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Abstract

The ubiquitous diffusion of mobile devices requires
the availability of effective malware detection so-
lutions to ensure user security and privacy. The
dynamic nature of the mobile ecosystem, character-
ized by data distribution changes, poses significant
challenges to the development of effective malware
detection systems. Additionally, collecting up-to-
date information for training machine learning mod-
els in a centralized fashion is costly, time-consuming,
and privacy-invasive. To address these shortcom-
ings, this paper presents a novel federated learning
system for collaborative mobile malware detection.
M2FD leverages the collective intelligence of the
user community to collect valuable contributions to
the detection system while preserving user privacy.
Additionally, M2FD incorporates robust concept
drift detection mechanisms and model retraining
strategies to ensure the adaptability of the system
to changing data distributions. By effectively han-
dling concept drift, M2FD guarantees a high ability
to detect malware, with 85% accuracy and 84% F1-
score, even in presence of evolving attack strategies,
thus avoiding the need for frequent model retrain-
ing, reducing the retraining frequency by up to 84%,
so reducing the computational burden on clients.
An extensive experimental evaluation performed
on KronoDroid, an open-source real-world dataset,
proves the effectiveness of M2FD in detecting con-
cept drift, minimizing model updates, and achieving
high accuracy in mobile malware detection.

Keywords: Federated Learning, Mobile Malware,
Concept Drift, Privacy Preserving Computing.
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1 Introduction

Mobile operating systems nowadays run over billions
of hardware devices, including smartphones, tablets,
and IoT devices [57], with projections estimating
more than 30.2 billion devices by 2030 [34]. The
extensive mobile app ecosystem, while contribut-
ing to their popularity, also makes mobile devices
attractive targets for malware developers seeking
to steal sensitive information, compromise user pri-
vacy, and cause financial loss. Mobile platforms
face the regular emergence of new malicious apps
and attack vectors [61, 21]. These malicious ap-
plications constitute a significant threat to mobile
device users, undermining the security and integrity
of their devices and data.

The detection of mobile malware has been the sub-
ject of extensive research and, while automated de-
tection systems are remarkably effective in the short
term, it has been shown that most approaches are
undermined by the faulty assumption that malware
characteristics are constant over time [44]. In realis-
tic scenarios, instead, the performance of detection
models degrades over time due to the presence of the
phenomenon known as concept drift. Concept drift
describes the situation where the statistical prop-
erties of the data change over time in an arbitrary
way [41] and makes the task of detecting mobile
malware particularly challenging. The presence of
concept drift in this domain is not surprising, as mal-
ware developers are constantly evolving their attack
strategies to evade detection [11], and the landscape
of mobile applications is continuously changing [69],
with new applications continuously being released
and older ones being abandoned. This drift can
negatively impact the performance of malware de-
tection systems, as the datasets used to train the
detection system may not reflect the current data
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distribution, necessitating the development of adap-
tive techniques that can handle concept drift.

Adaptively trained machine learning models can
evolve with the data, making them more suitable
to mitigate mobile malware attacks. However, most
traditional techniques to train adaptive models pose
a severe scalability burden as they require central-
ized storage and expert labeling of data, which is
both costly and time-consuming. The difficulty of
obtaining labeled data is exacerbated by the fact
that concept drift quickly renders the training data
outdated [43]. Furthermore, data is distributed
across geographically dispersed devices, making the
centralized collection and storage a difficult task;
as it also poses privacy concerns for the data own-
ers [17].

To mitigate the large overheads of centralized
data collection and labeling, crowdsourcing has
emerged as a promising approach for malware detec-
tion, leveraging the collective intelligence of users
in order to obtain valuable data and labels [62]. De-
spite its potential, crowdsourcing also raises serious
user acceptance issues due to their reluctance to
share with a central server which applications they
have installed. The authors of [53] have shown that
a simple snapshot of the installed applications on
a device can reveal sensitive information about the
user, such as their location, interests, religious be-
liefs, marital status, medical conditions, and habits.

Federated learning (FL) has emerged as a promis-
ing solution to address the privacy preservation and
scalability issues in mobile and IoT malware detec-
tion [17, 52]. FL is a distributed machine learning
technique that trains a model across multiple decen-
tralized clients, each holding its local dataset, with-
out requiring exchanges of sensitive data [1]. By en-
abling collaborative model training across multiple
devices without exposing their data, FL preserves
user privacy. Clients train local models on their
data samples and exchange only parameters (either
model weights or computed gradients) with central-
ized a server; the server aggregates the received
models [35] to produce a global model which is sent
back to the clients for further training. FL can thus
train a global model during multiple communication
rounds without direct access to the private training
data produced and collected by the users.

Limited research is currently available on the use
of federated learning for mobile malware detection,
and the few existing methods are not designed to

handle concept drift. More research is necessary to
overcome the difficulty of maintaining model per-
formance in a decentralized setting [15]. Existing
methods for handling concept drift in malware de-
tection often require centralized datasets and/or
constant retraining, imposing a high computational
burden on the participating clients and raising pri-
vacy concerns. Moreover, these methods struggle to
adapt to concept drift quickly, to distinguish noise
from actual drift, and to maintain model perfor-
mance in the presence of significant sudden drift.
Further investigation is required to develop robust
systems that can effectively solve this problem [66].

Although providing some privacy-related advan-
tages, the current FL approaches available in the
literature impose a significant computational bur-
den on these devices as the cost of model training is
shifted from the centralized server to participating
clients. Such shortcomings result invalidating when
energy safeguards are a prioritary goal. Therefore,
it is crucial to develop federated learning techniques
that minimize the computational burden on indi-
vidual clients in order to ensure their continuous
participation, thus guaranteeing the overall effec-
tiveness of the FL process [55].

This paper presents M2FD (Mobile Malware Fed-
erated Detection), a system for collaborative mo-
bile malware detection designed to consider the
distributed nature of the data and the difficulties
posed by concept drift and ever-changing local client
datasets, without compromising user privacy. Un-
der this demanding scenario, this paper contributes
a novel system designed to address the complexities
associated with malware detection in a dynamic and
distributed environment, integrating federated learn-
ing, concept drift detection, and adaptive model
retraining.

M2FD aims to optimize the detection accuracy by
adapting to the evolving distribution of applications
on individual devices by incorporating robust con-
cept drift detection mechanisms, while minimizing
the computational burden on participating clients.
A significant contribution of the approach described
here is the effective handling of concept drift in the
mobile ecosystem which would otherwise introduce
difficulties in maintaining high detection accuracy
over time. This adaptive capability is crucial for
sustaining high-performance malware detection in
presence of evolving attack strategies.

The detection algorithm strives to optimize detec-
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tion accuracy while respecting the computational
constraints of individual client devices. Recogniz-
ing the limited computational capabilities of mobile
devices, M2FD is designed to distribute the compu-
tational burden efficiently. By increasing the time
between model retraining without significant loss in
accuracy, M2FD ensures that resource-constrained
devices, such as smartphones, can participate ef-
fectively in the federated learning process without
significant disruption to their primary tasks. The
main contributions of this paper are:

• M2FD overcomes the need of updated central-
ized datasets by crowdsourcing data from users,
preserving their privacy through the use of fed-
erated learning;

• M2FD effectively adapts to concept drift in the
mobile malware detection domain, maintaining
stable detection accuracy over time;

• by effectively recognizing concept drift, M2FD
reduces the need for frequent model retraining,
minimizing the computational burden on the
clients.

To assess the effectiveness of the detection algo-
rithm, extensive experiments were performed us-
ing open-source real-world datasets containing mo-
bile applications published over several years (Kro-
noDroid [29] and Malware Hunter 100k [12]). Ad-
ditionally, its applicability to other domains was
evaluated using the EMBER Windows malware
dataset [7]. This experimental evaluation confirms
the ability of M2FD to detect concept drift, re-
duce the computational burden on the clients, and
achieve high accuracy in mobile malware detection.
Furthermore, M2FD proves to be resilient to noisy
training labels, a common obstacle to real-world
deployment of machine learning models. This in-
creases its reliability and effectiveness in scenarios
lacking centralized authority, where data quality
may vary without a clear shared criterion for label-
ing.

The remainder of the paper is organized as fol-
lows. Section 2 provides an overview of the related
works. Section 3 outlines the M2FD architecture
and introduces the client model and problem for-
mulation. Section 4 details the M2FD algorithm.
Section 5 presents the experimental evaluation. Fi-
nally, section 6 concludes the paper.

2 Related works

This section provides an overview of the current
mobile malware detection techniques, analyzes the
issues caused by concept drift, and discusses the
existing methods for detecting and mitigating such
issues in the considered domain.

2.1 Malware detection in mobile de-
vices

The landscape of malware detection is marked by the
constant evolution of malicious techniques to avoid
identification. Traditional signature-based methods,
while lightweight, are vulnerable to evasion by mal-
ware developers through simple modifications [50].
Malware developers can prevent signature-based
detection by modifying their software, employing
polymorphic techniques, and obfuscating their code
through compression [3].

In response, the field has seen a burst of research
focusing on machine learning approaches for auto-
mated malware detection [39]. These techniques
span from traditional machine learning algorithms
such as Naive Bayes Classifiers [54], Support Vec-
tor Machines (SVM) [33] and Random Forests [74],
to deep learning approaches such as Convolutional
Neural Networks (CNN) [36] and Recurrent Neural
Networks (RNN) [67].

Machine learning techniques for mobile malware
detection can utilize both static and dynamic fea-
tures for their classifications [6, 23]. Methodologies
based on static analysis extract features from the
application’s code and other metadata information,
such as that included in the manifest file of Android
applications [75], or extract more complex features
such as the app control flow graph [38, 5]. Dynamic
analysis techniques monitor the application’s behav-
ior at runtime [10], e.g., by analyzing the system
calls it makes, the generated network traffic [32] and
the memory contents [65]. Both types of features
are often used together to improve the detection ac-
curacy [60]. Despite the widespread use of machine
learning in malware detection for mobile devices,
the authors in [28] have shown that concept drift
negatively affects the performance of machine learn-
ing models for malware detection for both analysis
approaches.
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2.2 Concept drift in mobile malware

Concept drift is a phenomenon in machine learn-
ing involving arbitrary changes in the statistical
properties of a target domain over time [41]. This
shift in the data statistical properties can be caused
by alterations in hidden variables that cannot be
directly measured, for instance, the discovery of
new vulnerabilities or the introduction of new mal-
ware lineages [4]. Concept drift can be categorized
into three classes: drift in the input data distri-
bution, drift in the conditional probability of the
output given the input, and a mixture of both. In
mobile malware detection, both kinds of drift can
occur. The statistical distribution of the applica-
tion features can change due to evolving trends in
application usage and functionality. Furthermore,
in the specific case of mobile applications, the con-
ditional probability of their malicious nature given
the characterizing features is also subject to their
continuous effort of detection avoidance. If concept
drift is not taken into account when developing and
evaluating automated malware detection systems,
the performance of the models in the wild will be
noticeably worse than during development [4].

These changes can lead to a classification accuracy
decrease. The research effort when dealing with
these types of drift focuses on how to minimize the
drop in accuracy and achieve the fastest recovery
rate during the concept transformation process [40].
Despite the significant impact of concept drift on
machine learning models, there is a lack of a unified
methodology to deal with it. The development of a
universally applicable solution is difficult due to the
complex nature of concept drift, which can occur in
various forms and at different times [9]. Additionally,
concept drift can be gradual, where the change
occurs slowly over time, or sudden, where the change
occurs abruptly. The simultaneous presence of both
types of drifts further hinders the development of a
universal solution.

The presence of concept drift makes mobile mal-
ware detection a particularly complex task, as dis-
cussed in [70] and [8], also because this scenario
is subject to both the natural incremental drift of
benign applications and the drift of malicious ap-
plications attempting to avoid detection, which can
be sudden and significant [30], as illustrated in Fig-
ure 1. The drift of benign applications is gradual,
and it is caused by the natural evolution of the
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Figure 1: Concept drift in malware detection. Green
circles and red squares represent benign and ma-
licious software, respectively. Benign software is
subject to gradual incremental drift caused by the
evolving trends in usage and functionality, while ma-
licious software try to change their data distribution
to evade identification, mostly leading to sudden
drift.

mobile ecosystem, with limited negative impact on
malware detection models. Malicious applications,
on the other hand, exhibit sudden drift, both due to
the evolution of existing malware families, and the
introduction of new malware lineages, which can
significantly impact the performance of malware
detection models [19]. Thus, in M2FD, periodic
retraining of the model is performed to match the
new data distribution and maintaining the model
performance, as will be detailed in Section 4. Many
other domains, such as Windows executables, are
also subject to constant evolution and are thus af-
fected by concept drift. The mobile context is par-
ticularly challenging, as trends shift swiftly [58] and
mobile devices have limited computational resources
to update the models frequently to keep up with
faster development cycles [25]. The authors of [18]
proved that training an Android malware classifier
on one year’s worth of data resulted in a 23 percent-
age point drop in F1-score after just six months of
concept drift. Even advanced dynamic behavioral
analysis tools like MaMaDroid are not immune to
a decline in performance over time [45].

2.3 Concept drift detection and mit-
igation

Several methods and techniques have been devel-
oped to detect and prevent concept drift. These
include error rate-based drift detection algorithms,
such as that proposed by the authors in [26], which
monitor the performance of the learning system and
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assume drift when the error rate exceeds a prede-
fined threshold, and data distribution drift detection
methods that focus on detecting the occurrence of
a drift by comparing the distribution of the data
at different time points, as that proposed by the
authors in [49].

To mitigate the impact of concept drift in mo-
bile malware detection, researchers have proposed
different techniques, such as using adaptive classi-
fiers [16, 68]. Despite these efforts, concept drift
remains an open research field in mobile malware de-
tection, mainly addressed by periodically updating
the classifiers if concept drift is detected [22].

Continuous training of a classifier model to react
to concept drift is a complex task, as it requires a
constant flow of new data to assess drift and labels
for the new data to retrain the model [59]. To
address this issue, the authors of [72] have proposed
a method to delay the need for model retraining
by slowing down the performance degradation of
malware detection models leveraging the semantic
relationships between API calls. However, their
approach cannot detect drift when it happens, and
still requires a centralized collection of data to assess
API relationships and train the model. Reducing
the need for human analysis effort remains a key
challenge in centralized settings [18].

In this work, federated learning is used to easily
collect data and labels from users: users only need
to interact with their devices normally and label
the new applications they install, without additional
data collection effort, bypassing the need for costly
periodic operations to gather new data in a central
server.

3 M2FD architecture and mod-
els

M2FD is designed to leverage federated learning to
train a shared model using the collective intelligence
of the user community while preserving their privacy.
Its architecture comprises two main components,
one of which is on end users’ mobile devices, and
the other on a cloud server, as shown in Figure 2.

Whenever an application is installed, its behav-
ior is monitored by M2FD in order to extract a
set of features. The features extracted from each
app are obtained through a hybrid analysis. First,

Labels

Extract
statistics

Labels

Extract
statistics

Concept drift detectionAggregationDistribution

Global model

Trigger retrain

Server

Clients

Local
dataset

Training

Local
dataset

Training

Figure 2: M2FD architecture. The system com-
prises a server and a set of mobile clients. The
server holds the global model and communicates
with the clients to distribute the model and detect
concept drift. The clients train local models on their
local datasets and send the model parameters to
the server. Users are required to label their local
dataset.

static features are extracted from the application’s
manifest file. These features are, for instance, the
requested permissions, the declared activities, and
the requested services. The extraction of static fea-
tures is an automated process that does not require
user intervention. Multiple tools are available to
extract static features from Android applications,
such as Androguard [24] and DexHunter [73] that
only require the application’s APK file as input.
During the app execution, dynamic features are
recorded, such as the system calls made by the ap-
plication. These features can be extracted using
external tools such as Android Debug Bridge as
done by the authors of [29], or by developing M2FD
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as an application with root access that can directly
access the system log files, as done by the authors
of [56]. It is worth noticing that this fine-grained
application monitoring can raise privacy concerns,
thus federated learning is critical to ensure that data
never leaves the device and protect user privacy.

At any time, the user can assign a label to one of
his applications, indicating whether it is benign or
malicious. By interacting with the application over
time, the user can vary the degree of certainty of
the assigned label, in response to greater or lesser
confidence in his assessment, or can change the
label entirely. As in other crowdsourced mobile se-
curity works [46, 13], the user interaction with the
application is a crucial step in the process, as the
crowd-sourced labeling of applications by users is
the only source of knowledge for the models. The la-
bels provided by the user constitute a local, private
dataset together with the features automatically ex-
tracted from the applications. The obtained dataset
is stored locally and never shared, ensuring user
privacy.

The server holds the parameters of a neural net-
work model and shares them with the clients. Each
client uses their dataset to train a copy of the model
and then sends the updated model parameters back
to the server. The server aggregates the model pa-
rameters sent by the clients to update the global
model and distributes it back to the clients.

Periodically, the server communicates with the
clients to detect concept drift and determine if the
local models should be retrained to maintain the
global model’s accuracy in the presence of concept
drift, as will be detailed in Section 4.

The dynamic nature of application installations,
uninstallations, and mislabeling introduces complex-
ity to the problem. The primary goal is the opti-
mization of the global model’s accuracy on a dis-
tributed dataset while considering individual client
constraints and the presence of concept drift. The
server faces the dual goals of maximizing accuracy
and minimizing client-side computational burdens.

3.1 Client model

Each mobile device hosts a client Ci, where i repre-
sents the index of the device. Each client possesses
a local dataset Di containing |Di| samples. These
samples correspond to applications previously in-
stalled on the device and their user-determined la-

bels, forming the basis for subsequent actions within
fixed-length time periods.

3.1.1 Dataset updates

During each time period T , every client Ci under-
goes a dynamic process of installing new applica-
tions. The number of new applications installed
within the time period T in the i-th device is de-
noted as ki,T and is modeled as a random variable
following a Poisson distribution with parameter λ.
The Poisson distribution is a suitable choice for
modeling the number of new applications installed
by each client, as it is commonly used to model the
number of events occurring in a fixed interval of
time, and it is in accordance with existing studies
on the popularity of mobile applications [37] and
their usage patterns [51].

The parameter λ in the Poisson distribution is a
measure of the average number of new applications
installed by each client during a time period T and
is assumed to be constant across all clients for all
time periods for simplicity. Thus, in a given time
period, the probability that client Ci installs k new
applications is given by Eq. 1:

Pr(ki,T = k) =
λke−λ

k!
. (1)

The set of new applications installed by each client,
represented as Ai, is drawn from a global pool of
applications DT independently for each client. Thus,
the probability of an application being installed by
the i-th client at time T is λ

|DT | . Since an application
can be independently installed by multiple users,
the expected number of clients installing a given
application at time T is E[ηT ] =

∑n
i=1

λ
|DT | = n λ

|DT | ,
and the probability of at least one client installing
a given application is given by Eq 2:

Pr(ηT > 0) = 1−
n∏

i=1

(
1− λ

|DT |

)
= 1−

(
1− λ

|Di|

)t

.

(2)
This assumption of equal probability of selection is
a pragmatic compromise necessitated by the con-
straints of limited public datasets. App stores con-
tain millions of applications with different popu-
larity levels. However, since public datasets are
only a subsample of all the existing applications,
the same popularity distribution cannot be repli-
cated. Notably, empirical evidence in the context
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of Android applications suggests a significant con-
centration of downloads, with a small fraction of
applications garnering the majority of user atten-
tion and installations [48]. Thus, in our model, we
consider the global pool to consist of this subset
of very popular applications that roughly have the
same probability of being installed by each user,
making this assumption realistic.

3.1.2 Removal of old applications

Since the storage capacity of mobile devices is lim-
ited, to install new applications each client may
need free up storage space by uninstalling a set of
existing applications. This involves the random se-
lection of ki,T applications from the set Di of those
installed on the i-th device before T , each chosen
with equal probability.

Since each application in Di has the same proba-
bility of being removed from the local dataset of the
i − th client at each time period, this probability
only depends on the size of the dataset and the
number of newly installed applications. Thus, the
removal probability can be described as a Bernoulli
trial with success (uninstallation) probability given
by the ratio ki,T

|Di| . The expected value for said ratio

is E
[
ki,T

|Di|

]
= λ

|Di| .
Let Y be the number of time periods an applica-

tion remains installed on the device. Y is defined
by observing a parallel sequence of independent
Bernoulli variables X = (X1, X2, . . . ), stopping at
the first Xj that is equal to 1, and counting the
number of Xj ’s that are equal to 0.

Pr(Y ≥ t|X) =

t∏
j=1

Pr(Xj = 0) =

t∏
j=1

(
1− ki,j
|Di|

)
.

Since the variables are independent, the expecta-
tion can be expressed as follows:

Pr(Y ≥ t) = E [Pr(Y ≥ t|X)] =

t∏
j=1

(1− E[Xj ])

=

t∏
j=1

(
1− E[ki,j ]

|Di|

)
=

t∏
j=1

(
1− λ

|Di|

)
,

which can be simplified as Pr(Y ≥ t) =
(
1− λ

|Di|

)t

.

Thus, the probability of an application in the set

Di remaining installed after at least t time periods
is a geometric random variable with parameter λ

|Di| .
Once the ki,T applications have been selected for
uninstallation, they are removed from the dataset
Di.

3.1.3 Application labeling

The mobile device’s user is required to assess
whether the applications in their local dataset are
benign or malicious and labeling them accordingly.
The labeling process is performed manually by the
users, who are presented with the list of their in-
stalled applications and are asked to label each
application as either benign or malicious. Since
the users are not expected to have in-depth domain
knowledge, it would be unrealistic to expect them
to provide fine-grained labels, such as the specific
malware family or type, as this would require a high
level of expertise. Instead, the users are asked to
provide a binary label, which is sufficient for the pur-
poses of the system. Each user labels the installed
applications independently of other users.

Obviously, manual labeling introduces a degree of
mislabeling due to users not being security experts.
For instance, an application may be incorrectly la-
beled as malicious simply for malfunctioning. At
the same time, some stealthy malware may be able
to not be noticed by the client, being labeled as be-
nign. These mistakes are likely to introduce noise
in the learning process, thus M2FD is designed to
handle high levels of noise in the labels. In this work,
we assume that each user provides correct labels at
least half of the time. The probability of misla-
beling malware as benign is denoted as pmal, and
the probability of mislabeling a benign application
as malware is denoted as pben. For simplicity, we
assume pmal = pben = p, resulting in a correct label-
ing probability of 1− p. Given that multiple clients
may independently install the same application, the
probability of an application being mislabeled by

n clients is calculated as 1 − p
1−

(
1− λ

|DT |

)n

, with
the exponent representing the number of clients
that installed the application as calculated in Eq. 2.
The data acquisition and annotation process is il-
lustrated in Figure 3.

Over time, a user’s perception of an application
may change. To reflect this, a user may also change
the label assigned to an application. For instance,
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DT

Labeling
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False
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DT−1
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Train local model

Figure 3: At each time period T , users download new applications from the global pool, add them to
their local datasets, and remove old applications. At any time, the user can label an installed application
as either benign or malicious. Upon request by the server, when concept drift is detected, the local model
is trained on the local dataset and uploaded to the server.

a user might notice that an application previously
labeled as benign is now behaving maliciously, or
they might re-install again an application that was
previously uninstalled because it was considered
malicious due to a malfunction. This change in the
assigned label is not necessarily an improvement, as
the new label may be the incorrect one.

Furthermore, users themeselves may not be com-
pletely sure of the label they assign to an application.
To account for these uncertain beliefs, M2FD sup-
ports the adoption of fuzzy labels, instead of binary
ones. For instance, a user might be 70% certain that
an application is benign and have a 30% remaining
suspicion that it is malicious.

In order to model a varying certainty we adopt
the Pert probability distribution, which is often used
to model expert judgment [27]. To model different
user behaviors, different shapes of the certainty
distribution can be adopted. The specific shape is
obtained by setting a confidence parameter, named
γ, which varies from 0 to 1, and concisely represents
the user’s attitude to perform fuzzy classifications.

The Pert cumulative distribution function which

models the certainty is defined by Eq. 3:

α = 1 + 4 · min(1, 0.5 + γ)− 1

max(0.5, 1− γ)
,

β = 1 + 4 · 1−min(1, 0.5 + γ)

max(0.5, 1− γ)
,

Pr(X ≤ u) =
∫ u

−∞
(x−max(0.5,γ))α−1(1−x)β−1Γ(α+β)

(1−max(0.5,γ))α+β−1Γ(α)Γ(β)
dx,

(3)

where Γ denotes the gamma function and α and β
are the shape parameters depending on the confi-
dence parameter γ.

Distribution shapes corresponding to different
values of γ are shown in Figure 4. A user with γ = 0
is completely uncertain about his labels, and the
most frequent sampled certainty is 50%. Increasing
values of γ shift the distribution mode towards 100%,
leaving the minimum set as 50%. With γ = 0.5, the
mode and maximum value coincide and are equal
to 100%. Further increasing γ results in an increase
in the minimum allowed certainty value. Finally,
a user with γ = 1 is fully certain about his labels,
thus he only produces binary labels.

3.2 Server goal
The server has two main goals. The first goal is the
maximization of the accuracy of the global model on
the dataset DT at any given time T . Simultaneously,
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Figure 4: Probability density function of the classi-
fication certainty with different levels of user confi-
dence.

the server strives to minimize the computational bur-
den imposed on individual clients, quantified by the
frequency of updates to the global model performed
by clients. Furthermore, the server must address
concept drift, since it could render the global model
obsolete. To this end, the server takes proactive
measures to adapt to changing data patterns by
retraining the global model on the most recent data
from the clients.

Therefore, the server has to manage two conflict-
ing goals: mitigating concept drift by frequently
updating the global model and minimizing the com-
putational burden on the clients by limiting the
number of times the global model is retrained.

To model the retraining decision, the set of all
time periods is denoted as T . Out of these time
periods, the subset for which the global model is
retrained is referred to as Tr ⊆ T . For each time
period T , the current global model is denoted as θT .
If T is in T r, then θT refers to the global model
after retraining; otherwise, θT is equal to θT−1.

In order to reduce the computational burden on
the clients, the server aims to determine the smallest
set of time periods Tr for which the global model
θT is retrained that still minimizes the loss L of the
global model on the dataset DT at any given time
T . This objective is formalized as the optimization
problem in Equation 4.

min |Tr|
such that minimize

∑
T∈T
L(θT ,DT ).

(4)

The goal of minimizing the loss function
L(θT ,DT ) is pursued to maximize the accuracy of
the global model on the dataset DT at any given
time T . Thus, overall, the server is tasked to deter-

mine the minimum required set of retraining time
periods Tr that are sufficient to maintain the ac-
curacy of the global model over time. The loss
minimization objective is commonly used in feder-
ated learning [42], and it is achieved by optimizing
the utility of the global model, as shown in Equa-
tion 5, where L(θ,Di) is the loss function of the
global model θ on the local dataset of client Ci at
time T :

θT = argmin
θ

n∑
i=1

|DT
i |∑n

j=1 |DT
j |
L(θ,Di). (5)

To achieve this goal, the Federated Averaging
(FedAvg) algorithm [42] is employed whenever the
server determines that retraining is necessary. Fe-
dAvg is a well-established approach in federated
learning that harnesses the collective intelligence of
individual clients while preserving their data privacy.
The algorithm operates synchronously over multiple
rounds. In each round, clients download the current
global model, train it on their local dataset, and sub-
sequently upload their updated model parameters to
the server. The server aggregates these parameters
to compute a new global model. The global model
in each client is updated using Stochastic Gradient
Descent (SGD) on their local dataset for a specified
number of epochs. The updated local model param-
eters are then uploaded to the server, where they
are aggregated to compute the new global model
parameters. This process is iterated for a given
number of rounds.

4 M2FD Algorithm

The M2FD algorithm introduces a novel approach
to determine the optimal periods for retraining the
global model in a federated learning setting, address-
ing the challenges arisen from the dynamic nature
of mobile devices. It effectively handles the inherent
complexity introduced by dataset variations and
potential mislabeling of applications. M2FD is de-
signed to ensure that the accuracy of the global
model is maintained over time, even in presence
of concept drift; to this end it considers individual
client constraints and minimizes the computational
burden on the clients by determining the optimal
set of time periods for retraining the global model.
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Figure 5: Concept drift detection in M2FD. On the server’s request, the clients send aggregate information
about the similarity of the samples in their local datasets (A) to the server. The server uses the ANOVA
statistical hypothesis test (B) to determine the presence of concept drift, if there is a significant concept
drift and its effect size is large (C), the server will decide to retrain the global model.

A high-level overview of the concept drift detec-
tion process is shown in Figure 5. First, the global
model is used to extract high-level features from
the local datasets of the clients. Then, each client
autonomously computes the pairwise cosine simi-
larity between the extracted feature vectors of the
new samples and the old ones in their local dataset.
The average similarity among the older samples and
the similarity between the new and old samples are
reported to the server. The server uses statistical
hypothesis testing to determine whether the new
samples are drawn from the same distribution as
the old ones. If the new samples are not likely to
originate from a different distribution, the server
maintains the current global model. Otherwise, the
server checks if the new distribution is significantly

different from the old one. If there is a big gap
between the two distributions exceeding a predeter-
mined threshold, the server communicates with the
clients to retrain the global model on the new data.

Federated learning is employed as the underlying
mechanism for model updates, enabling collabora-
tion among mobile device users while respecting
privacy constraints. Different from the usual feder-
ated learning approach, M2FD is designed to dy-
namically determine the optimal set of time periods
Tr to update the global model, while maintaining
the previous model for the remaining periods.As a
result, the computational burden on the clients is
minimized while ensuring that the global model is
up-to-date and robust to concept drift.

As previously stated in Section 3.2, in M2FD, the
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retraining decision is taken in a centralized man-
ner by the server. However, to conform to the FL
paradigm, the server does not have direct access
to the client data. Instead, the clients provide ag-
gregate information about the state of their local
datasets, in order to enable the server to detect
eventual concept drift.

To this aim, each client independently extracts a
robust set of features from its local dataset. Since
the global model is a neural network with multiple
layers, the activations of the upper layers can be
used to capture the high-level features of the sam-
ples in the dataset without disclosing the raw data.
Specifically, the chosen neural network model is a
4-layer fully connected architecture with 128, 64, 16,
and 2 neurons in each layer, respectively. A Rec-
tified Linear Unit (ReLU) serves as the activation
function, and the output layer employs a softmax
function.

Let h
(k)
i,T be the activation vector of the k-th sam-

ple in the local dataset of client Ci at time T . This
activation captures the high-level features learned
by the model and serves as a representation of the
samples in the dataset in a compressed form. Rather
than detecting drift on the raw data, drift is detected
on the learned features, which are more robust to
noise and more compact [64].

To assess whether the set of new samples Ai,
installed by the i-th client, was extracted from the
same distribution as the old ones, clients compute
the average pairwise cosine similarity between the
activation vectors of the new samples.

Si,1 =
2

|Ai|(|Ai| − 1)

|Ai|∑
k=1

|Ai|∑
j=k+1

h
(k)
i,T · h

(j)
i,T

∥h(k)
i,T ∥∥h

(j)
i,T ∥

. (6)

Additionally, each client calculates the average pair-
wise cosine similarity between the activation vectors
of the new samples and the old ones already in Di

(Di \Ai), i.e., all the samples acquired before T that
are still present in the local dataset, as follows:

Si,2 =
1

|Ai||Di \Ai|

|Ai|∑
k=1

|Di|∑
j=|Ai|+1

h
(k)
i,T · h

(j)
i,T

∥h(k)
i,T ∥∥h

(j)
i,T ∥

. (7)

These similarity measures provide insight into the
relationships between the new and existing sam-
ples in the local dataset. Each client communicates
with the server by reporting the average similarity

among the new samples (Eq. 6) and the similar-
ity between the new samples and the old samples
in Di (Eq. 7). This information is crucial for the
server to assess the degree of similarity and poten-
tial concept drift in the overall dataset, in order
to perform an informed decision regarding model
retraining. The server’s responsibilities encompass
statistical hypothesis testing, effect size evaluation,
and decision-making based on the obtained results.

To assess the overall similarity of the new sam-
ples to the old ones, the server employs statistical
hypothesis testing, specifically ANOVA (Alexander-
Govern test [2]). This test verifies if two or more
independent means, extracted from sample popula-
tions with differing sizes and variances, are equal.
Briefly, the ANOVA test is computed over the dif-
ferences between the mean of the groups and the
sum of the samples in each group weighted by the
inverse of the in-group variances.

The null hypothesis posits that the similarity be-
tween the new samples and the old ones is equal
to the similarity between the new samples alone.
This hypothesis is tested through a paired sample
test, providing a robust evaluation of the differ-
ences in similarity while accounting for potential
client heterogeneity. Since the similarities between
the new samples and the old ones are computed
on a client-by-client basis, the server performs the
ANOVA testing using the clients as the unit of
analysis rather than the individual samples. Doing
otherwise would introduce dependencies and corre-
lation between the samples, thus invalidating the
statistical test. Moreover, by averaging the scores
for all the applications in a single client, the client
only needs to report two aggregated similarity mea-
sures, rather than the similarities of each sample,
reducing information leakage (i.e., the server does
not know how many new applications each client
has installed).

It is worth noting that, for a more granular anal-
ysis of concept drift on a client-by-client basis, the
server may opt for a two-way ANOVA [71], by test-
ing the interaction between new and old samples for
each client. This approach would allow the server
to discern variations in similarity specific to individ-
ual clients rather than the overall dataset, possibly
limiting the number of clients that need to retrain
the model. However, to grant enough statistical
power to the test, this approach would require the
clients to report the similarity of each sample, thus
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increasing the amount of information leaked to the
server. Additionally, the limited number of new
samples installed in each time period may not be
large enough to provide a robust statistical analysis.

Once the server has performed the statistical hy-
pothesis testing, if the null hypothesis is not re-
jected with a high degree of confidence, the server
concludes that there is no significant difference in
similarity between new and old samples, and no
retraining is required in the current time period.
Instead, if the statistical hypothesis testing reveals
a significant difference in similarity, the server pro-
ceeds to evaluate the effect size using Cohen’s d [20]
as in Eq. 8, with S̄1 and S̄2 being the average simi-
larity measures of the new samples and the old ones
across all clients, respectively:

d(S1,1,S1,2,...,Sn,1,Sn,2) =

1

n

n∑
i=1

(Si,1 − Si,2)

√√√√√√
n∑

i=1

(Si,1−S̄1)
2+(Si,2−S̄2)

2

2n

.

(8)
The effect size provides a quantitative measure of
the magnitude of the observed difference. A large
effect size (typically considered as d > 0.8 [20])
indicates a substantial dissimilarity between new
and old samples, suggesting a need for updating the
model.

Upon obtaining the results of the statistical anal-
ysis and effect size evaluation, the server can de-
termine whether to start model retraining. If the
difference in similarity is found to be statistically
significant and the effect size is relevant, indicating
a notable divergence, the server requests the clients
to retrain the global model. These conditions are de-
signed to ensure that the model adapts to evolving
data patterns while avoiding unnecessary retraining
in the absence of significant concept drift.

By combining robust data representation, rigor-
ous statistical methods, client-specific analysis, and
careful consideration of effect sizes, the M2FD al-
gorithm is designed to balance the dual objectives
of detecting concept drift and minimizing compu-
tational burdens on individual clients, contributing
to its robustness and efficiency. The M2FD concept
drift detection algorithm is summarized in Algo-
rithm 1.

While this algorithm is designed to address the
issues caused by the dynamic nature of mobile de-

Algorithm 1 M2FD concept drift detection algo-
rithm
Input: Local datasets D1, . . . , Dn of n clients,

global model θT−1, time period T
Output: Retrain decision based on concept drift
1: Clients:
2: for i = 1→ n do
3: Si,1 ← 0
4: Si,2 ← 0
5: for k = 1→ |Ai| do
6: for j = k + 1→ |Ai| do

7: Si,1 ← Si,1 +
h

(k)
i,T ·h(j)

i,T

∥h(k)
i,T ∥∥h(j)

i,T ∥
8: for j = |Ai|+ 1→ |Di| do

9: Si,2 ← Si,2 +
h

(k)
i,T ·h(j)

i,T

∥h(k)
i,T ∥∥h(j)

i,T ∥
10: Si,1 ← 2

|Ai|(|Ai|−1)Si,1

11: Si,2 ← 1
|Ai||Di\Ai|Si,2

12: SEND Si,1, Si,2 to server
13: Server:
14: S̄1, S̄2 ← 1

n

∑n
i=1 Si,1,

1
n

∑n
i=1 Si,2

15: σ1, σ2 ←
√∑n

i=1(Si,1−S̄1)2

n(n−1) ,
√∑n

i=1(Si,2−S̄2)2

n(n−1)

16: w1, w2 ← σ2
1σ

2
2

σ2
1(σ

2
1+σ2

2)
,

σ2
1σ

2
2

σ2
2(σ

2
1+σ2

2)

17: t1, t2 ← (1−w1)S̄1−w2S̄2

σ1
, (1−w2)S̄2−w1S̄1

σ2

18: significance← p-value(t1, t2)
19: if significance < 0.005 then
20: effect_size← d(S1,1, S1,2, . . . , Sn,1, Sn,2)
21: if effect_size > 0.8 then
22: return Request clients for model retrain-

ing
23: return No retraining needed

vices and their dataset variations, it does not explic-
itly account for possible incremental drift patterns.
Thus, if changes in the data distribution occur too
gradually, the system may not be able to detect
them. While we acknowledge that this limitation to
general-purpose usage of the M2FD exists, studies
on mobile malware detection have shown that the
drift phenomenon is typically sudden [28] thus mak-
ing the presented approach adequate for the task at
hand.
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5 Experimental evaluation

To comprehensively evaluate the effectiveness of
M2FD, extensive experiments were conducted on
the KronoDroid dataset [29], a publicly available
real-world dataset spanning from 2008 to 2020.

According to the dataset authors, which underline
that the earlier and later years in this dataset have
a limited number of samples [28], the experiments
are focused on the 7-years period from 2011 to
2018. The KronoDroid dataset, consisting of 28,745
malware samples and 35,256 benign samples, sorted
according to their “last modification” date, provides
a rich and dynamic environment for assessing the
system’s performance in Android malware detection
over multiple years. Each sample is represented
by a set of 289 dynamic features, such as system
calls, and 200 static features, such as permissions
and metadata. The dataset presents two instances
of especially sudden drift, in the last quarter of
2015 and the third quarter of 2016 chunks, linked to
abruptly emerging different patterns in permission
usage and API calls in the malware samples [31].
The two drifts are uncorrelated, with different sets
of features acquiring greater relative importance in
the classification of malicious samples.

5.1 Experimental setup

The evaluation process involves dividing the dataset
into 3-month chunks, each representing a different
time period for comparability with [30]. The initial
chunk D0 is dedicated to initializing the system,
with each client sampling their entire applications
dataset from the global pool and labeling them.

All the subsequent chunks undergo a “testing-
then-training” procedure. Initially, the samples are
classified using the current global model to eval-
uate the accuracy of the model on the new data.
Following this classification, clients sample new ap-
plications from the global pool and label them. Un-
less otherwise stated, the clients are assumed to
have a confidence parameter γ = 1. Each client
is expected to install an average of λ = 5 new ap-
plications during a time period T . If the server
determines the need for model retraining, clients
retrain the model on their local datasets and upload
the updated parameters to the server.

The federated learning training process is exe-
cuted using the FedAvg algorithm, involving 5 local

epochs and 100 rounds. Local model training is
performed using SGD with a learning rate of 0.01
and cross-entropy loss.

Feature selection is a critical aspect of model
performance. The input features are chosen from
the static and dynamic features of the dataset.
Specifically, the selected features are the top 32
features with the highest mutual information across
all clients’ datasets in the first time period. These
features are listed in Table 1. Once selected, these
features are used for all subsequent time periods.

The experiments were designed to assess the sys-
tem’s performance in detecting concept drift, limit-
ing model retraining, and achieving high accuracy
in malware detection, by evaluating the following
performance metrics: accuracy, F1-score, and the
number of model updates.

5.2 M2FD performance

In order to obtain a baseline evaluation of M2FD, an
initial “optimistic” evaluation has been performed,
by involving 100 clients with 0% wrong labels. The
M2FD retraining strategy has been compared with
other two baseline approaches, namely “Always re-
train” and “Only train in the first time period”.
These two strategies represent the two extremes
of the retraining spectrum and are addressed as
“Always” and “First” in the following. M2FD as-
sesses the need for retraining every three months
for homogeneity with the approach proposed in [30].
Analogously, the “Always” baseline retrains every
three months. The results, presented in Figure 6,
demonstrate M2FD’s ability to detect concept drift,
updating the model only five times over the 7-year
period while maintaining accuracy comparable to
that of the “Always” approach. In Figure 6, instants
where the model is updated are circled. Notably,
these events coincide with drops in model perfor-
mance. However, the performance of M2FD quickly
converges to the accuracy level of the “Always” strat-
egy after each retraining event, whereas the “First”
approach fails to recover.

A more detailed performance analysis of M2FD
is presented in Table 2. Two additional baselines,
CDA-FedAvg [14] and M2FD-, are introduced for
comparison. CDA-FedAvg is chosen as it represents
the state-of-the-art approach for concept drift detec-
tion in federated learning settings. Unlike M2FD,
CDA-FedAvg detects concept drift at the client level,
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Feature Description

getuid32 Get user identity
prctl Manipulate the behavior of the calling thread or process
sigaltstack Changes signal stack
read Read from file
write Write to file
munmap Unmap files or devices into memory
mprotect Change protections of memory regions
ioctl Manipulate device parameters of special files
writev Write data into multiple buffers
dup Duplicate a file descriptor
fsync Synchronize a file’s in-core state with storage device
lseek Reposition read/write file offset
fstatfs64 Get file system statistics
sigaction Examine and change a signal action
rt_sigprocmask Examine and change blocked signals
recvfrom Receive a message from a socket
getsockopt Get options on sockets
clock_gettime Retrieve the time of the specified clock clockid.
gettimeofday Get time
futex Fast user-space locking
pread Read from a file descriptor at a given offset
getrlimit Get resource limits
sys_306 Commit buffer cache to disk
sys_310 Transfer data between process address spaces
sys_315 Set scheduling policy and attributes
sys_317 Operate on Secure Computing state of the process
sys_329 Set protection on a region of memory
sys_336 Set protection on a region of memory and assigns a protection key
access_wifi_state Allows applications to access information about Wi-Fi networks
read_phone_state Allows read only access to phone state, including the current cellular network information,

the status of any ongoing calls, and a list of any PhoneAccounts registered on the device
read_sms Allows an application to read SMS messages
receive_boot_completed Allows an application to receive the boot completed Intent that is broadcast after the

system finishes booting

Table 1: The selected features ordered by mutual information.

rather than at the global level, using the certainty
of local model predictions as an indicator for pos-
sible concept drift, detected through a Cumulative
Sum test. The drift detection is also performed
every three months. M2FD- is a variant of the algo-
rithm proposed here that performs drift detection
on the input features instead of penultimate layer
activations. This comparison aims to assess the
robustness of relying on higher-level features rather
than raw data.

The performance metrics in Table 2 show that
M2FD achieves an average accuracy of 0.85± 0.06
and an F1-score of 0.84± 0.08 updating the model
five times over the 7-year period. In comparison,
M2FD- and the “Always” baseline exhibit similar ac-
curacy but require 27 updates. The “First” baseline,

which trains the model only once, demonstrates a
lower accuracy, emphasizing the importance of ad-
dressing concept drift. CDA-FedAvg, despite its
frequent updates, falls behind M2FD.
The results indicate that input features exhibit
greater variability, necessitating model updates at
every time period, while penultimate layer activa-
tions remain more stable. CDA-FedAvg updates
the model almost after every time period, leading
to suboptimal performance due to the detection
being performed on a client-by-client basis. This
approach results in only some clients retraining the
model at each update, causing inefficiencies despite
potentially higher communication overheads.

In order to monitor API calls, the system needs a
high level of control on the device. Since this char-
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Figure 6: M2FD performance over time. The clas-
sifier needs to be trained only 5 times over 7 years
(circled in red), while maintaining almost the same
accuracy as the “Always” retraining approach.

Method Accuracy F1-Score Updates

M2FD 0.85± 0.06 0.84± 0.08 5
M2FD- 0.88± 0.06 0.88± 0.08 27
Always 0.88± 0.06 0.88± 0.08 27
First 0.80± 0.06 0.77± 0.09 1
CDA-FedAvg 0.83± 0.06 0.82± 0.08 24

Table 2: Average performance and standard devia-
tion of M2FD and the baselines over 7 years. The
number of updates is the number of times a new
model is distributed to the clients.

acteristic could raise privacy concerns, developers of
a M2FD commercial version may choose to imple-
ment it without the rights enabling the monitoring
of the dynamic behavior of other apps; in such a
case, the available feature set would be reduced.
Thus, to assess the impact of the available feature
set on the system’s performance, the performance of
M2FD was also evaluated using only static features
which can be obtained from the APK file without
any superuser access. Compared to training with
the full feature set, the system using only static
features (“Static”) requires more frequent model up-
dates, as shown in Figure 7, since static features
are more prone to concept drift. Nevertheless, with
an average F1-score of 0.86± 0.11, the system can
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Figure 7: M2FD performance over time with differ-
ent feature sets. Using only static features (“Static”)
results in more frequent model updates, as app per-
missions are more prone to concept drift, but can
still maintain overall comparable performance com-
pared to the M2FD version with access both to
static and dynamic features (“Hybrid”).

maintain a comparable performance to the full fea-
ture set, demonstrating the system’s robustness to
the feature set used and its potential applicability
in real-world scenarios.

To the best of the authors’ knowledge, the Kron-
oDroid dataset is the most up-to-date openly avail-
able dataset for Android malware detection which
contains both static and dynamic features and is
annotated with timestamps. However, since the
evaluation on KronoDroid is limited to a timeframe
spanning from 2011 to 2018, in order to ensure
the real-world effectiveness of M2FD, an additional
evaluation was performed on the Malware Hunter
100k Dataset [12], a large-scale dataset containing
100,000 benign and malware samples, with a dis-
tribution of roughly 10% benign and 90% malware
samples containing samples up to 2022. This dataset
contains only statically extracted features, so it was
not considered for the main evaluations of M2FD
but only to ensure that the proposed strategy is
still effective on more recent examples of malware.
The results of the analysis on this dataset are shown
in Figure 8. Similarly to the KronoDroid dataset,
never updating the model is not a sustainable long-
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Figure 8: M2FD performance over time on the
Malware Hunter 100k dataset [12]. M2FD is able
to match the performance of the “Always” baseline,
demonstrating its effectiveness on more recent data,
while the “First” strategy experiences a significant
performance drop.

term strategy as the performance of the “First” strat-
egy drops significantly over time. M2FD, instead,
after each performance drop brought by the concept
drift, is able to effectively determine the necessity
of model retraining, matching the performance of
the “Always” baseline with only 4 updates over the
analyzed period.

5.3 Impact of client number

The performance of M2FD was then tested with a
reduced number of clients, ranging from 5 to 100,
to assess the system’s robustness to varying client
populations. The success of a crowdsourced system
depends on its ability to maintain performance with
a smaller number of clients, since at the beginning
of the system deployment the number of clients may
be very limited, and if these initial clients are not
satisfied with the system’s performance the system
may not be able to attract more clients. The results
of this analysis are shown in Figure 9.

Independently of the number of clients, training
the model only once at the beginning of the de-
ployment (“First” strategy) results in a significantly
lower performance compared to the other tested
methods. This poor performance is closely followed
by the CDA-FedAvg approach, especially when the
number of clients is reduced. M2FD, instead, is
able to maintain a comparable performance with
the setup involving 100 clients even with as few as 5
clients. In the case of 5 clients, M2FD updates the
global model with a higher frequency, 12 times out
of the 27 time periods, but there is no significant
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Figure 9: Average performance of the tested meth-
ods and standard deviation with varying number of
clients.

performance drop, closing the gap with the “Always”
approach.

Additionally, we compared the performance of
M2FD with the state-of-the-art centralized ap-
proach proposed by Guerra-Manzanares et al.
in [30]. Is worth noting that the centralized ap-
proach uses the entire available dataset to update
the model at each time period, while M2FD relies
only on the data provided by the clients, obtaining a
set of samples which, in scenarios with fewer clients,
can cover as few as 25 samples. Another relevant
difference is that while the centralized approach
proposed in [30] always updates the model, M2FD
evaluates from time to time whether this retraining
phase is necessary, and therefore updates the model
less frequently. Despite the more constraints, M2FD
is able to maintain performances comparable to the
centralized approach, even with a reduced number
of clients and with a limited amount of data, as
shown in Figure 10. The performance gap between
the two approaches is minimal, with the centralized
approach achieving an average F1-score of 0.87 [30]
and M2FD achieving an average F1-score of 0.84
with only 5 clients. Since the “Always” baseline, as
shown in Table 2, achieves comparable results to
Guerra-Manzanares et al., the small drop in per-
formance of M2FD is imputable to the noticeably
reduced number of model updates and not to the
limited access to training data. Hence, the viability
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Figure 10: M2FD performance over time varying
the number of participating clients. The system
is robust to reductions in the number of clients,
maintaining good performances with as few as 5
clients. The results are also compared with the state-
of-the-art centralized approach [30] which utilizes
the entire dataset.

of crowdsourced distributed learning for mobile mal-
ware detection is confirmed as a valid alternative to
centralized approaches, even with a limited number
of participating clients.

5.4 Effect of label noise

Since the clients are not always able to correctly
label the applications, the performance of the sys-
tem was tested with varying levels of label noise
with variable numbers of clients. The tested noise
levels span from 0% to 40% with a step of 10%.
The results are shown in Figure 11. It is worth not-
ing that, with the exception of the “First” strategy
and CDA-FedAvg, all the methods are quite robust
to label noise, especially as the number of clients
increases. By increasing the frequency of model up-
dates, M2FD is able to maintain stable performance
even with high levels of label noise. Up to 20%
noise level, on average M2FD can still avoid updat-
ing the model half of the time, while maintaining a
performance comparable to the “Always” baseline.
It is worth noting that, with at least 100 clients,
M2FD is able to maintain acceptable performances
(F1-score> 0.8) even with 40% noise, supporting the
applicability of the system in real-world scenarios
where non-expert users have a high probability of
mistaking malware for benign applications.
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Figure 11: Average performance of the tested meth-
ods with varying levels of label noise and number
of clients. The number of times the global model is
updated is shown above each bar.

5.5 Impact of malware diffusion

The KronoDroid dataset contains roughly equal
numbers of malware and benign samples. This bal-
ance is not fully representative of the ratio found in
in-the-wild scenarios, where the number of benign
applications is significantly higher than the number
of malwares, which is estimated between 6% and
18.8% [47]. In other contexts, such as Windows
software, the malware diffusion is typically more
relevant. Thus, to ascertain the wider applicability
of the M2FD in realistic scenarios with different
malware ratios, the performance of the system was
tested by varying the malware ratio from 10% to
50%. The obtained results, summarized in Fig-
ure 12, prove that M2FD is robust to changes in
the malware ratio, maintaining comparable overall
performances in all the considered scenarios. The
0.84 F1-score obtained by M2FD in a scenario with
10% of malware is close to that obtained on the
Malware Hunter 100k dataset, (equal to 0.81) as
previously described in section 5.2, since this dataset
has a similar malware/goodware ratio. Such results
confirm the possibility of using M2FD in real-world
scenarios.
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Figure 12: Average performance of M2FD by vary-
ing the ratio of malware with respect to the consid-
ered applications.

5.6 Influence of user confidence

Finally, to account for the potential variability in
user confidence during labeling, the performance
of the system was tested with varying value of the
confidence γ, ranging from 0 to 1.0 in steps of 0.1.
These values of γ were tested in scenarios with
100 clients and with different levels of label noise,
from 0% to 40% in 10% steps. The results of these
evaluations are shown in Figure 13.

The “First” strategy is significantly affected by
lower user confidence, losing up to 0.33 points in
F1-score when the confidence is reduced from 1.0
to 0.0. CDA-FedAvg is also affected by lower user
confidence, because it relies on the certainty of the
local model predictions, and therefore lower user
confidence leads to more updates. Those updates,
however, are not strictly tied to the actual concept
drift, as the label fuzziness hides the effect of the
drift, and many updates are false positives. M2FD,
instead, relies on an intermediate data representa-
tion that is more robust to fuzziness and is able
to maintain a stable performance even with lower
user confidence. With γ > 0.2, on top of matching
the performance of the “Always” strategy, M2FD is
able to noticeably reduce the number of updates,
especially when the noise level is low. If the confi-
dence level is too low, the system may be subject
to more frequent updates, while maintaining com-
parable performances. At higher noise levels, the
impact of user confidence is extremely limited, since
noisy labels already have a significantly reduced
information content.

5.7 Domain transferability

Although M2FD has been designed to perform mal-
ware detection in mobile environments, its archi-
tecture and algorithms can be applied to other
domains where concept drift is a significant issue
and collecting data is a challenging task. In par-
ticular, M2FD can be successfully adopted in any
scenario where:

• the observed data are characterized by a non-
negligible concept drift;

• centralized data collection and annotation are
not feasible due to privacy or data availability
concerns;

• a central server is available with sufficient com-
puting resources to train a model, even if this
happen rarely;

• non-expert users often interact with new apps
but are still able to provide better labels than
random ones.

Some domains, such as IoT, while meeting the
first two requirements, and in many cases the third,
may not satisfy the fourth requirement, since most
of the data generated by IoT devices is not typi-
cally inspected by users. One scenario that meets
all the described requirements is the detection of
malware within the Windows operating system. In-
deed, here, malwares frequently change, collecting
samples representative of the current threat land-
scape is challenging, modern personal computers
have adequate computational resources to train a
model, and users can often notice if their device is
infected by malware belonging to categories such as
ransomware, adware, or cryptojackers.

In order to assess the system’s performance in
the Windows domain, a set of experiment was con-
ducted on the EMBER dataset [7] (composed by
the EMBER 2017 v2 and EMBER 2018 subsets),
containing 255,499 benign and 148,231 malicious
executables. Since the goodware/malware ratio in
Windows software is not easily quantified [47], the
same ratio as in the original dataset is maintained.

The obtained results are shown in Figure 14. The
“First” strategy is mostly stable during the first year,
albeit slightly lower than the “Always” strategy. In
the second year, the performance drops sharply and
keeps decreasing. This behavior confirms the pres-
ence of concept drift in the dataset. The sharp drop,
which is shared by all the approaches, is consistent
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Figure 13: Average performance of the tested methods with varying levels of label noise (p) and user
confidence (γ). The number of times the global model is updated is shown above each bar.
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Figure 14: Average performance of the tested meth-
ods on the EMBER Windows malware dataset.
M2FD only requires 4 updates (circled in red) over
the 24 months, maintaining a performance matching
the “Always” strategy.

with the observations in [7], whose authors note
that the 2018 dataset deliberately contains more
elusive malware samples. Despite clear signs of con-
cept drift in this dataset, the CDA approach fails to
recognize any drift, resulting is a behavior equiva-
lent to the “First” strategy. M2FD, instead, detects
the drift between the 2017 and 2018 datasets, and
one additional drift in each period, resulting in a
total of 4 updates over the 24 months. Despite
training only 1/6 of the time, the accuracy and F1-
score of M2FD closely matches those of the “Always”
strategy, proving the robustness of M2FD and its
potential for domain transferability.

5.8 Discussion and limitations

As shown in the experimental results, M2FD,
through a distributed and privacy-preserving ap-
proach, is able to detect malware on mobile devices
with performance comparable to state-of-the-art
centralized approaches.

The system works also when only few clients are
participating, and it is robust against varying levels
of label noise, user confidence, and malware ra-
tios. As long as the participating clients are reliable
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sources of information, M2FD can also significantly
reduce the number of model retrainings required to
keep the system up-to-date. M2FD increases the
frequency of the model updates if the labels are very
noisy, the confidence level of the users is low, or too
few clients are participating to be a representative
sample of the application ecosystem.

Nevertheless, if the participating clients cannot
provide good enough labels (e.g., for being unable to
detect stealthy malware), resulting in p > 0.5, the
detection model would be provided with more noise
than correct information. In this case, it might
be necessary to introduce trusted expert users to
provide high-quality labels, correcting the labels pro-
vided by the non-expert users in a semi-supervised
learning setting. If expert users are available, they
may also annotate the applications in a more fine-
grained way, for instance with malware family labels,
enabling multiclass classification. Furthermore, the
decentralized approach of M2FD might be vulnera-
ble to adversarial attacks, where a malicious client
could intentionally provide incorrect labels to the
server to degrade the model’s performance. This
is an orthogonal issue to the one addressed in this
work, and the existing literature on FL security pro-
vides several solutions to mitigate this threat [63].

6 Conclusions

Malware detection on mobile devices is a challenging
task due to the rapid changes in the cyber threat
landscape which quickly render detection models
obsolete. A key challenge in developing effective
malware detection systems is obtaining labeled up-
to-date data to update detection models. To address
the data scarcity issue, crowdsourcing can be a valu-
able solution by leveraging the collective intelligence
of mobile device users. However, the crowdsourcing
approach must respect the privacy constraints of the
user data, who might be unwilling to directly share
their applications with a centralized entity. To this
end, this paper presents M2FD, a novel malware
detection system for mobile devices that leverages
Federated Learning to overcome obstacles posed by
concept drift and highly dynamic client datasets,
without compromising user privacy. This paper first
introduces a realistic model of client behavior, which
is used to formally represent the installation and
removal of applications from mobile devices, as well

as the labeling of applications by non-expert users,
and then presents a solution to the problem of de-
tecting concept drift to update the detection model.
The M2FD algorithm addresses the challenges asso-
ciated with concept drift in mobile device malware
detection while minimizing the computational bur-
den on individual clients originating from frequent
model retraining. M2FD leverages high-level robust
features to represent the statistical distribution of
the input data. The change in distribution over
time is monitored by comparing the similarity of
the new samples to the old ones through statistical
hypothesis testing. If the difference is statistically
significant and the effect size is large, the global
model is retrained. The experimental results show
that M2FD effectively balances the detection of
concept drift to maintain satisfactory performances
over time, and the minimization of computational
burdens on the participating clients, thereby en-
hancing its overall robustness and efficiency. This
work represents a significant step forward in the
development of effective crowdsourced mobile mal-
ware detection systems, with the potential to be
extended to other domains.
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