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Abstract
Malwares are a major threat to the security of mobile devices, and Machine Learn-
ing (ML) is a widespread approach to automatically detect them. However, running
ML analysis pipelines can be excessively burdensome for energy-constrained mobile
devices. On the other hand, completely off-loading all the analysis to a remote
server can introduce unacceptable communication overheads and delays in the
detection process. In this paper, we propose a multilevel approach for malware
detection on mobile devices that combines a lightweight local analysis of static fea-
tures with a more computationally expensive remote analysis of dynamic features,
through the adoption of ML methods. However, the effectiveness of automatic
malware detection systems based on ML is often limited by unforeseen variations
in the statistical characteristics of the observed data. This phenomenon, known
as concept drift, can lead to a degradation of the performance of ML models over
time. The proposed malware detection system is equipped with self-evaluation
capabilities, enabling it to detect the occurrence of periods when its predictions
become unreliable due to concept drift so that appropriate response strategies can
be activated. In particular, when such critical events occur, the self-evaluation
agent triggers the execution of an additional layer of analysis, hosted by a remote
server, which allows the system to react to the unexpected reduction in its detec-
tion capabilities. The computational cost of the detection process is minimized
by limiting the remote analysis to only those samples for which the analysis
performed on-board the mobile device is likely to incorrectly classify the app.

Keywords: Android malware detection, mobile security, concept drift, machine learning
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1 Introduction
Mobile devices are becoming increasingly popular, and they are now used for a wide
range of activities, from communication to banking and shopping. However, the
increasing popularity of mobile devices has also made them an attractive target for
malware developers. The increasing spread of malware for mobile devices poses a
serious threat to the security of mobile devices [1] and the privacy of their users [2].
Thus, developing effective detection methods is of paramount importance.

Machine learning (ML) has been successfully applied to malware detection, both
in mobile [3] and desktop environments [4]. Typically, ML-based systems analyze app
metadata, source, or behavior in order to extract a set of representative features. This
information is then processed by one or more classifiers that determine whether the
app is malicious or not. The features employed by the classifiers can be divided into
two categories: static and dynamic. Static features are extracted from the app without
executing it, and include information such as the requested permissions, the declared
activities and services, the libraries used, and other metadata. Dynamic features are
extracted from the execution of the app [5], and include information such as API calls,
system calls, and the generated network traffic.

Extracting static features is more computationally efficient than extracting dynamic
features, as it does not require the execution of the app. Static features, however, are
also more susceptible to code obfuscation techniques [6], dynamic code loading [7], and
runtime fetching of malicious payloads [8]. On the other hand, dynamic features are more
robust to code obfuscation techniques, but their extraction has a greater computational
cost, requiring the execution of the app in a virtualized or sandboxed environment,
which prevents their use in on-device detection. Thus, it can be advantageous to
combine static and dynamic features for classification [9, 10].

Despite the benefits of adopting machine learning in malware detection [11], another
major challenge in its application in this domain is the problem known as concept
drift. Concept drift occurs when the statistical properties of the target variable, or the
relationship between input variables and the target variable, change over time [12].
As a consequence of concept drift, machine learning models trained on historical data
experience a decrease in their accuracy and effectiveness over time [13]. In the context
of malware detection for mobile devices, concept drift can occur due to various reasons,
such as the evolution of malwares, the introduction of previously unseen malicious
functionalities, or modifications made by malware developers to avoid detection [14].
Analysis based on dynamic features is more robust to concept drift than analysis based
on static features, as it relies on features extracted from the execution of the app,
which is not as affected by code obfuscation techniques [6]. However, it is not feasible
to rely entirely on dynamic features for malware detection, both for computational
and communication reasons. A system that relies entirely on a mobile device would
quickly consume the memory and energy resources if it had to perform the extraction
of dynamic features locally, rendering task offloading to a remote server necessary. On
the other hand, a system that always relies on a cloud system to perform the dynamic
analysis could generate excessive communication overhead [15], as well as excessively
overload the remote server.
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To overcome these limitations, this paper proposes a two-level approach for the
detection of malware on mobile devices that combines static and dynamic feature
analysis making use of a self-evaluation agent to decide whether to run the remote
analysis or not. The objective of the agent is to classify most of the samples with a
less computationally expensive local static analysis on the mobile device. When the
local analysis is likely to incorrectly classify the app, the self-evaluation agent triggers
the execution of the more robust analysis on a cloud server. The proposed architecture
can be applied to any mobile context but, in this work, the focus is on the Android
operating system due to its widespread adoption [16] and the availability of a large
number of malware samples [17].

The most relevant novel features of the proposed work are as follows:

• Differently from most of the existing approaches, which need both static and dynamic
features for every sample to be classified, this work proposes a less computationally
expensive two-level approach where the dynamic analysis is triggered on a case-by-
case basis.

• A self-evaluation agent on the mobile device learns to recognize concept drift at the
local analysis level and to trigger the execution of the more robust second level on
the cloud server.

• The computational cost of the detection process is minimized by the self-evaluation
agent, which triggers the execution of the second level only when the local analysis
is likely to incorrectly classify the app.

The remainder of this paper is organized as follows. Section 2 presents related works.
Section 3 describes the proposed architecture. Section 4 presents the experimental
evaluation. Finally, Section 5 concludes the paper.

2 Related works
The landscape of malware detection is marked by the constant evolution of malicious
techniques to avoid detection. Traditional signature-based methods, while lightweight,
fail against unknown malware due to their susceptibility to evasion through simple
modifications by malware developers [18]. In response, the field has seen a burst of
research focusing on machine learning-based approaches [19], particularly in the realm
of Android malware detection [11]. However, the computational burden of dynamic
analysis, wherein each app must be executed in a simulated environment, has led
to solutions involving specialized hardware or remote server execution [20]. This
has prompted the exploration of hybrid approaches, combining static and dynamic
features through cascades of classifiers [21, 22, 9]. Despite these advancements, relying
exclusively on static analysis confidence as an indicator for triggering dynamic analysis
is not foolproof, as static features can be affected by concept drift, resulting in false
negatives [23].

2.1 Hybrid malware analysis
While signature-based approaches are prevalent in commercial malware detection
solutions and are lightweight, they prove ineffective against previously unknown malware
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samples [18]. Malware developers can easily evade signature-based detection by altering
their software, introducing polymorphism, and obfuscating their code using compression
techniques [24].

Machine learning techniques can generalize to previously unseen malware samples.
Thus, most research effort in malware detection for mobile devices has focused on
machine learning-based approaches [11].

Several solutions employ a set of characteristics consisting of both static and dynamic
features to perform the classification [25]. The static features are extracted from the app
without executing it and can range from immediately available information such as the
permissions requested, the declared activities and services, and the libraries used [26],
to more complex features such as the control flow graph of the app [27, 28]. These
features can be obtained from the AndroidManifest.xml file, which is included in every
Android app, or by disassembling the app and analyzing the source code [29]. Dynamic
features are extracted from the execution of the app [30], and include information such
as API calls, system calls, generated network traffic [31], and the memory contents [32].

Obtaining dynamic features is computationally expensive, as it requires the
execution of the app in a simulated environment for every app to be classified.

Dynamic analysis can incur such a high computational cost that the introduction of
dedicated specialized hardware modules have been proposed to speed up the process [20],
although in the context of desktop malware detection. The limited energy resources
of mobile devices makes this approach unfeasible in the context of Android malware
detection. Therefore, the dynamic analysis has to be performed on a remote server,
which introduces additional latency in the detection process.

To tackle this significant shortcoming, some studies have proposed hybrid approaches
that use a cascade of classifiers using first static and then dynamic features [21, 22, 9].
For mobile malware detection, Gharib et al., [21] proposed a hybrid classifier that
first uses static features to classify the app. If the classification probability is below
a threshold, the app is executed in a sandbox and monitored until a final decision
is made based on the sequence of API calls made by the suspected malware. Ding
et al., [22], instead, analyze the network traffic generated by the apps whose static
features are classified with low confidence.

2.2 Concept drift in malware detection
The aforementioned approaches assume that the confidence of the static analysis is a
reliable indicator of the accuracy of the classification. However, such an assumption
is not always true, as the static features can be affected by concept drift, especially
sudden drifts (Fig. 1). Thus, a classifier can mistakenly label malware samples as
benign with high confidence [23].

Misclassification due to concept drift is a common issue as malware developers
frequently modify their apps to avoid detection. In many cybersecurity domains, this
phenomenon hinders the ability of automatic detection systems to distinguish between
benign and malicious samples [33]. Automated detection systems are particularly
vulnerable to adversarial attacks, where an attacker modifies the malware to evade
detection by the classifier. For instance, Ami et al., [34] proposed a semi-automated
framework that can generate Android malware samples with malicious functionalities,
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Fig. 1 Under gradual concept drift, the distribution of the data changes slowly over time, while
under sudden concept drift, the distribution changes abruptly.

such as leaking sensitive data, and modifies them to evade detection from static analysis
tools. Additionally, new families of malware are constantly being developed, and the
features of these new malware families are not present in the training set. Detecting
the emergence of new malware families is a challenging task and requires constant
attention from the security community [35]. In the presence of concept drift, systems
that rely exclusively on the classification confidence of the static analysis would not
trigger the dynamic analysis, leading to false negatives.

Thus, in spite of the widespread use of machine learning in malware detection,
concept drift can negatively affect the performance of machine learning models in this
domain [13, 36]. The presence of concept drift can cause the performance of ML models
to degrade rapidly if the incoming data is not independently and identically distributed
with respect to the training data [37]. Yizheng et al., [14] have shown that after training
an Android malware classifier on one year’s worth of data, the F1-score dropped
by 23 percentage points after just six months of concept drift. Even more advanced
dynamic behavioral analysis tools such as MaMaDroid are not immune to performance
drops over time [38]. This highlights the importance of continuously updating and
retraining models to maintain their accuracy and effectiveness in detecting Android
malware [39]. To address concept drift in Android malware detection, researchers have
proposed various techniques, such as periodically updating the classifiers if concept
drift is detected [40]. Moreover, some authors have focused on developing methods to
detect and effectively address concept drift in Android malware detection using system
calls [41] and adaptive classifiers [42].

The use of dynamic features can offer more robustness to concept drift compared
to employing static ones [6]. Despite this advantage, classifiers relying on dynamic
features have a lower accuracy compared to those trained on static features. The lower
effectiveness of dynamic features is attributable to the capabilities of many types of
malware to detect when they are being run in a simulated environment and alter their
behavior accordingly [22, 43]. This, coupled with the higher computational cost of the
dynamic analysis, makes it unfeasible to only use dynamic features for classification.

Despite these efforts, concept drift remains a notable challenge in the detection
of malware on mobile devices. Recent works have focused on developing methods to

5



D
RA

FT

App Static
Features

Local Classifier
Pool

Benign Class
Anomaly

Detector Agent

Malicious Class
Anomaly

Detector Agent

Self-Evaluation
Agent

Upload to
Cloud

Sandbox Dynamic
Features

Remote
Classifier

Pool

Remote Classification
Output

Local Classification
Output

Local Analysis Remote Analysis

Network

Classification

App

Local Analysis

Fig. 2 Hybrid Multi-level Architecture: an incoming sample is first analyzed by the local classifier
pool, and the self-evaluation agent decides whether to trigger the remote analysis. The remote analysis
is performed on a cloud server and the final classification is returned to the user.

detect concept drift in order to update the classifiers exploited by malware detection
systems focusing on desktop ransomware detection [44]. Nevertheless, the problem of
providing effective solutions to maintain the accuracy and effectiveness of machine
learning models when a drift is ongoing, before a new model can be trained, is still
open and largely unaddressed, especially in the context of Android malware detection.
To the best of the authors’ knowledge, no existing approach is able to effectively detect
the occurrences when sudden concept drift is present and trigger a further analysis
level to maintain acceptable detection performance. More effort is needed to develop
robust and efficient solutions to maintain the accuracy and effectiveness of machine
learning models in this domain.

3 Hybrid Multi-level Architecture
The architecture presented in this paper is composed of two levels, as shown in Figure 2.
Part of the system resides on the mobile Android device, and part of it is deployed on
a remote cloud server. The invocation of the remote analysis is triggered on-demand
by the mobile device. Such multi-tier architecture allows the system to provide a quick
response to the user in most cases, using only the computational capabilities of the
mobile device. Whenever a more in-depth analysis is required the cloud system is
invoked. This necessity can be caused either by an application whose classification
is more challenging or by periods in which the system is experiencing concept drift.
The cloud system can employ more computational and hardware resources, without
overburdening the limited resources of the mobile device.

In the first level, the app is analyzed by exploiting static features, and a classifier
is used to determine whether the app is benign or malicious. These features can be
extracted without executing the software, on the mobile device itself. Furthermore, the
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mobile device hosts a self-evaluation agent that accepts as input the output of the static
analysis and the anomaly scores of the app to determine whether the classification is
reliable or not. If the classification is deemed reliable, the analysis terminates at this
stage. Only if the self-evaluation agent determines that the classification is unreliable,
the second level is invoked, and the app is sent to the cloud server for further analysis
together with the context required to perform the analysis. On the second level, the
app is executed in a simulated environment on a remote server, and the classification is
performed on the dynamic features extracted from the execution. Since some user data
might be needed to perform the dynamic analysis, the remote execution environment is
customized for each user, and the user’s data is not shared with other users, as mobile
devices often contain sensitive information.

This two-level approach ensures that the end user can obtain high-quality classifi-
cation results without excessive computational overhead for the mobile device. At the
same time, by limiting the number of dynamic analyses performed, the system can
reduce the communication overhead, the latency, and the computational cost of the
detection process.

3.1 Concept drift resilience
Since one of the main objectives of the system is to be resilient to concept drift, the
samples are classified by an ensemble of classifiers, instead of a single classifier. The
classifier pool can be updated periodically to ensure that the classifiers are able to
detect the most recent malware families. Incrementally updating a classifier pool helps
the system to adapt to gradual concept drift [45]. At the same time, by maintaining
some of the older classifiers in the pool, the system can retain the ability to detect
older malware families, which may still be present in the wild.

3.1.1 Classifier pool ensemble selection

The classifier pool, denoted as Π, is periodically updated to ensure that the system is
able to detect the most recent malwares, reducing the impact of gradual concept drift.
In this work, base classifiers in the pool are implemented through random forests with
300 trees each.

As shown in Figure 3, whenever a sample needs to be classified, only a subset of the
classifiers in the pool is selected to evaluate the sample. The outputs of the selected
classifiers are then combined to obtain a final prediction.

The selection of the optimal subset of classifiers is performed through the k-
Nearest ORAcles-Union (KNORA-U) algorithm [46]. The KNORA-U dynamic classifier
selection algorithm is a method for selecting multiple models (referred to as “oracles”)
that perform well on the neighborhood of a test sample. The predictions of the selected
oracles are then combined using a majority voting mechanism to obtain a final output
prediction.

The selection algorithm relies on the availability of a training set, which is used
to determine the area of competence of each classifier in the pool. Given a sample
to classify, KNORA finds its nearest K neighbors in the training set. Then all the
classifiers in the pool are tested on the neighbors of the sample. The classifiers which
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Fig. 3 Concept-drift resistant ensemble learning strategy for Classifier Pool management: only a
subset of the classifiers in the pool is selected to evaluate the sample and their outputs are combined
to obtain a final prediction.

correctly classify the neighbors of the incoming sample constitute the ensemble for
classifying the sample.

The KNORA algorithm has two main variants:
KNORA-Union and KNORA-Eliminate. The KNORA-Eliminate (KNORA-E) version
of the algorithm selects all the classifiers that correctly classify all the neighbors of the
test sample. The KNORA-Union (KNORA-U) version of the algorithm selects all the
classifiers that correctly classify at least one of the neighbors of the test sample.

More formally, given a sample x to classify, a pool of trained classifiers Π =
{c1, . . . , cm}, and a set D = {(x1, y1), . . . , (xk, yk)} of the nearest neighbors of x in the
training set, the KNORA-U algorithm selects the classifiers ci ∈ Π that satisfy Eq. 1.

ci ∈ Π ∧ ∃(xj , yj) ∈ D s.t. ci(xj) = yj (1)

On the other hand, the KNORA-E algorithm selects the classifiers ci ∈ Π that satisfy
Eq. 2.

ci ∈ Π ∧ ∀(xj , yj) ∈ D, ci(xj) = yj (2)

In this work, the KNORA-U version of the algorithm is used, as Zyblewski et al. [47]
have shown through extensive empirical evaluation that, in most cases, it outperforms
the KNORA-E version.

3.1.2 Classifier pool update mechanism

The algorithm used to create and update the classifier pool is adapted from [41], and
utilizes a dynamic ensemble selection algorithm to choose from a dynamically updated
pool of classifiers [47].

8



D
RA

FT

Π

. . .Dk Training

Test worst performer

Fig. 4 Local classifier pool update mechanism: periodically, the worst classifier in the pool is removed.
The removed classifier is replaced by a new classifier trained on the most recent data.

When the system is first deployed, the initial training dataset is partitioned into
multiple splits. Each split is used to train a different classifier, and the classifiers are
then added to a pool Π. Then, after each fixed period of time k, a new chunk of data
Dk is collected. This data is used to update the pool of classifiers as shown in Figure 4.

First, all the classifiers in the pool are evaluated on the new data. Then, the classifier
with the worst performance on the new data is removed from the pool according to
Eq. 3.

cworst = argmin
c∈Π

|{(x, y) ∈ Dk s.t. c(x) = y}| (3)

Finally, a new classifier is trained to minimize the loss on the new data Dk and it
is added to the pool Π to be used for future classifications. The pseudocode reported
in Algorithm 1 details the classifier training algorithm more formally.

Algorithm 1 Classifier pool training algorithm.
Input: Π = pool of classifiers

Dk = data collected in the k-th chunk
n number of classifiers in Π

1: Π← ∅
2: while True do
3: if k == 0 then
4: Split D0 into n folds D1

0, . . . , D
n
0

5: for i← 1 to n do
6: Π← Π ∪ {train_classifier(Di

0)}
7: end for
8: else
9: cworst ← argmin

c∈Π
|{(x, y) ∈ Dk s.t. c(x) = y}|

10: Π← Π \ {cworst}
11: Π← Π ∪ {train_classifier(Dk)}
12: end if
13: end while
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By updating the classifier pool with the most recent data, the system always has
at least one classifier in the pool that is suitable for the current data distribution,
mitigating the effect of concept drift. The classifier pool lets the system also handle
recurring concept drifts. Recurring drifts are a common type of concept drift, where the
data distribution periodically returns to one of the previous states. Thus, discarding
the classifiers trained on the previous data could cause the system to lose the ability
to detect samples from one the previous data distributions [48]. Therefore, to ensure
robustness against this form of concept drift, in our architecture, the system maintains
a pool of classifiers instead of relying exclusively on the most recent one.

3.2 Local analysis
The first level of the system performs the analysis of the static features of the software,
which are extracted from the app, without executing it. The static features are extracted
from the AndroidManifest.xml file and entail information such as which permissions are
requested, the declared activities and services, and the libraries used. These features
are encoded as binary vectors, where each element represents the presence or absence
of a specific feature. These relatively simple static features are used in place of more
complex graph-based features, such as the control flow graph of the app, to reduce
the computational cost of the analysis since the static features are extracted and
analyzed on the mobile device. Not all the static features are used for classification.
Activity names, for instance, are too specific and can be easily modified by malware
developers to avoid detection [49]. Only the permissions requested by the app are used
for classification.

The set of static features is fed to a pool of classifiers that adopt ensemble learning
strategies to classify the app. At this level, the classification subsystem is supported
by two anomaly detection agents, whose purpose is to allow the self-evaluation agent
to detect whether the local analysis is undergoing a concept drift.

3.2.1 Anomaly detection agents

As previously stated, confidence of the classification on the static features is not a
reliable indicator of whether the classification is correct or not. Thus, we introduce
two additional agents to the system. These agents provide a richer context for the
self-evaluation agent to base its decision on.

The two anomaly-detection agents depicted in in Figure 2 perform unsupervised
anomaly detection on the static features of the app and provide two anomaly scores,
one for each class. The anomaly scores are computed with two unsupervised anomaly
detection algorithms, one trained on benign samples and one trained on malware
samples. The anomaly detection agents are trained on the same features used by the
static classifier pool. The two agents have the same architecture, relying on an isolation
forest [50] to compute the anomaly scores.

The isolation forest is an anomaly detection algorithm designed to efficiently identify
outliers or anomalies within a dataset. This algorithm capitalizes on the notion that
anomalies are typically isolated instances, standing out from the majority of normal
data points. The underlying principle of the Isolation Forest algorithm is rooted
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in recursive partitioning in order to isolate anomalies through a process of random
splitting. The algorithm begins by randomly selecting a feature and a threshold value,
creating a split that separates the data into two subsets. This process is repeated
recursively until the sample under analysis is in a partition by itself. Consequently, the
path length to isolate an anomaly serves as a robust measure of its divergence with
respect to normal samples, with shorter paths indicating more anomalous instances.
This anomaly detection algorithm is chosen because it is fast to train and to compute,
and it was shown to be effective in this context [41].

It is worth noting that it is not redundant to include two anomaly detection agents.
One agent is trained exclusively on benign samples while the other one is trained
on malware samples. Thus, they each detect those samples that are anomalous with
respect to their respective label. For instance, an attacker might modify a malware
sample to cross the classifier’s decision boundary and causes it to be classified as benign
with high confidence, but the perturbed sample might still be anomalous with respect
to the benign samples. Conversely, a benign application could be mistakenly classified
as malware, but it could still be anomalous with respect to the malware samples in the
training dataset.

3.3 Self-Evaluation Agent
When trying to ascertain whether an app is malicious or benign, running the dynamic
analysis for each sample would be computationally expensive, producing unacceptable
delays in the detection process for the end-user. Thus, the system also includes an
agent tasked with deciding whether to run the remote analysis or whether the local
analysis is sufficient. The self-evaluation agent, tries to recognize misclassifications in
the local analysis level and appropriately triggers the execution of the more robust
second level. The self-evaluation agent is the core component of the architecture, as it
connects the local and the remote stages of the system.

The self-evaluation agent bases its decisions on four input features: the binary
output of the local classifier, the classification probability of the local classifier encoded
as a continuous value in the range [0, 1], and the two anomaly scores of the app also
encoded as binary values. Provided with these inputs, the self-evaluation agent is
tasked with deciding whether to run the remote dynamic features analysis or use the
output of the local classifier as the final classification. For each received sample, the
self-evaluation agent outputs one of two possible decisions:

• reliable: the static classifier’s output is deemed reliable by the self-evaluation
agent, and the invocation of the remote analysis is not needed. In this case, the
classification obtained from the local classifier pool is used as the final classification
and is immediately returned to the user.

• unreliable: the static classifier’s output is unreliable, and the APK needs to be
uploaded to the cloud server to undergo further dynamic analysis before a final,
reliable, classification can be obtained.

The self-evaluation agent is implemented as a feedforward neural network with 2
hidden layers of 16 neurons each. The input layer has 4 neurons, one for the output of
the local classifier, one for the classifier probability, and one for each anomaly score.
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Fig. 5 The self-evaluation agent is implemented as a neural network that takes as input the output
of the local classifier, the classification probability, the anomaly scores, and produces as output the
decision to trigger the remote analysis. The self-evaluation agent is retrained when the classifier pool
is updated.

Between layers, a Rectified Linear Unit (ReLU) activation function is used. The output
layer has two neurons, one for each possible decision, and is followed by a Softmax
activation function to obtain a probability distribution over the two possible decisions.

The agent learns its policy in a supervised fashion, using the samples in the training
set as positive and negative examples to approximate the optimal policy. Since the
local classifier is generally very accurate, the training dataset is imbalanced, with a
large majority of samples being correctly classified. Thus, to avoid biasing the agent
towards a specific decision, a balanced subset of the training dataset is used instead of
the entire training set Dk. Out of the available training samples, stratified sampling is
used to select a balanced dataset where the static classifier is wrong 50% of the time to
avoid biasing the agent towards a specific decision. First, the set D−

k of all the wrongly
classified samples is extracted from the training set according to Eq. 4.

D−
k = {(x, y) ∈ Dk s.t. y ̸= Π(x)} (4)

Then, an equal number of samples is randomly selected from the remaining correctly
classified samples as per Eq. 5.

D+
k ⊆ Dk \D−

k s.t. |D−
k | = |D

+
k | (5)

The training dataset for the self-evaluation agent contains the output of the local
classifier and the anomaly scores of the samples as features, labeled according to
whether the local classifier’s output is correct or not. The network is then trained
to minimize the cross-entropy loss function between the output of the agent and the
optimal policy. Every time the classifier pool is updated, the self-evaluation agent is
also fine-tuned on the new samples.
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In order to reduce the computational overhead of the dynamic features analysis
on the remote server, an alternative, more conservative, approach is also presented.
By default, the self-evaluation agent triggers the execution of the second level of
the malware detection system whenever the local classifier’s output is believed to be
incorrect, for both false positives (FP) and false negatives (FN). Instead, the alternative
approach only triggers the execution of the second level when the local classifier’s output
is believed to be incorrect for false negatives, while it does not trigger the execution
of the second level for false positives, ignoring instances where the local classifier
might be flagging a benign app as malware. This is a reasonable compromise since, as
demonstrated in Section 4.1, the local classifier is more likely to misclassify malware
samples as benign during sudden drifts, while the opposite is not true. Experiments
in Section 4.4 show that this alternative approach does not excessively hamper the
classification accuracy of the system, while it noticeably reduces the average number
of remote analyses performed.

Thus, the alternative approach which only triggers the remote analysis for suspected
false negatives would be more suitable in scenarios where the additional overhead
of the dynamic analysis is not acceptable. For this approach to be viable, a minor
reduction in the accuracy of the system should be tolerable. On the other hand, the
default approach would be more suitable in scenarios where the slightly higher false
positive rate is not acceptable. The default approach requires a cloud server with
sufficient computational resources to extract the dynamic features of all the APKs
that are suspected to be false positives to perform the additional analyses. The default
approach would be more suitable, for instance, in a corporate environment where the
security of the network is paramount. The alternative approach would be more suitable
in a consumer environment to reduce the average cost of the detection process.

3.4 Remote analysis
For all those samples that the self-evaluation agent on the mobile device deems needing
further analysis, the second level of the system is invoked. Such second level is located
on a cloud server that is characterized by incomparably higher computational resources
than the mobile device. A more expensive analysis of the dynamic features of the app
can be performed exploiting such capabilities of the remote server.

To allow the remote server to analyze the app, the mobile device uploads the APK file
to the cloud server together with the context required to perform the analysis. The app
is executed in an isolated sandboxed environment. Sandboxes are a common technique
to analyze potentially malicious software, as they allow the execution of the app in
a controlled environment, preventing it from accessing sensitive data or performing
malicious actions [51, 52]. Differently from other works [53], since in the proposed
system the static features of the app have already been analyzed, the virtualized
execution only extracts the dynamic features of the app. The virtualized execution is
monitored, and all the API calls made by the app are recorded and provided as features
for the ensemble of classifiers in the cloud server. Specifically, for each available API
call, the number of times it is invoked is recorded as a feature. The dynamic features
reflect aspects of the app’s behavior that are not visible from the static features and
thus prove a complementary source of information for the classification task.
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The features provided by the local static analysis and the remote dynamic analysis
do not overlap. Therefore, the remote pool is different from the local pool, and all
the classifiers in the remote pool are trained separately. The classifier pool in the
cloud server is created and updated in the same way as the local classifier pool, as
described in Section 3.1.2. The classifiers in the remote pool are also implemented
through random forests with 300 trees each. For each sample, the subset of classifiers
selected to evaluate the sample is determined with the same KNORA-U algorithm
described in Section 3.1.1.

Finally, the complete malware detection system is shown in Algorithm 2. The
FN_only operation mode refers to the alternative approach described in Section 3.3.

Algorithm 2 Proposed malware detection system.
Input: Android APK file f , operation_mode
Output: Classification of f as benign or malware

1: Local analysis on the mobile device
2: x← static features of f
3: y ← local_classifier(x)
4: a1 ← benign_anomaly_score(x)
5: a2 ← malware_anomaly_score(x)
6: if self-evaluation_agent(y, a1, a2) = reliable then
7: return y
8: else if operation_mode = FN_only and y = malware then
9: return y

10: else
11: upload f to remote analysis environment
12: Remote analysis on the cloud server
13: execute f in a sandbox
14: x′ ← dynamic features of f
15: y ← remote_classifier(x′)
16: Send y to the mobile device
17: return y
18: end if

4 Experimental evaluation
In order to assess the effectiveness of the proposed system, the KronoDroid dataset [17]
was adopted, as it contains both static and dynamic features for each sample, and
contains samples collected over a long period of time from diverse sources, so that
the effectiveness in mitigating the impact of concept drift could be evaluated. This
dataset contains static and dynamic features for 28,745 malware samples and 35,256
benign samples, labeled with the corresponding timestamp, spanning from 2008 to 2020.
This dataset contains examples of modern malwares that employ advanced evasion
techniques, such as obfuscation, polymorphism, and anti-analysis mechanisms, and is
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thus more suitable for evaluating the effectiveness of the proposed system in detecting
modern malware [54] compared to other widely used datasets, such as the Drebin
dataset [55]. Since the first and last years of the dataset contain a small number of
samples, they are not used in the experiments. Consequently, the experiments cover a
period from 2011 to 2018 as in [56].

The dataset has been split into discrete chunks representing contiguous 3-month-
long time periods. The samples are split according to the last modification date of
the APK, for comparability with [41]. Each chunk is labeled as yy.q, where yy is the
last two digits of the year and q is the quarter of the year. The dataset presents two
instances of sudden drift, in the 15.4 and 16.3 chunks, linked to abruptly emerging
different patterns in permission usage and API calls in the malware samples [56]. The
two sudden drifts are uncorrelated, with different sets of features acquiring greater
relative importance in the classification of malicious samples.

The classifier pools contain twelve classifiers, that are initially trained on the
samples belonging to the first chunk. The first chunk is not used for the evaluation of
the system’s performance to avoid temporal experimental bias. The other chunks have
been subject to a prequential evaluation [57] testing-then-training procedure, where
the samples are first classified with the current classifiers through Algorithm 2, and
then the classifiers are updated with the new samples. With this procedure, even if the
testing set and the training set are not fully independent, the model is never tested on
the samples it is trained on, avoiding temporal snooping [58]. Temporal snooping is a
common issue in malware detection evaluation and entails the use of a testing set that
contains samples from the same period as the training set. In a real-world scenario, a
system would be trained on a dataset collected up to a certain point in time and then
tested on a dataset collected after that point. Without an appropriate experimental
design, temporal snooping would lead to an overly optimistic estimate of a system’s
performance [58] and would hide the effect of concept drift.

The system proposed here is compared against several baselines. The first baseline
is partially adapted by the approach proposed by Gharib et al. [21] and represents one
of the most common approach to coordinate separate classifiers working on static and
dynamic features, i.e., the adoption of a threshold on the static features classifier’s
output is used to decide whether to run the dynamic features classifier or not [22]. In
the following, this baseline is referred to as threshold. The second baseline, referred
to as random, is a system that randomly decides whether or not to perform dynamic
analysis. The third baseline, named ideal, performs the dynamic analysis only when
the local classifier’s output is incorrect; it represents a theoretical upper bound on the
system’s performance, corresponding to a perfect self-evaluation agent. Moreover, the
performance of the local and the remote classifiers are also reported.

The set of features used by the classifiers are constant over time, as they have little
impact on the effect of concept drift [59], as long as the classifiers are trained on new
data periodically [49].

The experimental evaluation takes into account the following metrics:

• Precision: the percentage of samples classified as malware that are actually malware;
• Recall: the percentage of malware samples that are correctly classified as malware;
• F1-score: the harmonic mean of precision and recall;
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• FRP: the percentage of benign samples that are incorrectly classified as malware;
• TPR: the percentage of malware samples that are correctly classified as malware;
• Dynamic calls: the number of APKs that are classified by the remote analysis

environment;
• Switch accuracy: the percentage of samples for which the self-monitoring agent

correctly decides whether to run the remote analysis or not.

The average results over the 3-month chunks are given in the following sections.
The statistical significance of the results is assessed with the two-tailed t-test with a
significance threshold of p < 0.05 and a replication factor of 10.

4.1 Sudden drift characterization
The dynamical update of the classifiers relies on the assumption that the concept drift
is gradual and that the classifiers trained on the dataset Dk−1 are still suitable for
the dataset Dk. The updating mechanism should provide resilience to gradual drifts
but cannot handle sudden drifts [60], thus requiring the presence of the self-evaluation
agent. In order to verify the validity of this assumption, concept drift in the dataset
was first characterized. As shown in Figure 6, the precision of the local and remote
classifiers is resistant to gradual drift and remains generally stable over time, while the
recall of the local classifier is more heavily affected by sudden drifts in 15.4 and 16.3.
The remote classifier is more robust to sudden concept drift than the local classifier,
as it is trained on dynamic features that are less affected by concept drift compared
to static features. In spite of these advantages, the remote classifier is on average less
accurate than the local classifier. Additionally, the extraction of the dynamic features is
more computationally expensive than the static analysis. For these reasons, an effective
system cannot exclusively rely on the remote classifier. Moreover, even the remote
classifier can be affected by sudden drifts, albeit less severely than the static one, as
shown by the recall drop in 16.3.

Figure 7 shows the Receiver Operating Characteristic (ROC) curve of the local
classifier in normal conditions and under sudden drift. The ROC curve is obtained by
varying the threshold on the local classifier’s output to label a sample as malware or
benign. The true positive rate (TPR) is plotted against the false positive rate (FPR)
for each threshold obtaining the ROC curve. As the threshold decreases, the classifier is
more likely to label a sample as malware, thus increasing the number of true positives
and false positives. A perfect classifier would have a ROC curve that passes through the
top left corner of the plot, thus having a TPR of 1 and a FPR of 0 for any threshold.

When the concept drift is gradual, the ROC curve is quite close to the ideal scenario,
and the proposed system matches the performance of the local classifier. However,
when sudden drift occurs, a much higher false positive rate is required to detect the
same percentage of malware samples. Such a high false positive rate is not acceptable
in a real-world scenario. Indeed, the exhibited behavior indicates that, during sudden
drifts, the local classifier wrongly classifies malware samples as benign with high
confidence. For this reason, threshold-based approaches are expected to perform poorly
during sudden drifts. A threshold high enough to avoid false negatives would also be
triggered by many false positives, leading to a high number of dynamic analyses, with
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Fig. 6 Performance of the local and remote classifiers. When sudden drifts occur, the recall of the
local classifier using static features is more heavily affected than the classifier using dynamic features.

a consequent unacceptable increase in the average computational cost of the detection
process. On the other hand, setting a threshold low enough to avoid the majority of
the false positives would also miss most of the false negatives, leading to a decrease
in the overall accuracy of the system and usefulness of the cloud component of the
system. On the contrary, the system proposed here exhibits similar performance in
normal conditions and during sudden drifts, as also shown in Figure 7, which compares
the ROC curve of a system performing only the local analysis on the static features
(the red line) with the performance of the proposed system (the black dot).

4.2 Performance comparison
The performance over time of the different approaches compared here is shown in
Figure 8, which reports the F1-score averaged over the 3-month chunks. In normal
conditions, the proposed system performs similarly to the local classifier, as expected.
Excluding the sudden drift at 16.3, the performances of the two classifiers are statisti-
cally indistinguishable (p-value> 0.35), with a small (0.4%) relative difference in favor
of the proposed architecture. During the first sudden drift, at 15.4, all the approaches

17



D
RA

FT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR
T
P
R

Normal conditions

0 0.2 0.4 0.6 0.8 1
FPR

Sudden drift

ROC only local Proposed system

Fig. 7 ROC curve of the local classifier in normal conditions and under sudden drift. During drifts,
the local classifier achieves a much lower TPR for the same FPR. The proposed system is less affected
by sudden drifts, as shown by the black dot.
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Fig. 8 F1-score of the different evaluated approaches. The proposed system performs similarly to the
local classifier in normal conditions and after learning from the sudden drift at 15.4, it shows great
resilience to the sudden drift at 16.3.

except the ideal upper bound and the remote classifier suffer a sharp drop in perfor-
mance. In particular, the improvement of the proposed system compared to the static
classifier, albeit significant (p<0.05), is only 2.3%. This result is not surprising, as
the self-evaluation agent is not yet trained to recognize sudden drifts and thus cannot
accurately trigger the remote analysis. However, the proposed system recovers quickly,
and in the next sudden drift, at 16.3, the system maintains high performance, while
the other approaches suffer a sharp drop in performance, with a significant relative
improvement over the static classifier of 16.7% (p<0.005).

The presented approach, together with the ideal upper bound, is the only one able
to outperform the remote classifier in this sudden drift. The ability of the system to
outperform the classifier which only relies on dynamic features demonstrates that the
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Fig. 9 Variance of the F1-score of the proposed system over the performed experiments.

remote analysis is triggered only for misclassified samples, and it is not being overused
for all the input samples.

The ideal strategy, which represents the theoretical upper bound on the proposed
system’s performance, is the best-performing approach, with an average F1-score of
0.967. The ideal strategy can perfectly recognize when the local classifier’s output
is incorrect and trigger the remote analysis only for those samples, corresponding
to a perfect self-evaluation agent in the proposed system. This result confirms that
an intelligent mechanism to trigger the analysis of the dynamic features can be very
effective in improving the performance of an automated malware detection system. At
the same time, there is still a margin of improvement for developing a more effective
mechanism to trigger remote analysis, leaving room for future research.

Across all the performed experiments, the proposed system exhibits stable
performance, with an average variance of the F1-score of 0.008, as shown in Figure 9.

4.3 Recurring drifts
The dataset used for experimental evaluation contains only two instances of sudden
drift, and there are no comparable publicly available datasets that span a longer period
of time and contain more instances of sudden drift. Therefore, to further evaluate the
effectiveness of the self-evaluation agent in recognizing sudden drifts and appropriately
triggering the remote analysis, additional artificial recurring drifts were introduced in
the dataset through the following procedure partially inspired by [61]: a slice of the
dataset is replicated to re-introduce samples from a previous distribution, simulating a
sudden drift.

Clearly, the sudden drifts introduced in this way are not as realistic as the ones
present in the dataset, and the testing procedure could be affected by spatial and
temporal snooping. The classifiers in the pool should not have been trained on malware
families that are not available before the sudden drift. To limit the contamination
of the tested samples and the ones used for training, the slice of the dataset used to
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Fig. 10 F1-score difference between the proposed system and the static classifier in the presence of
additional artificial drifts. The self-evaluation agent, once trained, is able to recognize further drifts.

introduce the artificial drift starts from a chunk that is old enough for the classifier
pool to not contain any classifiers trained on that data.

To avoid reporting results inflated by this unavoidable bias, instead of the F1 score,
the difference in F1 score between the proposed system and the static classifier is
reported in Figure 10. This metric is less affected by the bias introduced by the artificial
drifts and better reflects the true effect of the self-evaluation agent in recognizing
sudden drifts.

Compared to the first time the system encounters the drift at 15.4, the system is
able to recognize the drift more effectively the second time, with an improvement in
the F1-score (p < 0.0002) 2.86 times higher than the first time. Further artificial drifts
do not show a significant performance improvement as the static classifier pool now
contains classifiers trained on the distribution under test and is not affected by drifts
anymore.

4.4 Reduction of the dynamic analyses
This section assesses the effectiveness of the self-evaluation agent in limiting the
number of dynamic analyses performed. In these experiments the more conservative
approach is also evaluated, where the dynamic analysis is triggered only when the
local classification is likely to be a false negative. Figure 11 shows the effectiveness of
the different approaches in terms of F1-score in part (a) and the number of dynamic
analyses performed by the different approaches in part (b).

The difference in F1-score between the normal self-evaluation agent and the conser-
vative one is negligible, and they both outperform the threshold baseline, especially so
in the second sudden drift. Compared to the ideal upper bound baseline, the number
of dynamic analyses performed by the conservative version of the proposed system is
statistically indistinguishable (p-value> 0.2) from the optimal policy, with only 8.51%
of the samples requiring the dynamic analysis performed by the cloud server. The
difference in the average F1-score between the conservative version of the proposed
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Fig. 11 F1-score and number of dynamic analyses performed by different approaches. Limiting
the remote analysis to suspected false negatives with the FN only strategy significantly reduces the
number of remote analyses with negligible impact on the performance.

system and the ideal upper bound is also quite small, only 6.1%, confirming the effec-
tiveness of the proposed approach. The normal self-evaluation agent also displays an
effectiveness similar to that of the ideal upper bound (5.6% lower F1-score), albeit
with almost three times as many dynamic analyses required. Even considering this
wider margin from the ideal upper bound, the system is still preferable to the threshold
baseline, which requires 30% more dynamic analyses than the proposed system while
having a lower F1-score.

Finally, the effectiveness of the self-evaluation agent in detecting errors of the local
classifier is also evaluated. Figure 12 shows the accuracy of the different approaches in
correctly switching to the remote classifier when the local classifier is wrong.

The self-evaluation agent is able to detect errors of the local classifier with high
accuracy, up to 91.6%, and an average accuracy of 75.3% (standard deviation 7.7%).
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Fig. 12 Accuracy of the different techniques to detect local classifier’s misclassifications and switch
to the remote classifier. The self-evaluation agent effectively detects errors of the local classifier while
the threshold approach is barely better than a random approach.

The revised version of the self-evaluation agent, which only switches to the remote
classifier if the suspected error is a false negative, gives an additional 19% relative
increase in accuracy compared to the normal self-evaluation agent. Additionally, there
is a 33% accuracy increase with respect to the threshold baseline (p < 0.05). On
average, in the test scenario, the threshold detects mistakes of the local classifier
with an accuracy of 63% (14% standard deviation). The threshold approach, thus, is
better than the random one but is not reliable enough to be used as a self-evaluation
agent, especially considering that its accuracy can get as low as 34.7% and triggers an
excessive number of dynamic analyses.

On the basis of these results, the conservative version of the proposed system
appears to be suitable for most scenarios, as it is able to maintain high performance
while significantly reducing the number of dynamic analyses performed, reducing the
computational cost of the detection process. However, in critical scenarios where the
minor reduction in the accuracy of the system caused by the additional false positives is
not acceptable, and the cloud server has sufficient computational resources to perform
the necessary analyses, the default version of the proposed system can be used instead.

4.5 Overall Performance Comparison
Finally, the overall performance of the different approaches is evaluated. Table 1 shows
the Accuracy, Precision, Recall, F1-score, fraction of samples requiring remote analysis,
and average classification latency of the different approaches, averaged over the test
period, and during the sudden drift at 16.3. The second sudden drift at 16.3 is the one
considered for this comparison as in this period the self-evaluation agent has had the
chance to learn to recognize sudden drifts, whereas in the first sudden drift at 15.4 it
is still untrained and unable to react properly.

The proposed system is able to maintain a high performance over time, with
an average accuracy of 0.913. Employing the two-tier architecture is thus beneficial
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Table 1 Average performance of the different approaches during the test period and in the sudden
drift at 16.3. The underlined values indicate the best performance in each column (ideal upper
bound excluded), while the bold values indicate the second-best performance. For the fraction of
analyses requiring remote analysis, the “Static” and “Dynamic” rows are not considered when
highlighting the best and second best values.

Approach Average
Accuracy Precision Recall F1 Remote analyses Latency

Static 0.905 0.887 0.929 0.904 0.000 2.00
Dynamic 0.833 0.800 0.896 0.843 1.000 10.33

Random 0.896 0.841 0.912 0.873 0.499 7.15
Threshold 0.892 0.874 0.916 0.891 0.388 5.99
Proposed 0.913 0.906 0.924 0.913 0.271 5.58
Proposed (FN only) 0.901 0.866 0.954 0.906 0.085 2.87

Ideal upper bound 0.966 0.953 0.981 0.967 0.095 2.97

Approach Sudden drift (16.3)
Accuracy Precision Recall F1 Remote analyses Latency

Static 0.685 0.775 0.523 0.624 0.000 2.00
Dynamic 0.711 0.736 0.658 0.695 1.000 10.33

Random 0.704 0.758 0.598 0.669 0.505 7.22
Threshold 0.691 0.796 0.513 0.624 0.305 5.15
Proposed 0.767 0.813 0.694 0.749 0.476 6.92
Proposed (FN only) 0.760 0.776 0.733 0.754 0.335 5.46

Ideal upper bound 0.842 0.900 0.770 0.830 0.314 5.24

as it improves the performance of the system even in normal conditions. Even the
conservative version of the proposed system, which only triggers the remote analysis
8.5% of the time, has a slightly higher average F1 score than the static classifier. This
version of the proposed system, being more lax with possible false positives, manages
to correctly classify 95.4% of all the malware samples.

During the sudden drift at 16.3, the proposed system (in both versions) is the least
affected, increasing the fraction of remote analyses by 0.203 and 0.250 respectively, to
offer a more robust classification. Even the ideal upper bound, which is the theoretical
upper bound for this system, needs to increase the fraction of remote analyses by 0.209
to maintain a high performance. Thus, the required increase in remote analyses is
comparable to the optimal policy. On the other hand, the threshold-based approach
actually reduces the fraction of remote analyses by 0.083, demonstrating that it is
not able to effectively detect misclassifications of the local classifier. The additional
communication overhead introduced by the remote analysis is proportional to the
fraction of samples requiring remote analysis.

To quantify the improvement in performance of the proposed approach in terms of
latency for the end-user, Table 1 also reports the average analysis time for the different
approaches. In this computation, the average time for the on-device extraction of the
static features is considered to be 2 minutes, while the upload and dynamic analysis
is, on average, 10.3 minutes. These values are based on results in the literature [62].
The proposed system has an average latency of 5.58 minutes, which is a 179% increase
compared to the static classifier, bust still 45.9% lower than always relying on the
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dynamic analysis and 24.6 seconds faster than the less effective threshold approach.
During the sudden drift at 16.3, the average latency is 6.92 minutes, which is a moderate
24.0% increase compared to normal conditions. In normal conditions, the conservative
version of the proposed system has an average latency of 2.87 minutes, which is just
a 42.5% increase compared to the static classifier. During drifts, when more remote
analyses are required, the average latency is still 47.1% lower than always relying on
the dynamic analysis, ad just 4.2% increase over the ideal performance.

As a final consideration, it is worth noting that the ideal upper bound’s remarkable
performance, even during the conceptual drift, confirm that the design choice of
relying primarily on static feature-based analysis, requiring a more in-depth analysis,
through dynamic features, only when the former provides an incorrect answer, is a
very promising approach. The room for improvement with respect to the ideal upper
bound’s performance suggests that there is still an open research question on the
autonomous ability of such systems to recognize their own errors.

4.6 Comparison with State-of-the-Art Methods
In order to assess the competitiveness of the proposed approach from a classification
performance standpoint, a comparison with state-of-the-art methods is presented in
Figure 13/Table 2. It is worth noting that none of these methods aim to reduce the
cost of the detection process, as they all rely on hybrid feature sets, including both
static and dynamic features. Nevertheless, despite being more constrained in the choice
of features, the presented approach maintains competitive, and in some cases superior,
performance compared to the state-of-the-art methods at a fraction of the cost.

The works presented by Guerra-Manzanares et al. in [41] is the most similar to ours,
as it also leverages ensemble learning with periodic replacement of outdated classifiers.
A key difference is that Guerra-Manzanares et al. train their classifiers on the entire
feature set without an intelligent agent to avoid unnecessary computations, requiring
the extraction of both static and dynamic features for each sample. Comparing their
performance to the one of the presented system it is clear that there is no obvious
advantage in always using the entire feature set, as the proposed system performs
similarly to the state-of-the-art method. Additionally, after the self-evaluation agent is
trained to detect sudden drifts, the proposed system is able to consistently outperform
their approach.

AlSobeh et al. [63] is a more recent work that presents a novel approach to select
the most appropriate features considering the concept drift issue. Their choice of
features, however, is fixed for all the samples, and they do not consider the possibility
of dynamically utilizing different feature sets for different samples. While more effective
than the approach of Guerra-Manzanares et al. [41], their approach it is still on average
outperformed by the proposed system which has greater flexibility in the choice of
features on a case-by-case basis.

Aurangzeb et al. [54] also use ensemble voting, analyzing the impact of different
feature sets on the classification performance, especially against adversarial obfuscation
techniques. Nevertheless, their ensemble approach still requires the availability of all
the dynamic features to classify the samples. The average F1-score achieved by their
approach slightly outperforms the proposed system, however it is worth noting that,
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Table 2 F1-score comparison with state-of-the-
art methods on the KronoDroid dataset.

Method F1-score

Guerra-Manzanares et al. [41] 0.873
AlSobeh et al. [63] 0.897
Aurangzeb et al. [54] 0.926
Neural Network [64] + finetuning 0.871

Proposed 0.913
Ideal upper bound 0.967

since they require the extraction of both static and dynamic features for each sample,
their approach might not be feasible in a real-world scenario. Moreover, the ideal upper
bound of the presented system still outperforms their strategy.

Finally, since all the approaches tested so far rely on tree-based classifiers, we also
evaluate a neural network-based approach. The network architecture is inspired by the
one in [64] which is trained using both statically and dynamically extracted features.
Since the original work does not consider the concept drift issue, instead of directly
reporting their results, we adapt the approach by fine-tuning the neural network on
new samples with the same frequency as that used to update the classifier pool in
the proposed system. This approach has the worst performance among the compared
methods, showing that the presence of an ensemble mechanism offers a significant
advantage when tackling concept drift in malware detection.
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Fig. 13 Comparison of the presented approach with state-of-the art methods on the KronoDroid
dataset.
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5 Conclusion
Malware detection is a crucial component of mobile security. However, the limited
computational and energy resources of mobile devices make it unfeasible to perform
a thorough and exhaustive analysis of the apps on the mobile devices. On the other
hand, the use of remote analysis on cloud servers, characterized by more computational
resources, introduces additional latency and communication overhead in the detection
process which might be unacceptable for the end-users.

A possible solution could be using machine learning methods on the mobile devices,
relying exclusively on features whose extraction is not computationally expensive, such
as the static features that can be extracted directly from the metadata contained in the
APKs. However, this approach is significantly affected by the concept drift problem.
Malware developers frequently modify their code to avoid detection, and the constant
influx of new malware samples leads to performance degradation in machine learning
models over time. Furthermore, sudden drifts can occur when malware developers
rapidly release numerous new samples, causing models trained on static features to
deteriorate quickly. Effectively managing concept drift in malware detection is crucial
for maintaining the effectiveness of detection systems in this field.

To address this issue, this paper introduces a two-level malware detection approach
for mobile devices that integrates local and remote analysis. An agent learns to recognize
sudden concept drift in the local analysis level in order to trigger, on a case-by-case
basis, the execution of the more robust second level which relies on drift-resilient
dynamic features. Both the local and remote analysis levels are supported by ensembles
of classifiers, which are trained and updated dynamically to adapt to the changing
nature of the malware samples. Moreover, the computational cost of the detection
process was reduced by limiting the execution of the second level only to suspected
false negatives. The experimental results show that the self-evaluation agent can detect
errors of the local classifier with high accuracy and can effectively mitigate the impact
of concept drift on the overall performance of the system. The presented approach is
able to maintain stable performance over time, even in the presence of sudden drifts,
while executing most of the analyses locally, thus reducing the computational cost and
the communication overhead of the detection process.
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