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Abstract

Mobile malware poses significant security and privacy risks, hence effective detection
methods are crucial. Graph-based representations of mobile applications have been shown to
be well-suited for this task. However, traditional graph-based machine learning techniques
are computationally expensive and unsuitable for on-deviceanalysis. Nevertheless, off-device
analysis raises privacy concerns, making on-device analysis combined with decentralized
learning approaches like Federated Learning (FL) an attractive alternative. Hyperdimen-
sional Computing (HDC) offers efficient graph classification onresource-constrained mobile
devices. This work introduces HDDroid, an FL framework leveraging HDC to detect mali-
cious software via function call graph analysis. HDDroid’s novel online encoding strategy
reduces memory usage, enabling large graph analysis on mobile devices. Additionally, HD-
Droid’s improved model aggregation strategy enhances model robustness and classification
accuracy, achieving state-of-the-art performance in distributed learning scenarios.

1 Introduction

The widespread diffusion of mobile devices, and the consequent increase in the number of
applications available on those devices; has led mobile malware to become a significant threat
to the security and privacy of aisers [1], thus making effective detection methods crucial to
limit these risks. Raw features like bytecodes, opcodes, strings, permissions, and APIs are
easy to extract and can be used to identify malware [2]. However, these low-level features are
vulnerable to code obfuscation, considered that malware developers alter code features while
maintaining functionality [3]. Higher-level structured features, such as multimodal features,
API call reachability analysis, and function call graphs, are preferred as they are harder to
modify while preserving the program’s semantics [4]. Graph-based representations in particular
effectively capture the semantics of the code and can be extracted by lightweight static analysis [4].

An additional challenge in mobile malware detection is the privacy of the users: a simple
snapshot of the installed applications on a device is sufficient to infer sensitive information such
as the users’ location, interests, religious beliefs, marital status, medical conditions, and habits [5].
Hence, to preserve the privacy of the users, data should never leave their devices. Although
graph-based representations can be obtained easily without requiring off-device dynamic analysis,
traditional machine learning techniques for graph classification are computationally expensive
and require multiple passes through the data. Thus, mobile devices might struggle to perform
the necessary computations for on-device analysis, and real-time detection would not be feasible.
Hyperdimensional Computing (HDC) is a brain-inspired computing paradigm that is recently
gaining popularity in the machine learning community [6]. This paradigm is well suited for
devices with limited energy and computational resources such as mobile phones and represents
a promising alternative for on-device training and inference [6].
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This work introduces HDDroid, a federated learning framework for mobile malware detection
to efficiently and effectively detect malicious applications through the analysis of function call
graphs. The main contributions of this work can be summarized as follows:

e HDDroid enables on-device training and analysis leveraging Hyperdimensional Computing;

e through online encoding, HDDroid reduces the memory requirements for function call
graphs encoding, enabling the analysis of large graphs on resource-constrained devices;

e to integrate the contributions of multiple users, HDDroid employs a novel aggregation
strategy for distributed learning that filters out irrelevant information and increases the
classification accuracy.

Experimental results on the comprehensive real-world publicly available MalNet [7] dataset show
that HDDroid achieves state-of-the-art performance in mobile malware detection, and maintains
a high accuracy in distributed learning scenarios. The remainder ofthis paper is organized as
follows. Section 2 reviews related works. Section 3 provides preliminary information on the
adopted computing paradigms. Section 4 details the HDDroid architecture. Section 5 presents
the experimental evaluation. Finally, Section 6 concludes the paper.

2 Related Works

The field of malware detection has been the subject of extensive research. The adoption of
Machine Learning methods promises to be the best approach to enable the design of solutions
that can automatically learn how to detect these types of threats [8]. Early automated malware
detection systems detected malware by computing a signature summarizing the characteristics
of the software and comparing it to known malware signatures. The signature of a software
is constituted by a unique string of bytes generated through an analysis of the code. Several
approaches to generate effective software signatures for malware detection have been proposed [9].
For instance, early approaches used a digest of the file to check if an executable is a known
malware. More fine-grained approaches statically analyze the execution flow of the program
trying to match sequences of operation.in the code with known malware patterns. Signature-
based approaches are fast and effective in detecting known malware but they are not reliable for
detecting unknown malware types and can be eluded by polymorphic malware. Additionally,
signatures need to be crafted through careful feature engineering, limiting versatility. A more
flexible approach compared to signature-based detection is behavior-based classification. These
techniques analyze the behavior of the software during its execution by monitoring system calls,
file changes or network activity and build a feature vector that is then used to classify the
software. This approach requires sandbox execution, which is computationally expensive for
on-device analysis [10]. Thus, static analysis is more suitable for on-device feature extraction.
However, detection through low-level static features such as APIs, strings, permissions,
and opcodes can be eluded through code obfuscation [4] since malware developers can alter
the code to change its features while maintaining its functionality. Therefore, higher-level
structured features are preferred. For instance, graph representations of software are robust
to obfuscation [4] while being relatively easy to acquire from the code with a static analysis
without requiring computationally expensive dynamic analysis [11]. Among the most used
graph representations for malware analysis are: a) Control Flow Graphs [12] that model paths
between blocks of code during the program execution; b) Function call and API dependencies
graphs [13], which are Control Flow Graphs with the functions/APT calls granularity; c¢) System
call graphs [14] that model interactions between the program and the underlying operating
system; d) System entity graphs [15] that model interactions between the program and the
system entities such as files, network connections, and processes. Function call graphs extracted
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through a static analysis of the API calls are the most popular choice for Android malware
detection [13].

Traditional approaches to represent graphs for learning tasks often rely on hand-crafted
summary statistics to encode the graph structure into feature vectors. For example, LDP [16]
uses histograms of node degrees and their 1-hop neighbors, while NoG [17] focuses on node
and edge attributes, ignoring topology. Other methods use random walks to describe node
neighbors [18]. Graph kernels, such as Slag-LSD and Slag-VNGE [19], measure approximate
distances between spectral graph representations. Recent works have focused on learning graph
representations directly from raw graph data using deep learning models. Graph Neural Networks
(GNNs) propagate information between neighboring nodes [20], learn the‘optimal aggregation
function [21], and extending convolution operations to graph data [22]¢ While effective, these
methods are computationally expensive and unsuitable for on-device analysis in constrained
devices like mobile phones. A recent alternative for graph embedding is. Hyperdimensional
Computing, specifically the GraphHD algorithm [23]. Rather than learning a representation of
the nodes, GraphHD assigns random high-dimensional vectors to nodes and combines them to
represent edges and the entire graph. This approach is suitable for on-device analysis, as it is
more computationally efficient with shorter training times compared to traditional GNNs.

3 Preliminaries

3.1 Federated Learning

Federated Learning (FL) is a decentralized machine learning approach that lets multiple
independent data owners to contribute to a shared model without disclosing their data [24].
In FL, each participating client (data owner) has a local, private, dataset. A central server
distributes a copy of a classification model to all clients. Each client trains the model on its local
data for a set number of iterations. The clients then send the updated models to the server,
which aggregates them into a global model through a weighted average. The new model is then
redistributed to the clients for further refining, repeating this process for multiple rounds until
model convergence. FL preserves the privacy of the clients’ data, sharing only model parameters
and keeping the data private, making it an attractive alternative to centralized learning for
malware detection tasks [25].

3.2 Hyperdimensional Computing

Hyperdimensional computing (HDC), described in-depth in [26], is a brain-inspired computing
paradigm that leverages high-dimensional vectors to perform computations. HDC performs
classification tasks by representing data as hypervectors (HVs), whose dimensionality is typically
in the order of tens of thousands, and associating these with class labels. An hypervector H is
defined as (hy, ha, ..., hp) where h; is the value of the i-th dimension of the vector. The size of
the vectors D is consistent throughout a HDC system: operations act on HVs of homogeneous
length and do not modify their dimension. HDC is scalable, parallelizable, energy-efficient, and
well-suited for few-shot learning tasks, requiring less training and inference time than neural
networks of comparable accuracy [6].

Operations A useful property of random vectors in high-dimensional spaces is their quasi-
orthogonality [26] (their cosine similarity is close to 0), which allows multiple HVs to be combined

3
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through simple mathematical operations while maintaining the information encoded in each HV.

Three major operations are supported by HVs and used in HDC:

e Permutation (II) is an unary operation which rearranges the elements of the vector into
a HV quasi-orthogonal to the original one. This operation is often used together with the
binding operations to assign an order between HVs, and it typically implemented through a
circular shift, moving all the coordinates of the HV clockwise:

II(H) = (hp,h1,...,hp_1).

¢ Binding (®) two HVs yields an HV dissimilar to both. Binding associates information from

two different HVs (e.g., assigning values to variables) through element-wise multiplication:
Hl @HQ = <h171 X h2$1, ey hl,D X h27D>.

e Bundling ($) combines two HVs into a new hypervector through‘element-wise addition,

obtaining a HV similar to both the input HVs:
H1@®Ho=(h11+h21,...,h1,p+ haD).

The high dimensionality allows these operations produce distinet and non-conflicting HVs. The

operators act on HV elements independently and do not require loading the entire HV into

memory, making them highly parallelizable and suitable for analysis on both resource-constrained
devices such as low-end mobile phones and devices capable of parallel processing.

Training and classification In HDC, a classification task with k classes is performed by
computing a class prototype HV for each class Cy, . . ., C, storing them into an associative memory
M, and then comparing query HVs with the class prototypes to determine the predicted class.

Class HVs can be computed by bundling the HVs in the training set belonging to the
corresponding class. Single-pass training is simple and efficient, but often leads to low accuracy,
thus iterative training algorithms such as RefineHD [27] and OnlineHD [28] have been proposed
to improve the classification performance. These algorithms bundle incorrectly classified query
HVs to the correct class HV and subtract them from the wrongly predicted class HV.

At inference time, the similarities of a query hypervector Hgyery and the class hypervectors in
the associative memory M are computed. The class whose HV has the highest cosine similarity
with the query is considered to bethe predicted label:

CLH uers
pred(M, Hguery) = arg max 0(Cis HQuery) = arg max m

4 HDDroid architecture

HDDroid leverages a collaborative learning framework to allow multiple independent data owners
to contribute to a shared mobile malware detection model without disclosing their data. The
system includes n clients, each with its own private dataset, and a central server that coordinates
training. Each client uses its local data to train a hyperdimensional associative memory M) for
classification and sends it to the central server. The server aggregates the classifiers into a global
classifier M(%) and sends it back to the clients for further refinement over several iterations. A
schematic representation of the HDDroid architecture is shown in Figure 1.

4.1 Mobile application encoding

HDDroid analyzes mobile applications using function call graphs obtained through static code
analysis. Each function is a graph node with a unique identifier, and directed edges represent
function calls, indicating possible execution paths. Hyperdimensional Computing directly
encodes function call graphs of mobile applications into HVs for classification, without the need

4
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Figure 1: HDDroid architecture. Each client has a private dataset containing multiple mobile
applications. Static analysis extracts function call graphs, which are then encoded as hypervectors.
The HVs are used to train a local associative memory for-classification which is sent to the
central server for aggregation into a global classifier to be distributed back to the clients.

for feature engineering. The encoding process is hierarchical: vertices are encoded first, then
they are combined into edges HVs, and edges are bundled to encode the entire graph.

Node encoding The first step in the encoding process is to assign a unique hypervector to
each graph node. Since the function identifiers in an application are arbitrary, they cannot be
encoded directly into HVs. To ensure consistent encoding across graphs, each node is labeled
with its PageRank centrality [29], as proposed in [23]. PageRank measures a node’s importance
based on the stationary distribution of a random walk on the graph. Once the nodes receive a
meaningful identifier consistent across different graphs, each identifier is mapped to an HV.

A common approach to encode discrete values into HVs is to precompute a set of random
HVs, one for each possible value. However, this requires an HV for each value, causing the
random basis size to grow linearly with the number of values, which can be impractical. For
application call graphs, the number of possible function calls is unbounded, with some graphs
containing almost 600 thousand nodes [7]. Encoding all nodes in HVs with dimensionality
10000 would require over 40 GB of memory, making it infeasible for resource-constrained mobile
devices. Additionally, a fixed random base requires knowing the range of values to be encoded,
which is impractical for function call graphs due to the arbitrary number of function calls in
mobile applications. Thus, using a random basis is not viable in this target scenario.

Other approaches, such as Flocet encoding [27] and random projections [30], embed discrete
values into HVs without precomputing a random basis. However, these methods preserve
similarity between original values, which is undesirable here as consecutively ranked nodes
correspond to different functions. To address these issues, HDDroid uses an online encoding
strategy based on the Philox algorithm [31], a counter-based pseudo-random number generator.
A digest is computed from the node label to seed the key and counter for Philox, which generates
an arbitrary-length sequence of pseudo-random values as the HV encoding. This deterministic
procedure ensures the same label is always encoded as the same hypervector, without storing
a lookup table, and guarantees quasi-orthogonal HVs. Additionally, Philox can generate the
values in parallel, making it suitable for encoding large graphs on multi-core devices.
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Figure 2: Graph embedding into a hypervector: nodes are numbered (a)-and assigned unique
pseudo-random HVs (b), edges are encoded by binding node hypervectors with a permutation
on the destination node (c), and all edges are bundled to form the final graph hypervector (d).

Hypervector-based graph representation Given the HVs for all the nodes, they can be
combined to compute the HV for the whole graph [23] as illustrated in Figure 2. Each edge
(a,b) in the graph is encoded by binding (element-wise multiplication) the hypervectors H, and
‘H; of the two nodes a and b, with the destination nede HV permuted to indicate the direction
of the edge. All the edges are then bundled (element-wise addition) into the graph hypervector
Heraph as per Eq. 1. Each element in the graph HV is thus given by the sum, for each pair
of connected nodes, of the products of the corresponding elements in the node HVs, with the
elements in the arrival node HV rotated by one position:

Heraph = @H ®II(Hp) = Z ha1 % he D, Z hao>hy1, ..., Z ha,p*xhy.p-1). (1)

(a,b)€edges (a,b)E€edges (a,b)Eedges (a,b)E€edges

Since all node HVs have the same dimensionality, the graph HV will have a fixed size regardless
of the number of function.calls. However, graphs with more edges will sum more quasi-orthogonal
edge HVs, potentially dncreasing the vector magnitude. To ensure fair influence on the final
classifier, graph hypervectors are normalized to have the same magnitude, regardless of the
application size. The complete encoding algorithm is reported in Algorithm 1. At any given
step of the algorithm, the server only needs to record at most three hypervectors: Hgraph, Ha
and either Hj or H,p. Excluding the PageRank computation, the memory requirement of the
graph encoding algorithm is O(D), independent of the graph size, while the time complexity
is O(|V| - D). The graph information is spread across the HV, no HV element stores specific
information about a node or an edge, granting robustness to noise and errors.

4.2 Few-shot collaborative learning

After encoding the function call graphs into HVs, each client computes a local associative
memory M for classification. Through federated learning, clients share their local classifiers
with the central server, which aggregates them into a global classifier M(%). This process is
repeated for several rounds, refining the global classifier. The HDC paradigm enables efficient
distributed learning with minimal training iterations and communication cycles.

Local training As discussed in Section 3, the local training of the classifier is often performed
by computing the class hypervectors through one-pass training. However, bundling all HVs of the
same class can lead to model saturation, as common patterns overshadow specific characteristics
crucial for classification. This is particularly problematic in mobile application classification,

6
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Algorithm 1 Application Function Call Graph Encoding Algorithm

Require: Application, Hypervector size D
Ensure: Graph hypervector Hgraph
: Graph G = (V, E) = CALL_GRAPH(Application)
: Initialize Hgrapn as an empty hypervector
: r + {PAGERANK(G,a) |a € V} {Compute unique ID for each node}
for a € V do
digestq < HASH(r,)
Keya, Counter, < LOWER_BITS(digest, ), UPPER_BITS(digest, )
H, + PHILOX(K eyq, Counterq, D) {Generate start node HV'}
for be V| (a,b) € E do
digesty <— HASH(rp)
Keyy, Countery, < LOWER_BITS(digesty ), UPPER_BITS(digesty)
Hy, + PHILOX(K ey, Countery, D) { Generate destination node HV }
Hap < Ha ® H(Hb)
13: Heraph < Hgraph @ Ha,b {Update graph HV with new edge}

Hgraph
"ngaphl

—_
A B AN

_.
N

14: return

where many apps share functionalities, and malware can mimic benign apps to elude detection.
Instead of bundling all HVs of the same class, HDDroid adopts the weighted aggregation strategy
n [27]. Each sample # is compared to the local associative memory. If the class hypervector
most similar to H is not the one for its class Cjgperya weighted portion of H is added to Cigper
and subtracted from the most similar class hypervector .C,,.q to increase and decrease their
similarity to H, respectively. The weights depend on _the similarity of the HV with the predicted
and true label classes, Opreq and digpe, as per Eq.(2):

Clabel = Clabel + (1 - 5label)(1 - 6label - §pred)H

2
Cpred = Cpred = (1 - 5pred)(1 - 5label - 5p7'ed)H- ( )

When the sample has a high similarity with the correct class, only a small portion of the
hypervector is_added. to the class hypervector. When the difference is significant, a larger
portion of the sample hypervector is. added to the correct class hypervector and subtracted
from the.incorrect one to better incorporate the sample’s information. HVs with correct, but
low confidence, predictions are still added to the correct class hypervector. In this case, the
weight of the hypervector is computed as Ciaper = Ciabel + (1 — S1aber — Oprea)H. A prediction is
considered to have low confidence if the similarity with the correct class hypervector is below
the average similarity of the wrongly classified samples with the correct class hypervector.

Model aggregation Once clients update their associative memories, they send the class
HVs to the central server for aggregation into a global classifier [24]. This process leverages
information from all clients, creating a more accurate model while reducing communication
overhead and preserving client privacy compared to transmitting the raw HVs. Typically,
HDC aggregates local classifiers by averaging class HVs from each client, similar to traditional
federated learning. A representative example is Fed-HD [32], which computes the global classifier

G) _ MOy MW
as M( ) B n+1 ' . ’ . . . .
However, this aggregation process can lead to model saturation by repeatedly adding similar

information from all clients. HDDroid weights class HVs from each client by the distinctiveness
of their information, avoiding redundancy and improving learning outcomes. Given the class

7
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¢ hypervector from client 1, cé"), the server evaluates the intra-class redundancy I(c,1i), which
measures the average similarity of Cgl) with the hypervectors of other clients for the same class:

I(e,iy= 13" el cd).

High intra-class redundancy means Céi) is similar to other clients’ hypervectors for the same
class, adding little new information. The server also evaluates the inter-class confusion Ul(c,1)

of client 7 for class ¢ by comparing Céi) to hypervectors from other classes:

n

Ule,i) = £ 557, maxs(cl, MO\ c),

where M) \ng ) is the set of class HVs in the associative memory of client j excluding Céj ).
High inter-class confusion indicates that Cﬁi) contains information not specific to class c.

The computation of U and [ for all class hypervectors has a complexity of O(n?-k2- D), where
n is the number of clients, k is the number of classes, and D is the hypervector dimensionality.
Since k and D are hyperparameters, the aggregation process scales quadratically with the
number of clients. These computations are independent and can be parallelized for efficiency.

The normalized aggregation weight wgi) for the hypervector Cgi) is computed using the
intra-class redundancy I and inter-class confusion U as per Eq. (3):

() _ (A—1I(e,i))(1—1(c,1) —U(eyi))
Wl S S S (1) (1 1)~ U ). (3)
A hypervector similar to others in the same class or to.those of other classes is considered

redundant or uninformative, respectively, and its weight is decreased. The class HVs’ weights
are used by the server to compute the updated global memory as:

MO (S, WO T wel)).

Unlike traditional FL on neural networks; which requires many communication rounds to achieve
good performance [33], HDDroid is experimentally shown to converge in few rounds.

5 Experimental evaluation

To evaluate HDDroid, experiments were conducted on the MalNet tiny 5K [7] and MalNet
61K [34] datasets, containing function call graphs of Android applications labeled as benign or
malware. The MalNet tiny 5K dataset contains 5000 applications, each with up to 5000 nodes
per graph. The larger 61K dataset includes 87430 applications, with graphs containing up to
599234 nodes. The 61K dataset’s size and complexity make it a better testbed for evaluating
HDDroid’s scalability and encoding effectiveness. Most experiments were conducted on the 61K
dataset, with the 5K dataset used for comparison with existing methods. In order to simulate a
large number of devices, the experiments were conducted on a server with 32 Intel(R) Xeon(R)
Gold 6242 CPU cores, 32 GB of RAM, and an NVIDIA A100 GPU. The HDDroid model was
implemented using the TorchHD library [35].

Comparison with state-of-the-art approaches: First HDDroid is compared with other
non-HDC existing approaches for graph classification in a centralized setting. Table 1 and
Table 2 show the performance of HDDroid alongside state-of-the-art methods reported in the
literature on the MalNet tiny 5K and MalNet 61K datasets, respectively.

8
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Method SIR-GN [34] Feather [18] LDP [16] GIN [21] GCN [22] Slag-LSD [19] NoG [17] Slag-VNGE [19] HDDroid
Accuracy 0.92 0.86 0.86 0.90 0.81 0.76 0.77 0.53 0.90

Table 1: Comparison of HDDroid on the MalNet tiny 5K dataset against several other graph-
based methods reported in [7] and [34].

F1 Precision Recall
Method SIR-GN ResNetl8® HDDroid SIR-GN ResNetl8 HDDroid SIR-GN ResNetl8 HDDroid
0.718 0.651 0.936 0.729 0.672 0.969 0.646 0.646 0.904

Table 2: Comparison of HDDroid on the MalNet 61K dataset against the ResNet18 model and
the SIR-GN algorithm as reported in [34].

On the MalNet tiny 5K dataset, HDDroid achieves an accuracy of 0.90, closely matching the
best method, SIR-GN, which has an accuracy of 0.92, demonstrating the viability of the HDC
paradigm for malware detection. On the larger 61K dataset, HDDroid outperforms the SIR-GN
algorithm, demonstrating its scalability and the effectiveness of the HDC paradigm in capturing
relevant information in large function call graphs.

09| |
2 0.85] o f
=
g 0.8 — HDDroid
075 [ OnlineHD |
-~ Ted-HD
| | | | T
0 2 A 6 8

Communication round

Figure 3: Accuracy achieved by HDDroid on the MalNet 61K dataset across training rounds
compared with OnlineHD and Fed-HD.

Other HDC methods: HDDroid’s training and aggregation strategies are assessed through a
comparison with traditional HDC methods. The first compared approach utilizes OnlineHD [27]
for local training, maintaining HDDroid’s aggregation strategy. For the second, Fed-HD [32] is
used for aggregation, keeping HDDroid’s local training strategy. Figure 3 shows the accuracy
of HDDroid on the MalNet 61K dataset across training rounds compared with OnlineHD and
Fed-HD. OnlineHD starts with high initial accuracy but drops over time, likely due to local
training saturation. Fed-HD shows initial improvement but quickly plateaus, possibly due to
redundant information in the global classifier. HDDroid, on the other hand, starts with a lower
initial accuracy, as the inclusion of new HVs is conservative, but quickly surpasses the other
methods, capturing more of the relevant information in the HVs.

To better assess how well the obtained class hypervectors capture the information relative
to their classes, the Receiver Operating Characteristic (ROC) curve for HDDroid, OnlineHD,
and Fed-HD are compared, plotting the true positive rate against the false positive rate varying

9
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Figure 4: Receiver Operating Characteristic (ROC) curve for HDDroid, compared to Fed-HD,
OnlineHD, and not ordering nodes before encoding.
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Figure 5: Model performance varying the number of clients, non-IID level, and hypervector size.

the classification threshold. In this analysis, a model that does not rely on the PageRank
node ordering is also considered to gauge the impact of this procedure on the quality of the
encoding. Figure 4 shows the ROC curve for the tested methods. Removing PageRank ordering
significantly reduces model performance, highlighting its importance in encoding. As in the
previous analysis, HDDroid outperforms the other approaches, confirming the effectiveness of
the training and aggregation strategies.

Robustness to non-IID data distributions: In federated learning settings, clients often
have heterogeneous data distributions, which can lead to a decrease in model performance [36]. To
evaluate HDDroid’s robustness to non-IID data distributions, the dataset labels are distributed
among clients using a Dirichlet distribution. An IID setting and two non-IID settings are tested:
a moderate non-IID setting (o = 1), and a highly non-1ID setting (o = 0.1), where malware
classes are almost partitioned between clients. As shown in Figure 5, larger hypervector sizes
generally improve performance, with diminishing returns at higher sizes. With at least 50 clients,
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non-IID data distribution does not significantly impact performance. Reducing the number of
clients negatively affects the F1-Score, especially with smaller hypervectors. Larger hypervectors
(e.g., 50000 dimensions) are more robust, maintaining accuracy above 96% across all settings.

6 Conclusions

Malware detection is a critical task to ensure the security of mobile devices, however collecting and
sharing data for training models can raise privacy concerns, thus decentralized on-device analysis
and training are desirable. This work presents HDDroid, a novel approach to mobile malware
detection that leverages the Hyperdimensional Computing paradigm to allow lightweight and
efficient federated training and local classification of mobile applications on resource-constrained
mobile devices. The on-device analysis preserves the privacy of the participating users and allows
for efficient and robust malware detection. The experimental evaluation shows that HDDroid
achieves state-of-the-art graph-based performance for malware detection, remaining effective in
non-IID scenarios, making it suitable for real-world applications where data distributions among
devices can be highly heterogeneous. Future works will focus on improving the flexibility and
adaptability of the model in handling variations over‘time in thedata distribution of the clients
and on enabling collaboration between devices with heterogeneous hardware capabilities.
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