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Abstract

The widespread use of smart devices requires effective malware detection tools to ensure
user security and privacy. The dynamic nature of the software ecosystem, characterized by
data distribution changes, poses significant challenges to the long term sustainability of
machine learning models for malware detection, requiring periodic updates to maintain their
effectiveness. Additionally, collecting up-to-date information for training machine learning
models in a centralized fashion is costly, time-consuming, and privacy-invasive. To address
these shortcomings, this work proposes a Stackelberg game model to incentivize users to
contribute to the training of a malware detection model through Federated Learning. The
proposed model takes into account heterogeneous capabilities of the participants, allowing
them to tune their contribution based on the quality and quantity of the data they can
provide. Experimental results demonstrate that the proposed approach can ensure the
effectiveness of the detection model over multiple years.

1 Motivation and Related Works

Smart devices are becoming increasingly integrated into our daily lives. As technology evolves,
the scale and complexity of cyberattacks has made traditional security measures inadequate,
necessitating the development of innovative strategies to effectively address emerging vulner-
abilities [1]. Traditional malware detection techniques, such as signature-based and heuristic
approaches, have become inadequate in addressing the complexities of modern cyber threats.
These methods rely on predefined patterns or static code analysis, making them vulnerable to
sophisticated attacks [19]. Specifically, polymorphic and metamorphic malware can alter their
code or behavior to elude detection by such systems [7]. As a result, these conventional methods
often produce high false-negative rates, especially when faced with new or dynamic forms of
malware that have not been previously encountered [27].

Over the past decade machine learning algorithms have become the preferred threat detection
approach [25], enabling systems to identify patterns and anomalies in data more efficiently
than traditional methods [13]. By processing vast amounts of data, these systems can detect
sophisticated attack patterns faster and more accurately [3]. Moreover, machine learning models
are easier to adapt to emerging threats [20]. Despite their success, machine learning models
frequently face a decline in performance after their deployment. This performance degradation
is due to a phenomenon known as concept drift [2]. Concept drift arises when the statistical
characteristics of the input data change over time, leading to discrepancies between the data
the model was trained on and the data it encounters. Concept drift is a particularly serious
issue in the cybersecurity domain, where the threat landscape is constantly evolving, and new
malware variants are continually being developed [6]. This change can lead to a decrease in the
model’s accuracy, making it ineffective in detecting new threats [11]. Hence, it is essential to
update the model periodically to ensure it remains effective in detecting new threats [21].
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Furthermore, most existing malware detection systems that use machine learning rely on a
centralized collection and annotation of data [9]. The process of labelling data is both expensive
and time-intensive, creating a bottleneck in the development pipeline [22]. To reduce such
overheads, crowdsourcing has been proposed as a viable solution for malware detection [4]. Users
can collect and annotate data, which is then sent to a central server that elaborates the data to
train the model. However, despite its potential, crowdsourcing introduces significant challenges
regarding user privacy. Users may hesitate to share details with a central server about the
applications installed on their devices since even a simple snapshot of installed apps can reveal
sensitive personal information [26].

Decentralized alternatives, like Federated Learning, offer a solution by enabling collaborative
model training without aggregating sensitive data on a central server [28]. In Federated Learning,
each client retains its local training dataset, which is never shared with the server. Instead,
clients compute updates to the global model maintained by the server, communicating only
these updates rather than the raw data [17]. The effectiveness of such a learning model depends
on the quality of updates provided by users, although it is not a given that users perceive the
value of actively contributing to the functioning of the system [5]. By aligning clients’ interests
with the broader goal of collaborative model training, incentive mechanisms can help overcome
the challenges of client engagement in Federated Learning systems [32].

Various studies have employed game theory to design incentive mechanisms that encourage
clients to allocate their computational resources for Federated Learning [30]. For instance,
Donahue et al. [10] analyzed the conditions under which rational client would be willing to
participate in Federated Learning over multiple interactions with the server. While most
works focus on ensuring that clients offer their computational capabilities to train a shared
model [16, 31], this work leverages game theory to address the specific challenges of obtaining up-
to-date training data to overcome concept drift in malware detection models. By incorporating
a Stackelberg-based approach to designing an incentive mechanisms for federated learning, this
work aims to ensure sustained client participation while adapting to concept drift. This approach
enhances model robustness and accuracy in dynamic environments by aligning client incentives
with the learning objectives of the system.

The main contributions of this work are:

• A Stackelberg game model for Federated Learning (FL) to prevent model ageing due to
concept drift in malware detection.

• A novel game formulation that allows clients to tune their contribution based on the
quantity of data they can provide and the effort associated with labelling it. Allowing
clients to compensate for the potentially poor quality of labels they can supply with
quantity ensures that even clients with limited labelling expertise can participate in the
learning process.

• A novel strategy adaptation mechanism that allows the server to tune the reward in order
to encourage client participation even in high-cost scenarios.

• The formal proof that proposed game model converges to a unique Nash equilibrium,
ensuring system stability over time.

• Extensive experimental evaluations showing that, through the proposed incentive mecha-
nism, it is possible to engage clients in the FL process for multiple years, maintaining the
effectiveness of the model.

The remainder of this work is structured as follows: Section 2 describes the system model.
Section 3 presents the optimal client strategy. Section 4 discusses the server reward policy.
Section 5 provides the experimental evaluation. Finally, Section 6 concludes the paper.
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2 System model

The system consists of a single central server and a set of N clients. The clients are responsible
for training the local models using their own data and sending the local models to the server.
The server is responsible for collecting the local models from the clients, aggregating them, and
sending the global model back to the clients for further training according to the Federated
Learning (FL) paradigm [18]. To incentivize the clients to collect high-quality data for training,
the server offers them a monetary reward based on their contribution.

The interaction between the server and clients is modeled as a Stackelberg game, a game
theory model useful in situations of sequential competition between two or more players, in
which one player, named leader, moves first and the other players, named followers, respond to
the first player’s move [24]. The server acts as the leader and, in its opening move, announces a
monetary reward for cooperative clients in terms of high-quality data to train their local model.
The clients act as followers and respond by determining a suitable contribution to maximize
their utility. The clients are fully rational agents, and engage in a non-cooperative subgame
with the other clients to determine their optimal contribution.

The server and clients interact periodically, when the model needs to be updated on new
data. For each of these updates, the server sets a reward and the clients decide how much data
to contribute. The reward is given based on the quality of the data provided by the clients.

In the proposed model, the contribution θ of a client, referred to as their quality index, is
linearly dependent on the size of the collected dataset |D| and the quality of the labelling ρ, as
shown in Eq. 1:

θ = |D|(2ρ− 1). (1)

This proposal is consistent with existing literature [12] showing that the generalization error
introduced by label noise can be offset by increasing the dataset size. Experimental observations
show that the accuracy of the global model is logarithmically dependent on the quality index,
as shown in Fig. 1, which is in line with the results of previous studies [31]. Initially, increasing
the quality index leads to significant improvements in the accuracy of the model, but these
improvements become progressively less significant as the quality index increases.
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Figure 1: Relationship between global model’s accuracy and quality index in the KronoDroid
dataset [14]: f(θ) = 0.0134 log(8.1·1026

∑N
i=1 θi+7.69·1027). The quality indexes are obtained by

combining dataset size and label quality combinations such that |D| ∈ [10, 500] and ρ ∈ [0.5, 1].

3 Optimal client strategy

Each client contributes to the learning process by acquiring and labeling data, and receives a
reward based on the quality and quantity of the data provided. The clients aim to maximize

3



D
RA

FT

A Stackelberg Approach to Federated Learning for Cybersecurity Applications A. Augello et al.

their utility, defined as the difference between the reward obtained and the cost incurred. In
their decision-making process, the clients can leverage knowledge from previous interactions.

3.1 Client policy

Client contribution cost model: The cost that client i incurs is given by the cost of
acquiring data and the cost of labeling them. The cost of acquiring data scales linearly with the
number or samples according to a parameter γi. Since not all samples are equally difficult to
label, the cost of labeling an entire dataset is not linear to the target accuracy level [29]. The
cost of labeling each sample is modeled as proportional to its difficulty. Assuming a maximum
entropy distribution of the difficulty of the samples bounded in the [m,M ] range (i.e., an
uniform distribution), the cost of labeling a fraction f of the samples, starting from the easiest,
is proportional to definite the integral of the cumulative distribution function of the difficulty of
the samples up to the f -th quantile:∫ f(M−m)+m

m

∫ x

m
1
M dy dx = M−m

2 f2. (2)

Since randomly assigning labels for a binary classification task yields 50% label accuracy,
to ensure that a fraction ρi of samples have the correct label, the client will have to provide
labels for a fraction of the samples equal to at least 2ρi − 1, incurring in a cost proportional
to 2(M −m)(ρi − 1/2)2. The resulting behavior can be interpreted as the client determining
an upper bound on the difficulty of the samples they are willing to analyze. In practice, this
means that at least a 2ρi − 1 fraction of the samples undergoes costly manual annotation,
while the remaining samples are labeled with an unreliable automatic procedure with negligible
cost. The final cost of labeling a dataset of size |Di| up to a target accuracy of ρ is thus given
by |Di|βi(ρi − 1/2)2, with βi being a proportionality constant that depends on the maximum
difficulty of the samples and the client’s labeling capabilities. Thus, the overall participation
cost for client i is given by Eq. (3):

ci(|Di|, ρi) = |Di|(γi + βi(ρi − 1/2)2). (3)

Since the clients aim to maximize their utility, they will strive to choose the dataset size and
the target accuracy that minimize the cost for any given target quality index θi. By fixing θi,
Eq. (1) can be used to express the cost only in terms of the dataset size |Di|:

ci(|Di|)|θi = |Di|γi + βi
θ2i

4|Di|
. (4)

The cost function is minimized for |Di| = θi
√

βi/(4γi), where the first derivative of ci is equal
to zero and the second derivative is positive. The corresponding fraction of accurately labeled
samples can be obtained by substituting the optimal |Di| in Eq. (1) and solving for ρi given a
target quality index, resulting in ρi =

1
2 + 1√

βi/γi

. In the following, it is assumed that 4γi ≤ βi

so that 1√
βi/γi

≤ 1
2 , as a labeling accuracy ρi above 100% is meaningless. In scenarios where

this condition is not met, i.e. labeling one sample is cheaper than collecting four, the label
accuracy is set as the maximum possible value ρi = 1. By substituting this value of ρi in Eq. (1)
the dataset size to achieve a target quality index θi is |Di| = θi. Fig. 2 shows the cost of a
unitary increase in the quality index as the labeling cost increases compared to the collection
cost. If all clients were required to achieve a quality index of 1, the cost would increase linearly.
Instead, through the proposed dynamic tuning of the quality parameters, the same quality index
can be achieved with a sublinear dependency on the labeling cost.

4
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Figure 2: If all clients were required to achieve ρ = 1, the unitary contribution cost c(θ)
θ

would increase linearly with the labeling/collecting cost ratio β/γ. Instead, under the proposed
formulation the same quality index can be achieved at a sublinear cost.

Optimal client contribution: Given the contribution θi of a client, its utility is defined as
the difference between the reward obtained and the cost incurred, as shown in Eq. (5), with R

being the total reward given by the server and θ =
∑N

j=1 θj the total contribution of all clients:

ui(θi) = R
θi
θ
− ci(θi). (5)

To find the optimal quality index of the i-th client, the derivative of the utility function with
respect to θi is set as equal to zero. Since θ can be rewritten as θ = θi + θ−i, where θ−i is the
sum of the contributions of clients other than i, i.e., θ−i =

∑
j ̸=i θj , it is possible to isolate the

contribution of individual clients:

dui

dθi
= Rθ−i

(θi+θ−i)2
−
√
γiβi = 0, satisfied by θi = θ−i

(√
R

θ−i

√
γiβi

− 1
)

if R√
γiβi

> θ−i. (6)

Intuitively, the condition in Eq. (6) means that the i-th client should only participate if the
current expected reward per unit of contribution is greater than its unitary contribution cost,
otherwise the expected utility would be negative. This is illustrated in Fig. 3, where the cost
for a client to achieve a unitary quality index is plotted against the average reward per unit of
contribution from the other clients across multiple client interactions. For all the interactions
where the unit reward is lower than the unit cost, the client abstains from participating.
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Figure 3: When the cost per unit of contribution of a client exceeds the unit reward, the client’s
utility becomes negative, disincentivising participation.

The optimal quality index in Eq. (6) depends on the total contribution of the other clients
θ−i. However, since the clients are not cooperating, the i-th client does not have direct access
to this information and must estimate it. When the system converges, each client can estimate

5



D
RA

FT

A Stackelberg Approach to Federated Learning for Cybersecurity Applications A. Augello et al.

the total contribution of the other clients by observing the reward received compared to the
total reward in the previous interaction.

For the initial estimate, the client has no information about the other clients, so it assumes
that all clients are homogeneous and adopt the same policy to determine their quality index. In
this case, in each client’s formulation, θ−i = (N − 1)θi and ui(θi) =

Rθi
(N−1)θi

− ct(θi), hence and

the quality index maximizing ui will be given by Eq. (7):

θi =
R(N − 1)

N2
√
γiβi

. (7)

3.2 Nash Equilibrium

The interaction among the clients is a non-cooperative game, where each client acts independently
without collaborating with others, with the aim of maximizing his own utility. Therefore, it
is essential to determine whether a Nash equilibrium exists for the clients’ utilities. Nash
equilibrium is a stable point in the game where no follower can improve his utility by changing
his strategy, assuming that the other followers keep their strategies unchanged.

Theorem 1. At least one Nash Equilibrium exists for the client’s utility function in Eq. (5).

Proof. For a Nash Equilibrium to exist, the utility function of the client must be concave with
respect to the client’s strategy, i.e., the choice of quality index θi [23]. The first and second
derivative of the utility function with respect to θi are computed to prove the concavity:

dui

dθi
=

Rθ−i

(θi + θ−i)2
−
√
γiβi and

d2ui

dθ2i
= − 2Rθ−i

(θi + θ−i)3
. (8)

Since second derivative of ui(θi) with respect to θi, given by Eq. (8), is negative for all the
admissible (positive) values of θi, the utility function is concave.

In order to ensure that the clients will converge to the Nash equilibrium, there must be a
unique equilibrium point. Let gi(θ) be the response function representing the optimal quality
index of client i given the quality indexes of the other clients, following Eq. (6). If gi(θ) is a
standard function then the proposed game has a unique Nash equilibrium [8].

Definition 1. A function gi(θ) is standard if, for all θ ≥ 0, the following properties are satisfied:
1. Positivity: gi(θ) > 0.
2. Monotonicity: θ ≥ θ′ −→ gi(θ) ≥ gi(θ

′) ; this means that, in reaction to an increase in
contribution performed by all the other clients, the i-th client also increases its contribution.

3. Scalability: ∀λ > 1, λgi(θ) ≥ gi(λθ), when all clients uniformly scale up their contribution,
the i-th client’s response function will increase less than linearly.

Lemma 1.
√

R√
γiβi

− 2
√
θ−i > 0 always holds if the following condition holds:

N∑
j=1

√
γjβj > 2(N − 1)

√
γiβi. (9)

Proof. By setting the first derivative of the client’s utility function in Eq. (6) to zero, the
following relationship between the quality indexes of the clients can be obtained:

θ−i

(θ−i + θi)2
=

1

R

√
βiγi. (10)

6
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Summing up on both sides of Eq. (10) for all clients yields the relationship in Eq. (11):

N∑
j=1

θ−j

(θ−j + θj)2
=

N∑
j=1

1

R

√
βjγj . (11)

Hence, the total contribution in terms of the costs of all the clients is rewritten as Eq. (12):

θ =
R(N − 1)∑N
j=1

√
βjγj

. (12)

By substituting Eq. (12) into Eq. (10), it is possible to derive that

R2(N − 1)2
√
βiγi = Rθ−i

 N∑
j=1

√
βjγj

2

. (13)

If Eq. (9) holds, by computing the square root of both sides of the equation, it is possible to prove

that
√

R
√
βiγi(N − 1) > 2

√
θ−i(N − 1)

√
βiγi , which simplifies to

√
R√
βiγi

− 2
√
θ−i > 0

Theorem 2. The client response function is standard, and the proposed game has a unique
Nash Equilibrium if the condition in Eq. (9) holds.

Proof. The positivity is obviously satisfied by the client response function under the condition
in Eq. (6).
• The client response function is monotone for θi>0 if Eq.(9) holds, i.e., θ≥ θ′−→ gi(θ)−gi(θ

′)≥0:

gi(θ)− gi(θ
′) =

√
R√
βiγi

(
√
θ−i −

√
θ′−i)− (θ−i − θ′−i) (14)

= (
√
θ−i −

√
θ′−i)

(√
R√
βiγi

− (
√

θ−i +
√
θ′−i)

)
≥ (
√
θ−i −

√
θ′−i)

(√
R√
βiγi

− 2
√
θ−i

)
,

which is positive according to Lemma 1.
• The client response function is scalable: ∀λ > 1, λgi(θ)− gi(λθ) ≥ 0:

λgi(θ)− gi(λθ) = λ

√
Rθ−i√
βiγi

− λθ−i −

√
Rλθ−i√
βiγi

+ λθ−i = (
√
λ− 1)

√
Rθ−i√
βiγi

. (15)

Since λ > 1, both terms are positive, thus λgi(θ) ≥ gi(λθ
′) and the response function is scalable.

Hence the client response function gi(θ) is a standard function which, as demonstrated by
Deligiannis et al. [8], is a sufficient condition for the existence of a unique Nash Equilibrium.

4 Server reward policy

The server aims to maximize its utility by setting an appropriate reward. The utility, denoted
as V , is defined as the difference between the satisfaction derived from the aggregated global
model and the total reward R distributed to the followers. The server’s satisfaction depends on
the accuracy of the new global model, which grows concavely as the total contribution of the
followers increases. To represent this dependency, a logarithmic function is employed to describe
the relationship between the model’s accuracy and the followers’ quality indexes:

V (R) = σ log

(
1 + λ

N∑
i=1

θi(R)

)
−R. (16)

7
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The Stackelberg equilibrium can be found by solving the above non-linear optimization problem.
Let θ∗i be unique Nash equilibrium obtained by the clients when the server offers a reward R.
The server has to maximize Eq. (16) a priori to find its unique optimal reward R∗ and announce
it to the clients. Given a reward R, each client sets their contribution θ∗i according to Eq. (6).
The server, however, does not have direct access to the parameters of the clients’ cost function,
i.e., γi and βi. Instead, assuming that the costs have not changed significantly, the server can
estimate the unitary contribution cost of client i, that is

√
βiγi, from the behavior of the clients

in the previous two rounds, denoted with the (r− 1) and (r− 2) subscripts respectively, through
Eq. (17). √

βiγi =
R(r−1)θ−i,(r−2)(

θi,(r−1) + θ−i,(r−2)

)2 . (17)

Hence, the server can estimate the expected utility given a reward R solely by relying on the
previous interactions by substituting Eq. (6) into Eq. (16), with the cost estimated by Eq. (17):

V (R) = σ log

(
1 + λ

θ(r−1)

N

√
R

R(r−1)

N∑
i=1

√
θ−i,(r−1)

θ−i(r−2)

)
−R. (18)

The server can then find the optimal reward R∗ by maximizing the utility function V (R). Since
the utility function is concave (negative second derivative), the optimal reward can be found by
calculating the first derivative, shown in Eq. (19), and setting it equal to zero.

dV

dR
=

σ
λθ(r−1)

N

√
R

R(r−1)

∑N
i=1

√
θ−i,(r−1)

θ−i(r−2)

2
λθ(r−1)

N R
√

R
R(r−1)

∑N
i=1

√
θ−i

θ−i,(r−2)
+ 2R

− 1. (19)

For the sake of conciseness, the following parameters are used: A =
θ(r−1)

N , which is the average

contribution in the previous round, and B =
∑N

i=1

√
θ−i,(r−1)

θ−i(r−2)R(r−1)
. Eq. (19) is thus rewritten

as σλAB
√
R

2λAB
√
R+2R

− 1, which has a unique positive solution represented in Eq. (20), chosen as a

reward by the server to maximize its utility:

R∗ =
σ

2
+

R(r−1) +
√
R(r−1)

(
2σλ2A2B2 +R(r−1)

)
2λ2A2B2

. (20)

Since in the first interaction the server has no information about the clients, it assumes that
all clients are homogeneous and utilizes an estimate of the average costs instead. The utility is

thus formulated as V (R) = σ log

(
1 + λ

∑N
i=1

R(N−1)

N2
√

β̃γ

)
−R, which is concave with respect to

R and can easily be maximized analytically.

5 Experimental evaluation

To assess the proposed approach, a multi-layer perceptron was considered as model to be
learned. The data sampled by clients are derived from the KronoDroid dataset [14], a publicly
available real-world dataset covering the period from 2008 to 2020. The KronoDroid dataset,
consisting of 28,745 Android malware samples and 35,256 benign samples, sorted according
to their “last modification” date, provides a rich and dynamic environment for assessing the

8
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system’s capabilities in maintaining model performances over multiple years. The dataset was
divided into 26 non-overlapping subsets covering three months each, from 2012 to 2018. After
each three-month period, the server announces a reward to the ten clients, who then decide their
contribution effort acquiring samples from the current subset and labeling them. The model
accuracy and the server’s utility are computed according to the total client contribution.
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Figure 4: The server’s expected utility from Eq. (18) is consistent with the actual utility obtained
from the clients’ contributions.
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Figure 5: As their unitary contribution cost decreases, clients contribute more and achieve
higher rewards.

Model soundness: In order to ensure that the server can effectively estimate the client’s
contributions and provide fair and consistent rewards, the mathematical model was validated by
comparing the theoretical utility expected by the server with the actual utility (Fig. 4), and the
reward obtained by the clients with their provided quality index (Fig. 5). As a general trend,
clients with lower data acquisition costs achieve higher quality indexes, enabling them to obtain
higher rewards. Additionally, if all clients have high costs, the server will obtain lower utility.
The linear relationship in these plots confirms that the server estimates are consistent with the
actual outcomes, and that the clients receive consistent and fair rewards for their contributions.
The difference in reward outcome for heterogeneous clients is further highlighted in Fig. 6, where
it is possible to observe that lower data acquisition costs lead clients to provide higher quality
indexes while incurring in lower costs, thus achieving a reward inversely proportional to their
unitary cost.
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Figure 6: Clients with lower unit costs achieve higher quality indexes, leading to higher rewards,
as highlighted in Fig. 5, and greater client utility. This is because lower costs enable more
efficient contributions, which in turn improve system performance and incentivize clients with
better rewards.

Effectiveness over time: The model’s accuracy and the server’s utility were evaluated over
multiple interactions to assess the system’s ability to maintain the model’s performance over
time. Each client’s contribution converges over the interactions to a value that depends on
their data acquisition and labeling costs, as shown in Fig. 7. As can be seen in Fig. 8, the
model’s accuracy remains stable over time, despite the concept drift in the dataset, thanks to
the clients’ contributions. If acquiring labeled data is too expensive the performance of the
model will settle on a lower accuracy (∼86%), while if the clients can provide high-quality data
at a lower cost, the model will achieve a higher accuracy (∼92%). These values are consistent
with state-of-the-art results with this dataset when concept drift is effectively managed [15], thus
showing the feasibility of using an incentive mechanism for performing data collection through
crowdsourcing to maintain the effectiveness of malware detection models over time.
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Figure 7: The quality index of the clients converges over the interactions. Lower unitary costs
let the clients achieve higher quality indexes.

6 Conclusions

It has been widely demonstrated that machine learning models are effective at detecting malware,
but lose effectiveness over time due to concept drift. To maintain the effectiveness of the model, it
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Figure 8: The model accuracy remains stable over time thanks to the client contributions.
Higher client costs result in lower server utility.

is necessary to continuously update the model with new data. Distributed computing paradigms
such as Federated Learning can be adopted to directly involve users in the data collection
process required to maintain the model up-to-date. However, without adequate incentives, the
clients may not be willing to provide high-quality data, leading to model degradation. This work
proposes a Stackelberg game model for Federated Learning to incentivize the clients to collect
high-quality data, enabling the long-term feasibility of employing machine learning models for
malware detection despite the concept drift issue. Clients can decide how much data to collect
and how much effort to put into labeling it to maximize their net utility, while the server decides
the overall reward to maximize the contribution of the clients. The Stackelberg game was shown
to possess a stable Nash equilibrium, and the model was experimentally shown to be capable
of preserving the effectiveness of the model over multiple years. In the current version of the
system, the server relies on honest clients to provide accurate quality indexes. Future work
will investigate strategies that allow the server to infer the quality indexes of the clients, and
meta-learning strategies to extract more value from poorly-annotated data.
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