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Abstract—Many crowdsensing applications today rely on learn-
ing algorithms applied to data streams to accurately classify
information and events of interest in smart environments. Unfor-
tunately, the statistical properties of the input data may change
in unexpected ways. As a result, the definition of anomalous
and normal data can vary over time and machine learning
models may need to be re-trained incrementally. This problem
is known as concept drift, and it has often been ignored by
anomaly detection systems, resulting in significant performance
degradation. In addition, the statistical distribution of past data
often tends to repeat itself, and thus old learning models could
be reused, avoiding costly retraining phases on new data, which
would waste computational and energy resources. In this paper,
we propose a hybrid anomaly detection system for streaming
data in smart environments that accounts for concept drift and
minimize the number of machine learning models that need to be
retrained when shifts in incoming data distribution are detected.
The system is multi-tier and relies on two different concept drift
detection modules and an ensemble of anomaly detection models.
An extensive experimental evaluation has been carried out, using
two real datasets and a synthetic one; results show the high
performance achieved by the system using common metrics such
as F1-score and accuracy.

Index Terms—concept drift, smart city, online anomaly detec-
tion, unsupervised learning

I. INTRODUCTION

Recently, with the widespread diffusion of IoT technologies
related to smart city and other smart environment scenarios,
the amount of information collected through mobile devices
that possess sensors and an Internet connection is growing
exponentially. Data coming from smartphone sensors can also
be combined with high-level information provided directly
by humans to detect and proactively monitor complex real-
world phenomena [1], as dictated by the Mobile Crowdsensing
(MCS) paradigm [2]. At the same time, many private and
public companies urgently need efficient machine learning
techniques to analyze huge amounts of streaming data, en-
abling them to make real-time predictions and support their
decisions based on such data [3].

Two key aspects must be taken into account to address
this need, namely the enormous amount of data to analyze
and its varied nature. First, considering that user devices are
continuously generating new data that need to be collected and
analyzed in real time, existing data fusion and anomaly detec-
tion methodologies should be readjusted to process incoming
data in streaming [4].

Moreover, much of the data collected and analyzed are re-
lated to natural phenomena and human behavior, e.g., anomaly
detection in surveillance video streams [5], environmental
pollution monitoring in smart cities [6], road surface condition
monitoring [7], and health monitoring [8]. In addition to being
inevitably affected by noise and, potentially, tampering by
selfish users [9], [10], these data are also subject to the problem
of concept drift [11]. This means that the statistical properties
of the input data or the target variable that the model is trying
to predict can change over time in a sudden and unexpected
way.

For example, consider an anomaly detection system that
analyzes images extracted from the video streams of airport
smart surveillance cameras. The goal of the system is to
classify travelers based on certain characteristics such as
clothing and face cover, and it is trained to label people
wearing a mask as suspicious.

The emergency situation caused by the COVID-19 pan-
demic has led to a sudden increase in people wearing masks.
How should the system behave in this case, if wearing a
face mask is no longer abnormal behavior? We are in the
presence of concept drift, and the system should be retrained
accordingly.

Furthermore, what happens if the health emergency ends
and masks are no longer commonly used? This is called
reoccuring concept drift, and when it happens the system
should return to its original operation.

Many of the traditional data fusion and anomaly detection
approaches in crowdsensing systems completely ignore the
concept drift problem [12], but this raises serious accuracy and



reliability concerns in any real-world scenarios where concept
drifts actually occur, and which would require timely and
efficient real-time retraining of the machine learning models
adopted.

In fact, when concept drift occurs, a model trained on past
data may not be fit to properly analyze new incoming values,
resulting in inaccurate predictions and poor decision results.
Indeed, if the data analysis model does not explicitly handle
concept drift, it will have to be manually retrained with the
new data. This continuous model retraining, in turn, results
in wasted time, energy, as well as network and computational
resources. Moreover, until the model is manually retrained,
the system will exhibit a drastic drop in performance, which
could have catastrophic consequences in critical scenarios such
as detecting anomalies in power management [13], online
banking transactions, or intrusion detection [14] in critical
network infrastructure.

In this paper, we propose an unsupervised anomaly de-
tection system for reoccurring concept drift in data streams
for smart environments. The main goal of our system is to
minimize the number of machine learning models that need to
be retrained, while maintaining very high accuracy in anomaly
detection, even in the case of sudden and reoccurring concept
drifts. The system architecture is multi-tier, and exploits two
concept drift detection modules and an ensemble of specially
trained models for anomaly detection. Our approach takes
advantage of the fact that, even in the presence of concept
drift, old concepts often recur cyclically. Thus, we maintain
a history of previously trained models that could be reused
in the future, in the spirit of sustainability and efficient use
of available resources [15], which is especially valuable in
mobile scenarios where such resources are limited and their
usage must be reduced as much as possible [16].

The only case in which a new model will be trained is when
none of the old models fits the new data, that is, when there
is a drift toward a concept that was never observed before.
However, even in the rare cases where it is necessary to train
a new model, our system will do it efficiently by adopting a
technique that is suitable for streaming data, using only the
last window of data received.

To validate our approach, the proposed system is extensively
evaluated with a series of experiments performed on three
different datasets. The results show that the system is able
to detect outliers with high accuracy while minimizing the
number of models that have to be trained.

The main contributions of our work can be summarized as
follows.

• We propose a new hybrid anomaly detection system that
directly takes into account reoccurring concept drifts.

• We adapt the well-known LOF anomaly detection tech-
nique to be more suitable for analyzing data streams in
real time.

• We reduce as much as possible the number of anomaly
detection models that need to be trained while still
maintaining high performance.
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Figure 1. Sources of concept drift.

• We extensively validate our system with two different
real-world datasets and a synthetic one.

The remainder of the paper is structured as follows. Sec-
tion II is dedicated to related work. The proposed system is
discussed in detail in Section III. The experimental results
are shown in Section IV, while Section V presents our
conclusions.

II. RELATED WORK

Many works in recent years have focused on studying
anomaly detection techniques, with the goal of identifying
outliers in a dataset [17]. An outlier is an observation that is so
different from others that it may appear to have been generated
by some other mechanism than normal data. This definition
is based on statistical considerations and assumes that normal
data follow a common generation mechanism. Observations
that deviate from this mechanism are considered outliers.

The detection of these unusual patterns is extremely impor-
tant in various scenarios, such as intrusion detection systems,
financial fraud detection, medical diagnosis, and e-voting
systems [18].

The most widely used anomaly detection techniques in the
literature can be divided into three main categories: statisti-
cal approaches, distance-based methods, and isolation-based
methods.

Statistical approaches [19] assume that the data were gen-
erated according to a specific distribution. Outliers will then
be those points that have a low probability of being generated
according to that distribution. In distance-based methods [20],
outliers are modeled as points that are isolated from normal
data, without making any assumptions about their distribution.

Such approaches are mainly categorized into those based on
nearest neighbors and those based on clustering and properties
such as cluster density and size. Isolation-based methods [21],
on the other hand, try to isolate outlier observations from the



dataset, since anomalous data are considered very different
from normal data and are assumed to represent a small portion
of the entire dataset.

Early outlier detection algorithms are known as static, in that
they determine whether outliers are present once all records
are available in the dataset and thus can only work a posteriori.
In contrast, incremental outlier detection techniques [22] can
work in real-time with streaming data, identifying outliers as
soon as a new record is received by the system.

Traditional anomaly detection techniques have to be en-
riched and revised in order to detect outliers incrementally. To
this end, we have modified a well-known static anomaly de-
tection technique, known as Local Outlier Factor (LOF) [20],
to adapt it to streaming data analysis, as will be explained
below.

In dynamic environments such as mobile crowdsensing,
the distribution of input or output data can change over
time unexpectedly. This phenomenon is known as concept
drift [11], [23], and can have several sources, as shown in
Fig. 1. The first type of drift [24], known as virtual drift or
feature space drift, occurs when only the distribution of the
input data changes and there are no shifts in the predictions,
as shown in Fig. 1-a.

In the second type of drift, called actual drift or decision
boundary drift, the distribution of input data remains un-
changed, while the predictions change, causing the decision
boundary to be altered (Fig. 1-b). However, in real world
settings, these two types of drift are more likely to happen
simultaneously: Fig. 1-c shows the third type of drift, which
occurs when both the distribution of input data and predictions
change together. Another classification that is often used in
the literature for concept drift concerns how the distribution
of data changes over time. Generally, four types of possible
drifts are distinguished, as shown in Fig. 2:

• the drift could be sudden, which can happen when, for
example, one sensor is replaced with another that is
calibrated differently, or when there is a sudden malfunc-
tion or an unexpected event, such as the outbreak of a
pandemic;

• the drift could be incremental, with a series of intermedi-
ate concepts following one another, reflecting the case of
user preferences changing over time or continuous sensor
wear and tear, resulting in loss of accuracy;

• the drift could be gradual, if the new concept initially
alternates with the previous one, before stabilizing and
finally prevailing;

• the drift could be reoccurring, if old concepts recur
cyclically, for example based on seasonal changes or
periodic events.

It is generally not critical to identify the exact type of
drift, since in practice concept drifts of different types can be
combined in variable and unpredictable ways. However, it is
essential to provide strategies to handle all types appropriately
so that the learning model can be readjusted quickly and
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Figure 2. Types of Concept Drift.

efficiently.
Works in the literature dealing explicitly with both anomaly

detection and concept drift are not very common, although
they are increasing in number in recent years. Many of these
works exploit consolidated concept drift detection techniques,
such as ADWIN [25] and KSWIN [26].

For example, IForestASD [27] analyzes new incoming data
in batches and uses a parameter that corresponds to the
anomaly rate that should not be exceeded in batches. However,
in unsupervised mode without additional information about
the data, choosing an appropriate value for this parameter is
very difficult. If the value chosen is too low, drifts will be
continuously detected and the model will be updated too often.
Conversely, if the parameter is too high, the model will never
be updated, resulting in performance degradation in case of
concept drift.

The authors of [28] overcome this issue by proposing
several approaches and comparing them through experiments.
Their final idea is to use the KSWIN [26] drift detection
method on incoming data features to reveal a concept drift
and update the model accordingly before it evaluates them.

The main limitation of these approaches is ignoring the fact
that concept drifts, especially in real cases, can be reoccurring.
If two concepts alternate in the streaming data, the machine
learning model will be updated with each variation. However,
the replaced model may be useful later, when the new incom-
ing data will again describe the concept on which the former
model was trained.

Unlike these works, our system accounts for reoccurring
concept drift, minimizing the number of re-training phases
even when concept drift is detected. This results in significant
savings in terms of energy and computational effort. Another
limitation of most anomaly detection systems in the literature
is that they are not particularly suitable for online usage.
In contrast, we also adapt state-of-the-art anomaly detection
techniques to optimize the analysis of streaming data in real
time.
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Figure 3. Architecture of the proposed system.

III. PROPOSED ARCHITECTURE

In this section, we present the multi-tier architecture of the
proposed anomaly detection system, as shown in Fig. 3. The
system is composed of two concept drift detection modules
and an ensemble of anomaly detection (AD) models. The first
of these models is the one currently used, while the others
represent the history of old AD models that could be reused
in case of reoccurring concept drift. To do this, the system
reconfigures itself by autonomously choosing the models to
employ [29]. When the system receives new input data, the
first drift detection module checks if a drift is present. If no
drift is detected, the data is simply evaluated with the current
model. Otherwise, the new data are evaluated by all the old AD
models saved in the history, and their outputs are examined, in
turn, by a second drift detection module. The system checks
whether one of the old models is again valid and consistent
with the new incoming data; if so, that model will simply be
reused, avoiding unnecessary retraining and thus reducing the
waste of resources and energy.

The system uses a window W of fixed size w that contains
the new incoming batch of data and a list ml of AD models, of
fixed size N . Each AD model returns not only the prediction
but also the confidence of that prediction [30].

Let us define m and cl as the current model and the

confidence list for each model, respectively. In addition, we
denote the concept drift detection module used on the input
data as CDd and the one that is used on the confidence of
model predictions as CDm.

The workflow of the system is shown in Fig. 3 and is
detailed step-by-step as follows.

1) If W is the first data window, create the first model M0,
train it with W , add this model to ml, set m = M0 and
go directly to step 8.

2) Evaluate whether CDd detects a drift between W and
the previous data window.

3) If no drift is detected in step 2, go directly to step 8.

4) Otherwise, if a drift is detected in step 2, estimate the
confidence for each model Mi included in ml, and
evaluate whether CDm detects a concept drift for Mi

between the new confidence and the original confidence
saved in cl.

5) If CDm finds a model Mi without concept drift, set m =
Mi and go to step 8.

6) If a concept drift is detected for all models, create a new
model Mnew and train it with the current W that caused



the drift.

7) If there are already N models, then replace the oldest
model M0 with the newly created model Mnew, otherwise
simply add Mnew to ml; in both cases, set m = Mnew.

8) Predict the classes of all the data in W using the current
model, m. If m is a newly created model, also add the
confidence of its predictions to cl; in both cases, return
to step 2.

The following sections will discuss in greater detail the
computational complexity of the proposed system, as well as
the functioning of the concept drift detection and anomaly
detection modules, respectively.

A. Computational complexity

Let us assume that the proposed system is working on the
n-th batch of incoming data, and that the model list ml has
reached its maximum size N . To calculate the computational
complexity we must distinguish three possible cases:

1) old concept: the new data batch does not introduce
concept drift (workflow steps 2, 3, and 8);

2) reocurring concept: the new data batch causes a concept
drift and the system can reuse one of the existing models
(workflow steps 2, 4, 5, and 8);

3) new concept: the new data batch causes a concept drift
and it is necessary to train a new model (workflow steps
2, 4, 6, 7, and 8).

The computational complexity (C) to evaluate a new batch
of data depends on the window size, w. In the worst case, we
get, respectively:

1) CCDd(w) + CAD(w)

2) CCDd(w) +N · (CAD(w) + CCDm(w))

3) CCDd(w) + N · (CAD(w) + CCDm(w)) + CT (w) +
CAD(w)

where CCDd , CCDm , CAD and CT are, respectively, the
computational costs of CDd and CDm, the evaluation of a
single data point with the anomaly detection model, and the
training of a new module.

B. Concept Drift Detection Modules

The KSWIN [26] method is used to implement both con-
cept drift detection modules (CDd and CDm). KSWIN is
based on the well-known Kolmogorov-Smirnov (KS) statistical
test [31], which is a non-parametric test that does not need any
assumption on the underlying data distribution. However, this
test can only handle one-dimensional data, as it compares the
absolute distance between two one-dimensional data distribu-
tions.

Since we are dealing with many features, it is necessary
to adapt the KSWIN method to our scenario. The solution
proposed in [28] is to apply the KSWIN method to each
feature separately, one by one. However, this approach has

a limitation, since a relatively small variation could occur on
multiple features at the same time, causing a concept drift that
would not be detected by the system that only considers one
feature at a time.

To address this problem, we decided to create a new
synthetic feature that accounts for the variation of all other
features at the same time. The KSWIN method is then used
to analyze the variation of the distributions of all features,
including the synthetic one. If a drift is detected for at least
one of them, the system will consider using a new model or
reusing one of those previously trained.

In this work, we chose the sum of the squares of the base
features, appropriately normalized, as the synthetic feature.
This function proved to be a good choice in practice, as will
be shown by the experimental results.

The operations performed by the KSWIN method consist
of adding new data to the window and then applying the KS
statistical test at the end. Introducing a new single data point
in the KSWIN window has an O(1) cost, so adding the whole
data window costs O(w). The KS test [31] has a computational
cost of O(n), where n is the number of data points. In our
case, n = 2w, since we compare two windows of size w. The
computational complexity of CDd and CDm is thus O(w).

C. Anomaly Detection Module
The anomaly detection module is composed of Local Outlier

Factor (LOF) models. LOF is a density-based anomaly detec-
tion algorithm that is particularly suitable for use in datasets
with non-uniform distribution [21]. The method identifies
outliers based on the local deviation of specific points by
comparing the density of each data point with that of its
neighbors. When a point has a very low local density, it is
considered an outlier.

The original LOF algorithm is a static method intended to
be used when all input data are already available. To employ
it with streaming data, three possible approaches are usually
adopted: supervised, periodic, or iterated. Supervised LOF
involves training the system only once at the beginning, with
the first window of data. Periodic LOF requires to re-train
the system periodically on the entire data set available up to
that point. Finally, iterated LOF re-trains the system for each
individual incoming record, and has the highest computational
cost.

Periodic and iterated LOF approaches have a high compu-
tational cost since their models are trained on all the data
received up to that point. The supervised method is not
affected by this problem, however, it does not account for
changes in the statistical distribution of the input data and is
therefore not suitable for handling data with concept drifts.
Periodic and iterated LOF are not ideal for handling sudden
drifts either, because they do not provide a mechanism for
assigning more weight to recent data.

As described above, our system overcomes these problems
by adopting a hybrid approach. First, it handles concept
drifts dynamically, upstream of the LOF algorithm itself, with
dedicated detection modules. Then, it maintains a history



to reduce the number of new models to train as much as
possible, and the method only fits recent data to best identify
sudden drifts while reducing the computational complexity,
which depends only on the data window size. As demonstrated
in [20], the computational complexity of training a new LOF
model is O(n log n), where n is the number of data points.
In our case, n = w, so the total computational complexity of
training a LOF model is O(w logw).

The number of models stored in the history is of paramount
importance: by using many models, it is likely that one of them
will fit the input data. This results in a significant decrease in
the number of models that have to be trained, especially in the
presence of reoccurring concept drift in real-world situations.
However, storing too many models in the history is space-
consuming, so it is necessary to find an appropriate trade-off.

IV. EXPERIMENTAL EVALUATION

In this section, we will analyze the behavior of our system
to confirm the validity of the proposed approach using three
datasets. The first two are well-known real-world datasets
commonly used to test anomaly detection systems, which
were not explicitly designed to highlight concept drift, namely
SMTP and SHUTTLE. The third one is a synthetic dataset,
named SRdrift, which is characterized by sudden and reoccur-
ring concept drifts.

The SMTP dataset [32] is a modified version of the original
KDDCUP99 dataset [33], and contains 95156 records of
network traffic data with 4 numerical features, as well as
a label indicating whether each record is an outlier or an
inlier. Only 0.03% of the data are outliers; thus, the two
possible classes are extremely unbalanced. The dataset does
not explicitly contain sudden concept drifts but, as will be
shown, has some properties of gradual concept drift.

The SHUTTLE dataset [32] is a modified version of the
original “Statlog (Shuttle)” dataset [33], and contains 49097
records with 9 numerical features and their respective classes.
A total of 3511 outliers (7%) are present. Unlike SMTP, the
SHUTTLE classes are less unbalanced and the dataset does
not include any kind of concept drift.

SRdrift was created by merging two synthetic datasets
that, individually, do not exhibit concept drift. The two sub-
datasets present records that are grouped into a single cluster
except for 10% of outliers; normal data are generated by a
multivariate Gaussian distribution, while outliers are generated
by a uniform distribution. SRdrift contains 2049 records with
3 numerical features, and it interleaves blocks of data from
the two sub-datasets, resulting in concept drifts that are both
sudden and reoccurring.

All experiments have been carried out by running the LOF
algorithm with 25 neighbors, and always keeping the same
maximum number of models, N = 5. For each dataset, the
experiments have been repeated by varying the window size
w from 25 to 150. The same experiments have been repeated
by disabling the concept drift detection modules (CDD and
CDM ) as a baseline. Finally, all experiments were repeated
1000 times, and we present the average of the results obtained.

Table I
SYSTEM EVALUATION WITH THE SHUTTLE DATASET WHEN VARYING

WINDOW SIZE.

Drift
Detection

Window
size

Reused
Models

Macro
F1-score

Weighted
F1-score Acc

Yes

25 99% 0.50 0.90 0.93
50 99% 0.85 0.95 0.95

100 99% 0.89 0.97 0.97
150 98% 0.90 0.97 0.97

No 150 - 0.92 0.98 0.98

For each experiment, we report the average accuracy, which
can be defined as a function of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN),
as follows:

Acc =
TP + TN

TP + TN + FP + FN
.

We also report the F1-score, which is defined as the har-
monic mean of precision and recall, as follows:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1-score = 2 · precision · recall
precision+ recall

.

In particular, we use the F1-score in two of its versions,
namely macro and weighted. We chose to report these variants
because of the huge imbalance between the two classes in the
datasets.

Since the F1-score ignores true negatives, in fact, it can
be misleading for unbalanced classes [34]. The macro F1-
score is calculated by taking the arithmetic mean of all the
F1-scores, for each class, assigning equal importance to every
class. The weighted F1-score, on the other hand, also considers
the support of each class, assigning a greater importance to
those that occur more often.

Tables I, II and III summarize the results obtained by the
proposed system with the three datasets as the window size
changes, both with and without drift detection. In addition to
the metrics described above, we also report the percentage
of times an already trained model was reused, instead of
training a new one unnecessarily. As for the system without
concept drift detection, which is considered as a baseline, we
are not interested in the percentage of reused models, so we
directly report its best case with the window sizes considered
(w = 150). Comparing the results shown in the three tables
brings up some interesting considerations.

Table I shows the results obtained with the SHUTTLE
dataset, which is completely without concept drift. As can
be expected, in this case the performance of the system with



Table II
SYSTEM EVALUATION WITH THE SMTP DATASET WHEN VARYING

WINDOW SIZE.

Drift
Detection

Window
size

Reused
Models

Macro
F1-score

Weighted
F1-score Acc

Yes

25 98% 0.45 0.90 0.83
50 91% 0.48 0.95 0.90

100 87% 0.48 0.96 0.91
150 93% 0.48 0.95 0.90

No 150 - 0.40 0.80 0.66

Table III
SYSTEM EVALUATION WITH THE SRDRIFT DATASET WHEN VARYING

WINDOW SIZE.

Drift
Detection

Window
size

Reused
Models

Macro
F1-score

Weighted
F1-score Acc

Yes

25 90% 0.74 0.92 0.93
50 88% 0.89 0.96 0.96

100 83% 0.86 0.95 0.95
150 72% 0.88 0.96 0.96

No 150 - 0.57 0.73 0.66

concept drift detection is very similar to that of the baseline
without drift detection.

This is positive, as it means that the system performs very
well even in the absence of concept drift. In particular, Table I
shows that the average accuracy and average weighted F1-
score for the systems with drift detection are 0.955 and 0.9475,
respectively.

We note that the system with an excessively small window
size (w = 25) is the one with the worst results, especially
for the macro F1-score. The percentage of reused models is
obviously very high (99%) since no drifts are present in the
dataset.

Surprisingly, Table II shows that our system obtains consid-
erably better results than the baseline with the SMTP dataset.
Notably, we observe that the average accuracy goes from
88.5% for systems with drift detection to 66% for the baseline.
This suggests that the dataset is actually affected by a slight
incremental concept drift, which is difficult to detect by direct
inspection. Such insight is also confirmed by the percentage
of reused models, averaging 92%, which is lower if compared
to the SHUTTLE dataset.

Table III shows the results obtained with the SRdrift dataset,
which contains sudden and reoccurring concept drifts. We note
how the percentage of reused models (83% on average) is
lower than in previous cases, which is to be expected given
that SRdrift explicitly includes drifts.

Nevertheless, the percentage is still very high, proving that
the history of past models is extremely effective in minimizing
the number of re-training needed. Table III also shows that the
system with drift detection again achieves significantly better
performance than the baseline. In fact, the average accuracy of
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Figure 4. Drift detection delay of the proposed system in the SRDrift dataset,
when varying window size.

the proposed system is 0.95 compared to 0.66 for the baseline.
The macro and weighted F1-score values are also much higher
(0.84 and 0.95 vs. 0.57 and 0.73, respectively).

Finally, Figure 4 shows the drift detection delay as the
window size changes. Unsurprisingly, when the window size
increases, the time required to report drifts grows accordingly.
On the other hand, excessively small windows are not very
representative of the incoming data and cause overall system
performance to decline, as can be seen from the three tables.
Consequently, it is necessary to achieve a trade-off between
concept drift detection speed and accuracy. Intermediate win-
dow sizes such as 50 and 100 are those that appear most
promising in this respect.

V. CONCLUSIONS

In this paper, we studied the phenomenon of concept drift in
the context of streaming data for smart systems, highlighting
the importance of explicitly handling reoccurring concepts. To
this end, we proposed a new system that combines anomaly
detection and concept drift detection techniques, using the
static LOF algorithm in a hybrid way to handle streaming
data. We also proposed a novel method to explicitly address
reoccurring concept drift, by maintaining a history of past
models and minimizing the number of re-training phases
required, even in the case of sudden drifts.

The proposed system is characterized by a multi-tier ar-
chitecture, and is composed of two concept drifts detection
modules and an ensemble of LOF models for anomaly detec-
tion. To validate our approach, we have extensively evaluated
our system with multiple experiments on three datasets.

The results show that the system is effective in detecting
outliers whether the input data have drift or not, achieving
high accuracy and F1-score values.

In addition, the percentage of reused models is extremely
high, proving that the adopted approach is effective in handling
reoccurring drifts while minimizing the number of new models
that need to be trained. As future work, we would like to
dynamically use data windows of variable size, depending on
the frequency and severity of the detected drift in a certain
time frame.



Another improvement to the proposed system would be to
also consider a dynamic number of models in the history,
to better adapt to periods when the ratio of model reuse is
particularly high or low, or to devise a more sophisticated
model replacement policy, for example using reputation mech-
anism [35], [36].

This would allow the system to reduce the window size as
much as possible and increase the number of models in periods
where many different concepts occur, and conversely, increase
the window size and reduce the number of models in more
stable periods, leading to an overall increase in performance.
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