate the average normal update δ̄[k]\{s} assuming that it does not
change much between two consecutive communication rounds. Under
this assumption, at round t, the selfish client uses the history of the
global updates to compute an estimate of the average update δ̄[k]\{s}
as

δ̄t[k]\{s} =
k · (wt −wt−1)− δ̂t−1

s

k − 1
=

δt−1
[k]\{s}
k − 1

, (3)

where for t = 1, δ̂0s = δ0s . This formulation is valid for neural
network-based models, tree-based [21] models were not considered in
this work. If multiple selfish clients are present, we assume that they
are independent and each of them estimates their updates indepen-
dently. After obtaining this estimate, the selfish client aims to bring
the subsequent global update closer to its local one. To achieve this,

the client might send δ̂s = k · δs − (k − 1) · δ̄[k]\{s} as an update
to the server, completely replacing the global model, unintentionally
resulting in malicious behavior. If the selfish client were to pursue
this strategy, however, it would have no benefit in participating in the
FL system. Thus, we introduce a selfishness parameter α ∈ [0, 1] to
control the fraction of the global update that is replaced with δ̂s in
every round. With a constant α across all rounds, the selfish client
estimates its updates as

δ̂s = α
(
kδs − (k − 1)δ̄[k]\{s}

)
+ (1− α)δ̄[k]\{s}

= αk(δs − δ̄[k]\{s}) + δ̄[k]\{s}.
(4)

When multiple selfish clients are present, we assume that they are
independent and do not collude with each other. Each selfish client
tries to optimize Eq. (2) independently using Eq. (4), irrespective of
the presence of other selfish clients. Thus, the formulation holds with
an arbitrary number of selfish clients, and we expect them to compete
to increase their effect on the global model and try to cancel each
other’s effect.

A trivial alternative strategy that could be employed by a selfish
client is to simply upscale its update. This strategy is equivalent to
the presented one if δs = −δ̄[k]\{s}, which is a special case of selfish
update. In an adversarial setting, where the misbehaving client aims
to harm the model convergence, upscaling can be equally effective,
but the same is not true in our setting. In more realistic circumstances,
upscaling can steer the model in a suboptimal direction.
Effect of parameter α: With α = 0, the estimated update is equiv-
alent to the other clients’ updates, whereas, with α = 1, the selfish
client would overwrite the whole global update with its local update.
In less extreme cases, selfishness can be regarded as the client try-
ing to increase its effect during the aggregation process. If α = 1

k
,

then the update will simply be δ̂s|α= 1
k

= δs. On the other hand,

δ̂s|α= k−1
k

= (k − 1)δs − (k − 2)δ̄[k]\{s}, which affects the global
model update as if all the clients but one have an update equivalent to
the selfish client and the remaining client has the update equivalent
to the average update of the normal clients. More generally, each
1
k

increment of α increases the magnitude of the selfishness effect
as if one more normal update δs from the selfish client were added
and decreases the aggregated effect by one normal client. A visual
representation of the effect of the parameter α on the selfish update
vector and the aggregated model ŵ is shown in part (b) of Figure 2.
Impact of selfish updates: We perform initial experiments using the
CIFAR-10 dataset [19] to demonstrate the impact of non-colluding
selfish client(s) on the test accuracy of the global model with varying
α. The results for two different FL setups (with k = 50) are reported
in Figure 3. The clients’ data distributions are non-IID with class
partitioning so that each client has only the data of two randomly
selected classes and every class of the dataset is assigned to at least
one client. The global model is tested on each client’s test set to
evaluate its performance on their data distribution. More details on
the experimental setup are given in Section 4. It is easy to notice that
increasing the selfishness (i.e., increasing α) improves the accuracy
for the selfish clients if there is only one in the FL setup. However,
if a second selfish client appears, this is only true up to α = 0.3. In
the presence of two selfish clients with any same α, each of them
tries to cancel out the other’s updates, making the global updates
unbounded in magnitude, and consequently, harming the convergence
of the training process, which can be observed in part (b) of Figure 3
for α ≥ 0.4. In both cases, the performance for normal clients is
harmed by the selfish clients. With 3 or more selfish clients without a
mitigation strategy convergence is not achieved.
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Figure 3: Illustrating the impact of selfishness on the test accuracy of
the global model using CIFAR-10 dataset.

3.2 Server Side: RFL-Self

When selfish clients participate in FL, the objective of the server is
to identify them before aggregation to mitigate their impact on the
global model. However, even if these clients are detected correctly,
they should not be completely excluded from the aggregation. Doing
so leads to a model that performs poorly for the users (not available
during training) having data distribution similar to the selfish clients.
This can be observed in Figure 3 where with α = 0 (no selfish client
contribution), the performance of the global model decreases for
the selfish client’s data distribution. The only viable solution for the
selfishness issue is estimating the true updates of selfish clients and
using them in aggregation instead of the ones received from selfish
clients. This section proposes a robust aggregation strategy, RFL-Self,
to remove the effect of selfishness from the training process. Each
round, RFL-Self identifies suspected selfish clients and attempts to
recover their true update.

3.2.1 Identifying Selfish Clients

Given a set of received updates from all the clients, RFL-Self first
computes the L2 norm of each update and finds a median normNmed.
Since a selfish client aims to increase its influence on the global
model to deviate the training toward its local model, it is obvious
that selfish updates are larger in magnitude than those from other
clients. This intuition, confirmed by Theorem 1, suggests that for any
client i, if ∥δi∥2 > Nmed holds, then client i might be selfish. In this
case, the received update δi would be the crafted δ̂i. This detection
strategy is intentionally crafted to be simple and lightweight, but it
is fully supported by the theoretical analysis in Theorem 1, and the
experimental results confirm its effectiveness.

Figure 4 visually demonstrates the deviation of the global update
δ[k] caused by selfish updates. It showcases the disparity in norm and
angle between the global update in scenarios where all clients are
normal and where selfish clients are also present. It can be observed
that part (a) of Figure 4 shows a U-shaped dip. This phenomenon
is caused by the magnitude of δ̂s + δ[k]\{s} not being equal to the
magnitude of δ[k], as also illustrated in part (b) of Figure 2. Even a sin-
gle selfish client can severely affect global convergence, and just one
more selfish participant may lead to a no convergence situation. Thus,
recovering the true updates of the selfish clients becomes crucial.

3.2.2 Recovering True Updates of Selfish Clients

Upon successful identification of the selfish clients, there are three
possible ways in which the server can deal with them:
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Figure 4: Deviation of the global update when all clients are normal to
the one with selfish clients (CIFAR-10 dataset).

• Drop: exclude suspicious updates from the aggregation.
• Mitigate: reduce the impact of suspicious updates.
• Recover: try and recover the genuine update.

The exclusion of selfish updates is not desirable as these updates
are not malicious and help improve the generalization of the model.
Moreover, normal clients might be wrongly identified as selfish in
some rounds. Thus we focus on recovery to preserve valuable contri-
butions. This approach is unique to our work as it does not apply to
malicious clients.

RFL-Self uses the received selfish updates δ̂s to compute an esti-
mate δ′s of the true update δs and uses the estimate in the aggregation
process. The server uses a convex combination of the received update
δ̂s of each identified selfish client s and the marginal median update
δmed to obtain δ′s as

δ′s = βδ̂s + (1− β)δmed, (5)

where the parameter β determines the convex combination and ensures
that ||δ′s|| is the same as the median of the norms of all the received
updatesNmed. Thus, β can be computed by solving the equation

||βδ̂s + (1− β)δmed|| = Nmed. (6)

Through the convex combination expressed in Eq. (5), the potentially
selfish update is scaled down and rotated toward the median update,
obtaining a recovered version of the true update δs. Later in this
section, we provide a theoretical analysis of the soundness of the
recovery process and bounds on the possible reconstruction error.

3.2.3 Robust Aggregation

Finally, by replacing the received updates of the set of suspected
selfish clients S with the recovered ones, the server aggregates the
updates as expressed below:

δ[k] =
1

k

 ∑
i∈[k]\S

δi +
∑
j∈S

δ′j

 . (7)

Later, the global model for the next round is computed as w =
w + δ[k]. By substantially mitigating the effect of selfishness, our
aggregation process offers a robust FL framework against the selfish
participants while strategically utilizing their updates to achieve a
more generalized global model.

Algorithm 1 summarizes all the steps of the RFL-Self. It is worth
noting that RFL-Self differs from the standard aggregation method
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Algorithm 1 RFL-Self algorithm

Input: A set of k clients
Output: A trained global model with weights w

1: w← random initialization
2: Send w to all the clients
3: for each communication round do
4: Receive updates {δi, ∀i ∈ [k]}
5: ComputeNNN ← {||δi||, ∀i ∈ [k]}
6: Compute a median normNmed ofNNN
7: δmed ← MARGINALMEDIAN({δi, ∀i ∈ [k]})
8: S ← {}
9: for each client i ∈ [k] do

10: if ||δi|| > Nmed then
11: S ← APPEND(i)

12: for each client i ∈ S do
13: Obtain β by solving Eq. (6)
14: Estimate δ′i using Eq. (5)
15: Update w← w + 1

k
(
∑

i∈[k]\S δi +
∑

j∈S δ′j)
16: Send the updated global model w to all the clients
17: return w

(FedAvg [25]) only at the server, thus it can be implemented as a drop-
in replacement for FedAvg transparently from the clients without
incurring any additional communication overhead.

On the server side, the overhead for computing the median of norms
is O(kd+ k log k), where d is the number of model parameters. This
complexity is negligible compared to O(dk log k) required for the
median computation. Thus, RFL-Self has asymptotically the same
complexity as using the median as a robust aggregation mechanism
and requires no additional communication.

3.2.4 Theoretical Guarantees

This section presents rigorous theoretical insights about the RFL-Self,
focusing on the soundness of the detection and recovery mechanisms.

Theorem 1. If the true update is similar in magnitude to the average
update of the normal clients, then an effective estimated update of a
selfish client is always larger in magnitude than the true update.

Proof. Let us assume that there exists some α such that ∥δ̂s∥2 =
∥δs∥2, making the norm of the estimated update indistinguishable
from the true update. Such values of α can be determined by using
Eq. (4). In the norm space, this condition can be written as

∥αkδs+(1−αk)δ̄[k]\{s}∥2=∥δs∥2,

(αk∥δs∥)2+2αk(1−αk)⟨δs,δ̄[k]\{s}⟩+(1−αk)2∥δ̄[k]\{s}∥2=∥δs∥2,

where ⟨·, ·⟩ is the inner product. After solving the above, we get

α= 1
k

and α=
∥δ̄[k]\{s}∥2−∥δs∥2

k(∥δs∥2+2⟨δs,δ̄[k]\{s}⟩+∥δ̄[k]\{s}∥2)
(8)

For α = 1
k

the δ̂s = δs, i.e., the estimated update coincides with the
true update. The other value for α in Eq. (8), if ∥δs∥2 ≃ ∥δ̄[k]\{s}∥2,
corresponds to α ≃ 0, i.e. δ̂s ≃ δ̄[k]\{s}. Thus, the only way to avoid
updates with a larger magnitude (larger norm) than the true ones, is
by not behaving selfishly, while effective selfish updates are always
larger in magnitude than the true updates.

Remark. Theorem 1 does not ensure that all clients exhibiting larger
update norms are necessarily acting selfishly. Consequently, RLF-
Self can incur false positives. This aspect is taken into account in

the recovery process, ensuring that the simplicity of the detection
mechanism does not undermine performance.

Recovery error: The convex combination in Eq. (5) reduces the effect
of the selfish update steering it towards the normal clients’ updates.
More formally, we analyze the recovery error of RFL-Self under the
following conditions:

• Condition 1: The average update δ[k]\{s} (excluding selfish up-
dates) is similar between any two consecutive rounds.

• Condition 2: The median update δmed is a good estimator of the
mean update of all but the selfish clients.

• Condition 3: The true update by a selfish client δs is close in
magnitude toNmed.

If the first two conditions hold, then δ̄[k]\{s} ≃ δmed and from Eqs. (4)
and (5) we get

δ′s ≃ β[αk(δs − δ̄[k]\{s}) + δ̄[k]\{s}] + (1− β)δmed

≃ βαkδs + (1− βαk)δ̄[k]\{s}. (9)

This recovered update δ′s coincides with δs for β = 1/(αk). The
server, however, does not know of α, hence, it chooses β by solving
||δ′s|| = Nmed, as mentioned in Eq. (6). If all three conditions hold,
then choosing β using Eq. (6) would provide β ≃ 1/(αk), thereby
taking δ′s quite close to δs. Part (a) of Figure 5 shows the effectiveness
of RFL-Self on recovery of the selfish update δ′s if the three conditions
are met.

δ̂s

δ′s ≡ δs

δmed ≡ δ̄[k]\s

(a)

δ′s

δ̂s

δs

δmedδ̄[k]\s

(b)

Figure 5: Distance of the recovered update δ′s to δs: (a) when the
conditions 1-3 are met, and (b) when the three conditions do not hold.

Even if all the conditions are not satisfied perfectly, the RFL-Self
can still provide a good approximation. For example, dropping Condi-
tion 2, we get δ′s = βαkδs + (δmed − βαkδ̄[k]\{s}) + β(δ̄[k]\{s} −
δmed), which differs by (1 − β)(δmed − δ̄[k]\{s}) from the one in
Eq. (9). The norm of this difference (error) is upper bounded by√

Tr(var(δ)) [14]. Similarly, dropping Condition 3, the estimated
value will be closer to the median update than the original one, with
a maximum error of ||δs − δmed||. Part (b) of Figure 5 shows the
difference between the recovered update δ′s and the original update
δs when the three conditions do not hold. It is worth mentioning
that a trivial mitigation strategy, such as downscaling selfish updates
by a factor β before aggregation, does not provide the same guar-
antees. Downscaling yields δ′s = δ̂s

β
= αk

β
δs + 1−αk

β
δ̄[k]\{s}. No

matter how β is chosen, the estimated update δ′s cannot match the true
update.RFL-Self offers greater robustness by estimating δ′s closer to
the true update δs, as also empirically demonstrated in Section 4.

Theorem 2. The maximum error in the recovered aggregated update
is bounded by 4+k

4k
Tr(var(δ)).

Proof. Owing to Theorem 1, in the presence of a set S of suspected
selfish clients, the expected error is:

E
∥∥∥δ[k]−δ′[k]

∥∥∥2 = 1
k2 E∥∑i∈[k] δi−(

∑
i∈[k]\S δi+

∑
j∈S δ′j)∥2

= 1
k2 E∥∑i∈S δi−

∑
j∈S δ′j∥2 (10)
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Since the RFL-Self leaves all [k] \ S updates unchanged, the error
comes from the updates whose norm is larger thanNmed. The maxi-
mum error induced by recovering these updates is obtained by using
the median update instead

1
k2 E∥∑i∈S δi−

∑
j∈S δ′j∥2≤ 1

k2 E∥∑i∈S(δi−δmed)∥2

= 1
k2 E∥∑i∈S(δi−δ̄[k]−δmed+δ̄[k])∥2

Using Jensen’s inequality [17]

≤ 1
k2 E∥∑i∈S(δi−δ̄[k])∥2+ |S|2

k2 Tr(var(δ))

≤ 1
k
Tr(var(δ))+

|S|2

k2 Tr(var(δ)) (11)

≃ 4+k
4k

Tr(var(δ)) since |S|≃ k
2
.

Remark. According to Theorem 2, the error does not depend on the
number of selfish clients as long as they are insufficient to induce
substantial bias into the median.

4 Experimental Evaluation
This section empirically analyzes the impact of selfish clients on FL
system performance and evaluates the effectiveness of our RFL-Self
method. Under an image classification task, we use two benchmark
datasets widely adopted to assess FL algorithms, MNIST [10] and
CIFAR-10 [19], with 50 clients varying the level of selfishness α with
up to 20% of the clients being selfish. We chose to assess RFL-Self on
these datasets due to their widespread use as benchmarks for FL and
their varying complexities. Larger datasets like CIFAR-100 were not
included because, in non-IID settings, the increased diversity in data
distribution compels selfish clients to transmit even larger updates.
Consequently, detecting selfish clients using our method becomes
straightforward. To simulate the non-IID scenario, we partition the
dataset so that each client has data for two randomly selected classes,
which is the most challenging setting [20], as few clients have over-
lapping classes. The tested non-IID conditions represent one of the
most challenging scenarios in FL. In less severe non-IID conditions,
the influence of selfish clients is expected to be less pronounced. Ad-
ditional experiments on a smaller FL setup involving 5 clients are
detailed in the supplementary material.
Experimental setup: For the MNIST dataset, we train a CNN with
2 convolutional layers followed by 2 fully connected layers. For
the CIFAR-10 dataset, the trained CNN has 3 convolutional layers
instead. Our investigation of FL is focused solely on the perspective of
selfishness, rather than maximizing accuracy. Therefore, these shallow
models are suitable enough for our task. The hyper-parameters are
– optimizer: SGD, batch size: 128/256, and learning rate: 0.01 and
0.1 for MNIST and CIFAR-10 datasets, respectively. We train the
models for 30 communication rounds, with five local epochs per
round at each client, assuming full participation of all the clients in
every round. All the experiments are implemented in Python using a
well-known library PyTorch 1.12.1 [26] on a Windows 11 powered
with an NVIDIA RTX A5000 GPU. The camera-ready version will
include the link to the source code on a public GitHub repository.

4.1 Impact of Selfish Clients on Model Performance

At first, we carry out experiments to analyze the impact of selfish
client(s) on the global model accuracy without using RFL-Self, and
report results in Figure 6 for MNIST dataset. Similar results were
discussed in Figure 3 for CIFAR-10 to ease the understanding of the
context therein. Though the mean test accuracy (shown by ‘green’ box
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Figure 6: Test accuracy of the global model varying α with one and
two selfish clients on the MNIST dataset.
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Figure 7: Deviation of the global update when all clients are normal to
the one with selfish clients (MNIST dataset).

plots) across the normal clients keeps decreasing as the selfishness
level α increases, it does not seem to favor the selfish clients. In part
(b) of Figure 6, for α > 0.3 the two selfish clients also start losing
accuracy. It is interesting to observe that in the presence of two selfish
clients, none of them gets much benefit, rather each seems to cancel
out the other’s updates, thus getting trapped into a no-win situation.
Additionally, the selfishness causes a higher variance of the test accu-
racy of the global model across normal clients, thus decreasing the
overall performance of the FL system, and in turn, making the model
more unpredictable and unfair to the normal participants.

In addition, to analyze how selfishness affects the model conver-
gence, we compute the deviation between the global update in the
absence of selfish clients δ[k] and the global update in the presence of
selfish client(s) without applying RFL-Self δ̂[k]. The obtained results
for MNIST dataset are reported in Figure 7. We also showed similar
results for CIFAR-10 in Figure 4 to establish the need for our aggrega-
tion method. An important point to notice here is that in the presence
of two selfish clients, at α = 0.5, the global model fails to converge
though the deviation is not large. It is happening because each selfish
client cancels out the selfishness component of the other, thereby the
overall model weights keep fluctuating. These results in the absence
of any mitigation strategy further emphasize the necessity of a robust
aggregation mechanism to handle selfish clients in FL systems.

4.2 Performance of RFL-Self

Next, we evaluate the performance of RFL-Self in the presence of
selfish clients and make a fair comparison with two standard strategies:
median and downscaling. The median is also a robust aggregation
strategy in which the median is used instead of the mean when ag-
gregating, it is commonly used in FL systems to deal with outliers
and byzantine clients [34], and is representative of the “drop” strategy
that completely excludes the updates of the suspected selfish clients
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Figure 8: Performance of the robust aggregation strategies under an
FL setup with 50 clients using MNIST dataset.

from the aggregation process. In the downscaling strategy, whenever
a client is suspected to be selfish in a given round, instead of using
Eq. (5), we scale each suspected update byNmed/∥δ̂s∥. The authors
in [16] adopted downscaling to deal with unreliable clients, here we
use it as a representative of the “mitigate” strategy. While sophisti-
cated malicious client detection mechanisms have been proposed in
the literature, in our scenario, Theorem 1 proves that our criterion,
albeit simple (with a low computational overhead), is guaranteed to
be effective. The main contribution on the defense side of the work
lies in the original update recovery, not in the flagging mechanism.
Nevertheless, the proposed flagging mechanism can be substituted
with different ones without affecting the recovery process.

We test all three strategies in the same settings as the selfish client
impact assessment.The test accuracy results for selfish and normal
clients with varying α are reported in Figures 8 and 9.

A quick observation from the results is that selfishness with
α > 0.4 in FL can cause severe accuracy degradation for both nor-
mal and selfish clients if no robust aggregation has been used at the
server. An ideal mitigation strategy should prevent accuracy reduction
for normal clients without affecting selfish clients. In that sense, all
the considered strategies seem to perform well by preventing selfish
clients from causing drastic accuracy reductions. Additionally, the
RFL-Self method outperforms the downscaling by 4% ∼ 5% and
the median by 7% ∼ 12% on MNIST dataset for all α > 0, because
our method avoids excessive penalties for selfish clients while still
preventing them from gaining much on the accuracy. Interestingly,
selfish clients never achieved more accuracy than normal ones re-
gardless of the selfishness level. Another significant observation is
that, even when selfishness levels are low, RFL-Self outperforms the
“No mitigation” scenario. Even in the absence of selfish clients, the
proposed method does not compromise the performance.

4.3 Performance with More Selfish Clients

Finally, we investigate how the performance of the considered strate-
gies changes by increasing the number of selfish clients with α ∈
{0.2, 0.3, 0.4}. We choose these values of α with the help of part (b)
of Figure 3, where at α = 0.2, the model achieves maximum accuracy
even with two selfish clients and right after that it starts degrading
and at α = 0.4, we notice a steep drop in accuracy. Table 1 reports
the results on the CIFAR-10 dataset under an FL setup with 50 clients
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Figure 9: Performance of the robust aggregation strategies under an
FL setup with 50 clients using CIFAR-10 dataset.

including the selfish clients (0% to 20%). On the CIFAR-10 dataset,
at α = 0.3 with 10% selfish clients, the downscaling loses to our
method by a substantial 4.2% margin (60.84 − 56.64). Regardless
of the percentage of selfish clients, RFL-Self outperforms both down-
scaling and median and maintains a fair balance between the accuracy
of normal and selfish clients. Notably, RFL-Self outperforms the other
strategies even in the absence of selfish clients, supporting that it does
not harm the performance of normal clients.

Table 1: Performance of the global model and standard deviation under
the different aggregation strategies on the CIFAR-10 dataset.

α Selfish % Normal clients accuracy Selfish clients accuracy
(# clients) RFL-Self Downscaling Median RFL-Self Downscaling Median

0.2

0 (0) 59.58±6.54 59.28±6.23 52.42±7.11 - - -
5 (3) 59.11±6.17 57.83±6.31 57.67±9.18 56.67±1.35 55.00±1.94 54.53±3.57

10 (5) 57.78±6.52 56.91±7.04 55.64±8.41 57.80±2.40 54.80±2.26 56.60±7.74

20 (10) 56.92±7.11 55.95±8.72 52.12±9.64 60.00±6.13 58.30±8.58 55.00±8.26

0.3

0 (0) 59.58±6.54 59.28±6.23 52.42± 7.11 - - -
5 (3) 59.64±6.24 58.13±6.65 53.98± 9.89 55.33±1.88 53.00±2.08 54.33± 4.73

10 (5) 60.84±6.76 56.64±6.22 55.47±10.18 56.00±2.12 54.20±1.81 56.20± 8.05

20 (10) 56.52±6.28 55.88±6.10 52.80± 9.20 59.80±6.88 58.20±6.96 56.20±10.19

0.4

0 (0) 59.58±6.54 59.28±6.23 52.42± 7.11 - - -
5 (3) 59.94±6.16 58.51±6.13 53.15± 9.51 55.67±2.49 52.33±2.65 54.33±4.16

10 (5) 60.49±6.49 58.91±8.73 54.33±10.38 56.00±2.23 54.40±6.37 49.60±7.33

20 (10) 60.08±9.83 59.05±9.09 53.77± 9.01 58.70±9.08 58.30±9.23 54.80±8.79

Table 2 reports the obtained results for MNIST dataset with 50
clients including the selfish clients (0% to 20%). On a simple dataset
like the MNIST, the normal clients can achieve more than 90% accu-
racy via downscaling, closer to the performance of RFL-Self.

Table 2: Performance of the global model and standard deviation under
the different aggregation strategies on the MNIST dataset.

α Selfish % Normal clients accuracy Selfish clients accuracy
(# clients) RFL-Self Downscaling Median RFL-Self Downscaling Median

0.2

0 (0) 90.98 ± 3.66 90.66 ± 3.82 86.22 ± 3.86 - - -
5 (3) 92.34 ± 3.55 91.81 ± 3.96 88.40 ± 3.83 92.00 ± 2.11 91.33 ± 3.75 89.00 ± 2.49

10 (5) 92.67 ± 3.64 90.40 ± 3.90 91.78 ± 3.87 93.20 ± 1.87 91.20 ± 1.71 92.20 ± 1.83

20 (10) 92.65 ± 3.74 91.28 ± 4.36 88.20 ± 4.15 92.80 ± 3.38 91.80 ± 3.96 90.60 ± 4.01

0.3

0 (0) 90.98 ± 3.66 90.66 ± 3.82 86.22 ± 3.86 - - -
5 (3) 90.85 ± 3.69 90.68 ± 3.82 86.13 ± 3.78 91.00 ± 2.16 90.33 ± 3.06 86.33 ± 2.49

10 (5) 90.58 ± 3.73 90.40 ± 3.95 86.13 ± 4.00 91.60 ± 1.85 91.20 ± 1.82 88.00 ± 1.96

20 (10) 90.70 ± 3.80 90.20 ± 4.07 86.05 ± 4.12 91.30 ± 3.41 90.60 ± 3.80 88.40 ± 4.01

0.4

0 (0) 90.98 ± 3.66 90.66 ± 3.82 86.22 ± 3.86 - - -
5 (3) 90.85 ± 3.70 90.66 ± 3.95 86.34 ± 3.82 91.00 ± 2.16 90.67 ± 2.31 86.33 ± 2.39

10 (5) 90.58 ± 3.74 90.40 ± 4.00 86.13 ± 3.79 91.60 ± 1.85 91.20 ± 1.79 88.00 ± 1.78

20 (10) 90.70 ± 3.81 90.20 ± 4.12 86.03 ± 4.06 91.30 ± 3.40 90.60 ± 4.01 88.40 ± 4.02

5 Conclusion
We introduced a novel notion of selfish clients who can deviate the
overall FL training in their favor. From the server perspective, we
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proposed a robust aggregation strategy, RFL-Self, to mitigate the
impact of these clients on the global model. With rigorous analysis, we
established that selfish clients can severely affect the training process
and potentially deviate it to no convergence point. By recovering
true updates of selfish clients, the RFL-Self offered a strong robust
aggregation strategy against selfishness. By conducting extensive
empirical analysis using two benchmark datasets with varying levels
of selfishness, we observed that RFL-Self can handle the selfishness
without degrading the model accuracy for normal clients and it is
superior to other standard strategies like downscaling and median.
In the future, we plan to investigate adaptive selfishness, collusion
among selfish clients, and the impact of selfish clients on fairness.
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Appendix A: Experiments with 5 clients
To assess the impact of selfish behavior and the effectiveness of RFL-
Self in scenarios with few participating entities (such as data silos),
we perform the experimental evaluations on an FL setup with 5 clients.
It is worth noting that, with so few clients, the selfish clients are the
only ones holding data pertaining to their classes and it is thus crucial
that any mitigation strategy manages to give good performance to
all the clients. Moreover, as only 5 clients are considered, having 2
selfish clients in the system already represents a 40% concentration
of misbehaving clients.

A1: Impact of selfishness on model performance

Figures 10 and 11 show that, with few clients, a selfish client can
more easily improve its performance at the expense of other clients.
Unsurprisingly, if α < 1

k
, the selfish clients experience poor perfor-

mances, as the global model receives no information pertaining to the
classes in the selfish clients’ datasets.
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Figure 10: Test accuracy of the global model varying α with one and
two selfish clients on the CIFAR-10 dataset.
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Figure 11: Test accuracy of the global model varying α with one and
two selfish clients on the MNIST dataset.

As in the setup with 50 clients, the presence of a second selfish
client introduces instability and harms the convergence of the model
(Figure 12).

A2: Performance of RFL-Self

On the CIFAR-10 dataset, the results in Figure 13 are roughly similar
to those reported for 50 clients. An interesting point to notice is that,
in the case of two selfish clients, the median, albeit underperform-
ing RFL-self, is a preferable alternative to the downscaling strategy,
yielding better accuracy for normal clients as α increases.
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Figure 12: Deviation of the global update when all clients are normal
to the one with selfish clients.
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Figure 13: Performance of the robust aggregation strategies under an
FL setup with 5 clients using CIFAR-10 dataset.

The experiments on the MNIST dataset, reported in Figure 14, are
more surprising. Indeed, mitigation strategies other than RFL-self
incur sudden severe drops in performance, for both selfish and normal
clients, and are thus unreliable. On the other hand, RFL-self is more
stable and does not exhibit such abrupt variations in accuracy with
varying α.

Appendix B: Estimation of k

The soundness of the proposed solution relies on the following as-
sumptions:

1. The average update of the normal clients δ̄[k]\{s} is approximately
equal between consecutive communication rounds δ̄t[k]\{s} ≈
δ̄t−1
[k]\{s}.

2. The number of clients k is fixed at the beginning of the FL process
and does not change over time.
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Figure 14: Performance of the robust aggregation strategies under an
FL setup with 5 clients using MNIST dataset.

The two assumptions make it possible for the selfish client to es-
timate the number of clients k in the FL system and their average
update vector δ̄[k]\{s} by observing the past global update vectors.
Specifically, by taking into consideration the past n global update
vectors and the known selfish update vector δ̂s, the selfish client can
estimate the number of clients k and the average update vector of
the normal clients δ̄[k]\{s} by solving the optimization problem in
Eq. (12). That is, finding the number of clients k and the average
update vector of the normal clients δ̄[k]\{s} that minimizes the differ-
ence between the past global update vectors and the estimated global
update vectors.

argmin
δ,k

n∑
i=1

||δ̄t−i
[k] · k − δ̂t−i

s − δ · (k − 1)|| (12)

We chose to minimize the sum of the absolute differences between
the past global update vectors and the estimated global update vectors
because it is more robust to outliers than the sum of the higher powers
of the differences.

Algorithm 2 Estimation of the number of FL participants

Input: δ̄t−1
[k] , δ̄t−2

[k] , δ̂t−1
s , δ̂t−2

s , n

Output: k̂, δ̂t[k]\{s}
1: δ̂t[k]\{s} ← GEOMED(δ̄t−1

[k] , δ̄t−2
[k] )

2: while k̂ does not converge do
3: k̂ ← argmink

∑n
i=1 ||δ̄t−i

[k] · k − δ̂t−i
s − δ̂t[k]\{s} · (k − 1)||

4: δ̂t[k]\{s} ← argminδ

∑n
i=1 ||δ̄t−i

[k] · k̂ − δ̂t−i
s − δ · (k̂ − 1)||

5: return k̂, δ̂t[k]\{s}

Algorithm 2 performs alternating minimization to estimate the
number of FL participants and the average update attributed to nor-
mal clients as per Eq. (12). We consider only the last two updates,
i.e., t − 1 and t − 2, as the more updates are considered, the less
accurate Assumption 1 becomes. Line 3 of the algorithm can solved
through Brent’s method [7]. Line 4, instead, does not have an eas-
ily computable analytical solution. Indeed, given two vectors, the
point minimizing the sum of the L1 distances from the two vectors
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Figure 15: Estimation of k across rounds for CIFAR-10 and MNIST.
The estimation converges to the correct value.
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Figure 16: Angle between estimated and real average update vector
across rounds for CIFAR-10 and MNIST. The estimation is relatively
close to the real value.

is the geometric median of the two vectors, for which there is no
explicit formula or exact algorithm. Instead, we use a modified ver-
sion of Weiszfeld’s algorithm [27], which is a numerically stable
iterative algorithm that converges to the geometric median in asymp-
totically linear time. Thus, the geometric mean of δ̄t−1

[k] · k− δ̂t−1
s and

δ̄t−2
[k] · kδ̄t−2

s is equal to δ · (k− 1), with δ satisfying the optimization
problem in Line 4. These two steps are repeated until convergence,
i.e., until k̂ does not change anymore. As shown in Figure 15, the
estimation of k converges to the correct value for both CIFAR-10 and
MNIST datasets.

As shown in Fig. 16, the median estimation error on the angle
between the estimated and the real average update vector is 28.01
degrees for CIFAR-10 and 22.75 degrees for MNIST. Considering that
in high-dimensional spaces, random vectors are almost orthogonal to
each other, this level of error is acceptable and indicates the effective-
ness of the algorithm. Indeed, the correlation coefficient between the
estimated and the real average update vector reaches above 0.97 for
both datasets.


