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Abstract
Machine learning-based Intrusion Detection Systems (IDS) are widely used to identify and mitigate threats
by analyzing network traffic for malicious activity. However, most existing IDS solutions assume a closed
environment with stable statistical properties. This overlooks challenges posed by open environments and the
problem of concept drift, where shifts in network traffic patterns over time can render training data obsolete and
degrade the performance of static systems. While online IDS can adapt to these changes, they face the additional
challenge of acquiring labeled data in real time, which is often impractical due to time constraints. To address
these challenges, this paper proposes an online IDS that employs an incremental supervised Random Forest
model combined with a drift-aware approach, designed for open environments with limited labeling. Active
learning techniques are used to select the most informative records, minimizing the need for human feedback
while retaining enough information to detect drifts. The system adapts incrementally when drift is detected,
updating the underlying model as needed. The experimental evaluation, performed on a real-world network
dataset, proves the system’s effectiveness in open environments and under limited labeling conditions, achieving
better performance compared to state-of-the-art methods.
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1. Introduction and Related Work

In recent years, cybersecurity has received increasing attention, especially in the development of
advanced threat detection mechanisms [1, 2]. Among these, Intrusion Detection Systems (IDS) are
one of the most widely researched tools and play an important role in identifying and mitigating
potential threats [3, 4]. The integration of machine learning techniques has significantly advanced
the development of automated IDS [5], enabling the analysis of network traffic records extracted from
traffic logs to detect malicious activity. For instance, [6, 7] employ deep learning to build supervised
systems that identify and categorize malicious traffic. In contrast, other works adopt unsupervised
approaches to detect anomalies relative to benign traffic [8, 9] or use Decision Tree ensembles [10, 11],
which offer lower training costs and faster predictions than deep learning.

Despite these advancements, several critical challenges remain, highlighting the need for further
research to ensure the robustness and practical deployment of machine learning-based IDS. A significant
limitation of these systems is their static nature. Most research on machine learning-based IDS assumes
a closed environment, where the statistical properties of the data-generating process remain stable over
time. However, in real-world applications, this assumption often proves unrealistic. Once deployed,
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network traffic may not maintain the same statistical distribution as the training data, highlighting the
challenges of operating in an open environment [12].
Consider, for example, an IDS designed to monitor the network traffic of a university or private

company. Initially, the system might be trained on a dataset of labeled benign and malicious traffic,
compiled by domain experts during typical daily activities. However, the COVID-19 pandemic disrupted
traffic patterns as organizations shifted from in-person to online activities (e.g., virtual classes, exams,
and meetings) and later reverted to hybrid or in-person models, introducing new platforms and services
not included in the training data.

This scenario illustrates the phenomenon of concept drift, specifically recurring drift, where the data
generation process becomes non-stationary [13, 14]. Such shifts in network traffic render previous
training data obsolete, introduce errors, and degrade performance in static systems [15]. Addressing
these changes often requires manual retraining, leaving networks vulnerable during this period.
A highly effective approach to deal with open environments is online learning [16], according to

which data streams are processed in real time, while specific algorithms detect anomalies and the
occurrence of concept drift [17]. The authors of [18] propose a continuous learning adaptation of deep
neural networks (DNNs), dynamically adjusting the network size using a hedge weighting mechanism.
Similarly, the authors of [19] introduce an online adaptation of the Local Outlier Factor (LOF) anomaly
detection model to handle recurring concept drift and minimize retraining phases.

Current adaptation techniques [20] fall into two categories: detect and retrain, which discards the old
model and retrains on new data, and detect and update, which refines the model incrementally [21]. This
distinction reflects the stability-plasticity dilemma [22, 23], which refers to the challenge of balancing
knowledge retention and learning new concepts. These two operations are inherently opposed, and
current state-of-the-art adaptation techniques tend to be overly biased toward one approach over the
other.
To address this dilemma, the authors of [24] propose an incremental adaptation of a Decision Tree

ensemble-based machine learning model, where new members are added or existing ones are replaced
within the ensemble. Building on this idea, the authors of [25] present a system to handle concept drift
by incorporating a pruning strategy and weighted voting of individual trees based on prediction error,
achieving a trade-off between stability and plasticity.
However, these works overlook the cost of labeling problem. Both drift detection and adaptation

phases assume that ground truth labels become available after a certain interval. During detection, drift
is identified by comparing predicted labels with ground truth labels to detect performance degradation.
In the adaptation phase, supervised techniques rely on ground truth data to retrain or update the model
when drift is detected. However, this additional labeling phase depends on real-time feedback from
human experts, which is often impractical due to constraints of time and volume, particularly in fields
like online learning for Intrusion Detection Systems under concept drift.
To overcome this limitation, the authors of [26, 27] propose a novel approach for online learning

under concept drift using unsupervised models and detection steps that do not rely on prediction
error. This allows handling recurring drift without labeling costs. However, a major drawback of this
approach is the reliance on unsupervised models, which can struggle with multi-class classification and
high-dimensional data.
Another strategy is to use online supervised models under the assumption of limited labeling. In

this context, an online IDS is proposed in [28], using only a subset of the data available in order to
reduce the burden on human experts. The subsets of retraining data can be selected either through
random sampling or active learning techniques [29, 30]. The limitation of this approach lies in the need
to retrain after each batch, regardless of whether concept drift is present or not. This results in high
computational costs and significant labeling effort, even under the limited labeling assumption.
In summary, several aspects of online learning under concept drift remain under-explored, limiting

the broader application of this approach in Intrusion Detection Systems.
To address these limitations, the proposed Intrusion Detection System adopts a drift-aware incre-

mental active learning approach, designed to operate effectively in open environments with limited
labeling assumptions. This approach uses active learning techniques to select the most informative



records, minimizing the need for human expert feedback while preserving sufficient information to
detect drifts over time. The system then incrementally updates the underlying machine learning model
as necessary.

The proposed system leverages an incremental adaptation of a supervised ensemble-based machine
learning model, achieving an optimal balance between stability and plasticity. It adapts rapidly to
concept drift while retaining knowledge from previous iterations, which can be reused when needed,
such as in cases of recurring drift. This enhances robustness by reducing unnecessary and noisy
adaptation phases.

The experimental evaluation, performed on a real network dataset, proves the system’s effectiveness
in open environments and under limited labeling assumptions, while also showing the impact of
concept drift. The proposed approach is compared with other state-of-the-art methods, highlighting
differences in overall performance, drift adaptation, and labeling cost, and analyzing how these factors
are influenced by the various components of the proposed architecture.

The principal contributions of this paper are summarized as follows: (1) the introduction of an online
supervised ML-based Intrusion Detection System designed to operate in open environments and under
limited labeling assumptions; (2) the proposal of an incremental Random Forest model that uses active
learning to handle concept drift while minimizing the need for human expert feedback; (3) a comparison
of different incremental systems employing different active learning techniques under increasingly
restrictive limited labeling assumptions; (4) a comprehensive validation of the proposed system using a
real-world network dataset affected by concept drift.
The remainder of the paper is structured as follows. Section 2 describes the proposed architecture.

Section 3 outlines the experimental setup and presents the findings. Finally, Section 4 draws conclusions
and suggests directions for future research.

2. Proposed Architecture

This section presents the architecture of the proposed online Intrusion Detection System, which consists
of three main components: an adaptive incremental Random Forest model (AIRF ML-model), an
informative active learning module (IAL), and a concept drift detector (CDD). Additionally, the system
uses a retraining window (RW ) to store recent data for incremental updates. Figure 1 illustrates these
components and their interactions.

These components work together within the architecture, which operates in two distinct phases: the
concept drift detection phase, on the left side of Figure 1, and the concept drift adaptation phase, shown on
the right side. The paths highlighted in the figure illustrate how data flows through each component and
how they interact with each other. These phases enable the system to detect concept drifts, representing
new patterns not captured during the initial training, in line with the open environment assumption. The
architecture also supports the limited labeling assumption by minimizing human labeling effort. This is
achieved through active learning techniques that select a small percentage of the most informative data
for incremental training during the adaptation phase.

The proposed system can be deployed on a server for continuous monitoring of network traffic, with
the goal of detecting and isolating suspicious activity. The initial AIRF model is trained offline using
the first retraining window (RW ) and contains a fixed number of trees in the ensemble (𝑛𝑡). After this
offline training phase, the online process begins, as summarized in Figure 1 and detailed in Algorithm 1.

First, the system evaluates each new record from the data stream using the AIRF model, as indicated
by the green continuous path in Figure 1. After the prediction, the record is stored in the fixed-size list
called New batch. When the New batch is full, the concept drift detection phase begins. The IAL module
plays a crucial role in this phase, by identifying the most informative data for model adaptation and
selecting a small percentage of records to be labeled, in line with the limited labeling assumption.
This selection process leverages the model’s uncertainty to identify potential concept drift. Indeed,

in the case of concept drift, the model should exhibit higher uncertainty regarding data from the new
distribution. Leveraging this, the adopted strategy maximizes the usefulness of the selected data for
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Figure 1: Workflow of the proposed architecture for the online Intrusion Detection System.

adapting to the drift while minimizing labeling costs, compared to a random sampling strategy, as
shown in the experimental section.
In this work, an uncertainty-based informative active learning method is employed to enable rapid

adaptation to concept drift. Specifically, the AIRF model calculates an uncertainty score for each record
as 1 −max(proba), where proba is the vector of probability scores assigned to the classes by the model
for that record. The records are then sorted in descending order by their uncertainty scores and selected
for analysis and labeling by the human expert, forming the New selected batch. After receiving human
expert feedback (HEF ), the labeled data (New labeled) are processed by the CDD module to detect
concept drift. The CDD is an error-rate concept drift detector that compares the ground truth labels of
the New labeled batch with the system’s predictions. If the system’s accuracy falls below a threshold 𝛼,
concept drift is detected, triggering the adaptation phase.

When this occurs, the IAL module is used again to select informative records from the last retraining
window (RW ), equal in number to those in the New labeled batch, to complement the newly labeled
data. The selected records and the New labeled batch are then merged to form a new RW. Consequently,
the new RW contains the most informative data from the previous window and the most informative
data associated with the detected concept drift. The proposed incremental training process, shown by
the red dotted path in Figure 1, involves evaluating the performance of each tree in the ensemble on
the RW in terms of accuracy. The best-performing trees are retained, while the others are removed,
creating a pruned version of the model (pAIRF ). A new training phase is then performed on the pAIRF
using the RW window, increasing the number of trees to the expected value 𝑛𝑡. Finally, the New batch
list is cleared, and the process restarts.
In the proposed incremental adaptation method, the model remains unchanged during stationary

phases when no drift is detected, and it rapidly adapts when drift occurs. After evaluating the individual
performance of the ensemble trees on the RW, the top-performing half-minus-one trees are selected
(𝑛𝑏𝑡). The pruned Random Forest is then updated using warm-start techniques to add the missing trees
to the ensemble while keeping the existing trees unchanged. The previously described data retention
strategy, combined with this incremental approach, allows the model to quickly adapt to concept drift.



Algorithm 1: Proposed system workflow - Online phase.
Input : 𝐷𝑆: data stream of network traffic records; 𝑏𝑠: size of New_batch list;𝐴𝐼𝑅𝐹: proposed adaptive incremental random forest model;𝑛𝑡: number of trees in the 𝐴𝐼𝑅𝐹; 𝑛𝑏𝑡: number of best selected trees ;𝐼𝐴𝐿: informative active learning module; %𝑙𝑎𝑏: percentage of records to label;𝐶𝐷𝐷: concept drift detector; 𝛼: drift detection threshold; 𝐻𝐸𝐹: human expert feedback;𝑅𝑊: retraining window (initially contains the data of the first offline training phase).
Output : 𝑌̂ : the list of system predictions.

1 New_batch ← [ ]
2 for 𝑥𝑖 ∈ 𝐷𝑆 do
3 ̂𝑦𝑖 ← AIRF.predict(𝑥𝑖) ▷ prediction performed on new record
4 𝑌̂.append( ̂𝑦𝑖)
5 New_batch.append(𝑥𝑖) ▷ save the record just predicted
6 if len(New_batch)==bs then
7 New_selected ← IAL.select(AIRF, New_batch, %𝑙𝑎𝑏) ▷ select the most informative records
8 nbr ← len(New_selected)
9 New_labeled ← HEF.query(New_selected) ▷ labeling by the human expert

10 if CDD.detect(𝑌̂[New_labeled], New_labeled, 𝛼) then
11 selected_RW ← IAL.select(AIRF, RW, nbr)
12 RW ← [New_labeled; selected_RW] ▷ update RW
13 pAIRF← select_best_trees(AIRF, RW, nbt) ▷ create a pruned version of AIRF
14 AIRF ← pAIRF.partial_fit(RW, nt) ▷ incremental training
15 end
16 New_batch ← [ ]
17 end
18 end

Trees trained on the new data distribution perform a majority vote in the ensemble, instead of following
a detect and update strategy, which typically involves the slow process of incrementally adapting a
deep learning model or an ensemble-based model by adding or replacing a single tree. However, it
is beneficial to retain some of the acquired historical information to limit performance degradation
caused by unnecessary adaptations with noisy data and to enable faster recovery from recurring concept
drift. Compared to a detect and retrain strategy, the composition of the RW window, combined with
incremental training using bootstrap techniques [31] and warm starts, helps to reduce the number of
“harmful” trees added during a single incremental training phase. This approach mitigates the impact
of sporadic noise, which differs from concept drift due to its limited and non-persistent nature.

In addition to addressing sporadic noise, the strategy of retaining trees and historical data also proves
beneficial for managing recurring concept drift effectively. Indeed, in cases of alternating concepts,
some trees trained on previous iterations of the recurring concept remain in the ensemble; the best-
performing trees are thus preserved, accelerating the system’s adaptation to recurring patterns. Finally,
the proposed AIRF uses a limited number of trees (𝑛𝑡) in the ensemble and a fixed-size batch of data,
respecting memory constraints and operating effectively under the limited labeling assumption.

3. Experimental Evaluation

This section evaluates the proposed system’s ability to handle concept drift effectively, accurately detect
malicious activity, and minimize labeling costs. The experiments compare the proposed approach with
several other methods, highlighting its advantages in terms of accuracy, adaptability, and efficiency.
The performance of the compared systems is evaluated using a comprehensive set of metrics including
accuracy, F1-score, true positive rate (TPR), and true negative rate (TNR). These metrics are chosen in
accordance with established scientific standards [32] and reflect best practices for evaluating ML-based
threat detection systems.
All experiments were conducted on the KDD CUP’99 dataset, which contains simulated traffic and



intrusions from a military network environment and includes various types of benign and malicious
traffic. Although some studies [33, 34] have highlighted flaws in this dataset and it may appear outdated
compared to more recent network datasets used for validating many static IDSs, it is still considered
one of the few real-world network datasets that exhibit sudden and recurring concept drift [13]. These
characteristics make it an excellent candidate for testing the performance of ML-based threat detection
systems and evaluating online learning strategies under concept drift.

The pre-processing phase involved transforming categorical attributes into numerical ones using one-
hot encoding and binarizing the ground truth labels. No additional operations, such as shuffling, PCA,
or feature standardization, were applied. These operations are incompatible with the open environment
assumption and the online nature of the system, as they require prior knowledge of the entire dataset
before the offline training phase. In the experiments presented below, the AIRF model is trained offline
using only the first batch of data (𝑅𝑊0). After this initial training, the system begins the online process,
as described in Algorithm 1 and Section 2. This approach reflects realistic conditions where the system
must adapt to new data over time without access to future information during the initial training phase.
In contrast to the classic experimental phase of static systems, in which the dataset is partitioned into
train and test, in this case there is an initial offline train phase. Subsequently, all data evaluated during
the online phase can be considered as test data until the next possible adaptation phase, which involves
incremental training of the model with a new retraining window (RW). This approach, often referred to
as the “test-then-train” approach, is commonly known as Prequential Evaluation [35].

In addition to the Proposed system, experiments were conducted on several other systems that share
the same AIRF incremental model described in Section 2, but differ in their online strategies:

• Static: a non-online system trained once, offline, under the closed environment assumption. This
system serves as a baseline for understanding the impact of concept drift.

• Incremental: a classical incremental system that retrains the model after each batch, regardless of
whether concept drift is present. This approach assumes that the ground truth labels for all the
data in the New batch and the RW lists are available.

• RSIncremental: an incremental system similar to Incremental, but operating under the limited
labeling assumption. It uses a random sampling strategy to select a percentage of records from
the New batch and the RW lists for retraining.

• IALIncremental: similar to RSIncremental, but employs an informative active learning technique
instead of random sampling. This technique selects the most informative records for labeling.

• RALIncremental: also similar to RSIncremental, but uses a representative active learning technique
that selects records closest to the centroids of clusters identified by the K-Means algorithm.

Specifically, IALIncremental uses the same active learning method as the proposed system. The key
difference is that IALIncremental activates the incremental training phase after evaluating each batch,
whereas the proposed system activates this phase only when concept drift is detected. To mitigate
the influence of randomness, experiments were repeated 1000 times with different random seeds. The
results presented are the averages of these tests, ensuring robustness against variations caused by
random selection.

All experiments were conducted using the same set of hyperparameters across all compared systems,
chosen based on preliminary evaluations to ensure optimal performance and a fair comparison. The
New batch list size (𝑏𝑠) was set to 10000; this value provides optimal performance for the Static system
during stationary periods and balances the need for timely adaptation in the online systems when
concept drift occurs. The number of trees in the AIRF model (𝑛𝑡) was set to 10, as higher values did not
yield further performance improvements. The drift detection threshold (𝛼) was set to 95% accuracy to
avoid unnecessary retraining during stationary periods while ensuring the detection of real concept
drifts, even though this setting makes the systems more sensitive to noise.

Table 1 presents the best performance for each compared system, showing the relevant metrics along
with the percentage of data labeled by the expert (% 𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔). The standard deviation of the metrics
observed in these experiments is negligible and has therefore been omitted for clarity.



Table 1
Comparison of the best results of different systems in terms of: percentage of data labeled by the expert (%
labeling), Accuracy, F1-score, True Positive Rate (TPR), and True Negative Rate (TNR).

System % labeling Accuracy F1-score TPR TNR
Static - 80.78% 86.63% 99.98% 76.42%
Incremental 100% 98.48% 99.07% 96.18% 99.00%
RSIncremental 10% 98.35% 98.99% 96.20% 98.84%

IALIncremental 0.5% 96.75% 98.01% 91.79% 97.88%
10% 96.94% 98.10% 96.98% 96.93%

RALIncremental 10% 98.86% 99.29% 99.22% 98.77%
Proposed 0.5% 98.60% 99.14% 98.78% 98.56%

In particular, the Static system shows the worst performance metrics. Although it achieves the
highest TPR (99.98%), its overall accuracy is only 80.78%, and its F1-score is 86.63%, with a TNR of
76.42%. These results indicate a significant degradation in performance due to concept drift on benign
traffic.
The Incremental system proves effective in handling the open environment assumption, achieving

very high performance for all metrics presented in Table 1. These results demonstrate that concept
drift can be effectively managed using an incremental adaptive approach, such as the one described
in Section 2. However, this system suffers from the high cost of labeling, as it requires 100% of the
data to be labeled for each incremental training step. This assumption is impractical, as it places an
unsustainable burden on human experts.

To consider a more realistic case, the RSIncremental system was evaluated under the limited labeling
assumption; only a small percentage of the batch is used for incremental training, significantly reducing
the labeling cost and maintaining its performance slightly below Incremental, with an accuracy of 98.35%
and F1-score of 98.99%. The results also show that the RALIncremental system, using the same labeling
percentage (10%) as RSIncremental, achieves better performance compared to random selection, with an
accuracy of 98.86% and an F1-score of 99.29%. In contrast, the IALIncremental system achieves good
results, though slightly lower than RSIncremental. Interestingly, IALIncremental performs similarly
when using either 10% or as little as 0.5% of labeled records. Finally, the Proposed system achieves
excellent performance, with an accuracy of 98.60% and an F1-score of 99.14%. These results are better
than those of the Incremental system and only slightly lower than the RALIncremental system. However,
the Proposed system requires only 0.5% of labeled data instead of 10%, and the computational cost of the
informative active learning (IAL) method is significantly lower than that of the representative active
learning (RAL) method. This ensures a much faster incremental training phase. During the adaptation
phase, incoming records are immediately evaluated with the old model. If concept drift is detected, a
temporary degradation in performance occurs until the old model is replaced with the adapted one.
Figure 2 shows the performance, in terms of F1-score achieved with a certain percentage of labeled

records, of the four compared systems that work under limited labeling assumption. For both RSIncre-
mental and RALIncremental, the overall F1-score correlates with the percentage of labeled data used for
incremental training.
Notably, RALIncremental performs worse than RSIncremental at lower labeling percentages (0.5%,

1%, 2%, and 4%). However, their performance becomes comparable at 6% and 8%, and RALIncremental
outperforms RSIncremental at 10%. This can be explained by the fact that RALIncremental selects
records near the cluster centroids. During stationary phases, this strategy effectively mitigates the
impact of noisy records by selecting data similar to the previously seen distribution. In these cases,
the decision boundary does not need to change significantly, and the system benefits from refining it
with new, useful information. However, during concept drift, this approach struggles to select records
that accurately represent the new concept, unless the labeling percentage is increased beyond a certain
threshold.

IALIncremental achieves excellent performance with 0.5% and 1% of labeled data, but its performance



Figure 2: F1-score of the RSIncremental (RS), IALIncremental (IAL), RALIncremental (RAL) and proposed system
(Proposed ) with different percentage of labeling.

decreases, reaching a minimum at 4%, before increasing again at 10%. This behavior occurs because the
informative active learning mechanism prioritizes records where the model shows high uncertainty.
During concept drift, these uncertain records are beneficial for incremental retraining. However, during
stationary phases, the same strategy tends to select noisy records. When the percentage of labeled
data is small, the noisy records are still few enough to allow effective adaptation during drift. As
the labeling percentage increases, the presence of noisy data becomes more pronounced, causing
performance degradation. Beyond a certain threshold, the mechanism also selects records with lower
uncertainty, mitigating the negative impact of noise and improving performance. Due to this trade-off,
IALIncremental achieves its best performance at the smallest (0.5%) and largest (10%) percentages of
labeled records.

This also explains the remarkable performance of the Proposed system. By activating the incremental
training phase only when the CDD detects concept drift, the system achieves rapid adaptation using a
small number of selected records. This approach avoids unnecessary retraining with noisy data during
stationary periods. As a result, the Proposed system maintains a more stable performance trend across
different labeling percentages, as shown in Figure 2.

Finally, Figure 3 shows the performance trend of the Static, Incremental, IALIncremental, and Proposed
systems over time, illustrating the average F1-score for each batch. The F1-score for the Static system
alternates between abrupt drops and periods of high performance during batch changes. These fluctua-
tions demonstrate the severe limitations of the static system under the open environment assumption,
where sudden and recurring concept drifts degrade its overall performance, as previously discussed.
The Incremental system trend shows some negative peaks occurring in the same batches as the Static
system, confirming the presence of concept drift. However, these drops are less abrupt and less severe
compared to those in the Static system. Additionally, the Incremental system’s performance recovers
quickly after detecting drift, highlighting the rapid adaptation capabilities of the proposed incremental
method, especially under recurring drift conditions. In accordance with the previous considerations,
the F1-score of IALIncremental increases as quickly as that of the Incremental system after concept drift
phases. However, during stationary periods, IALIncremental exhibits negative performance peaks due
to the selection of noisy data, an issue not observed in the Incremental system. Finally, compared to
IALIncremental, the Proposed system avoids the negative performance peaks caused by noisy retraining
(e.g., batches 3 and 37). When drift is detected, as indicated by the red bands, the system quickly and
consistently recovers to optimal performance.



Figure 3: F1-score over number of batch for the Static, Incremental, IALIncremental (0.5%) and Proposed system
(0.5%). Vertical red lines indicate that the proposed system has detected concept drift.

4. Conclusions and Future work

This work explored the challenges of detecting malicious activity by analyzing network traffic streams
using an online machine-learning-based Intrusion Detection System (IDS) designed for open environ-
ments and limited labeling conditions. The primary challenge is detecting concept drift and adapting
the model to new data distributions while minimizing the labeling cost. To address these challenges,
the proposed system autonomously detects concept drift and activates an adaptation phase using an
incremental Random Forest model and an informative active learning technique. This approach ensures
optimal adaptation while minimizing the need for human expert feedback. The effectiveness of the
proposed methodology was rigorously evaluated using a real-world network dataset with concept
drift, under increasingly restrictive limited labeling conditions. The experimental results highlight
the robustness of the proposed system, which maintains high and stable performance and prove the
system’s ability to detect concept drift and accurately identify malicious traffic. The proposed system
consistently achieves high accuracy (98.60%) and an F1-score of 99.14%, while requiring only 0.5% of
labeled data per batch, outperforming other state-of-the-art techniques. Such results prove the effec-
tiveness of combining concept drift detection, informative active learning, and incremental learning.
For future work, the system could be improved by incorporating a more sophisticated unsupervised
concept drift detection module that operates directly in the multidimensional space of input features.
This enhancement would further reduce the need for human expert feedback and the cost of labeling
by triggering active learning only when concept drift is detected.
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