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Abstract: Recent advances in distributed vehicle-to-vehicle communication promise to transform the user’s driving ex-
perience, providing new services capable of improving safety, efficiency and quality of travelling. Due to the
large amount of information exchanged, a major challenge of Vehicular Networks is the adoption of appropri-
ate data dissemination protocols that ensure good performance in real-time event detection, while guarantee-
ing low communication overhead. To this aim, this paper proposes an adaptive event dissemination algorithm
which exploits Population Protocols (PPs) for modelling vehicle interactions as coordinated behaviors of au-
tonomous agents in a distributed system. The experimental evaluation performed on realistic vehicle tracks
over real-world maps demonstrates the system’s ability to efficiently disseminate information in the network
in order to support reliable and distributed event detection services.

1 INTRODUCTION AND

RELATED WORKS

Nowadays, modern vehicles can increasingly be seen
as smart entities capable of moving around in an
informed manner, while collecting, processing and
sharing data with their peers or other nodes in the net-
work infrastructure. This leads to the concept of ve-
hicular networks, where groups of entities (vehicles)
act as autonomous agents that interact with each other
to exchange relevant data, such as traffic information
or events of interest, in the context of a temporal-
spatial proximity. The increasing autonomy of vehi-
cles opens up new opportunities to adopt agent-based
models for distributed problem-solving in vehicular
environments. For instance, each vehicle can be con-
sidered as an autonomous agent capable of making
local decisions, while collaborating with others to
achieve global goals such as efficient data dissemi-
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nation. Given the large volumes of information ex-
changed, an important role in the vehicular network
architecture is played by proper data dissemination
protocols (Shahwani et al., 2022). In this perspective,
several schemes have been proposed in the literature,
distinguished by whether they rely on existing infras-
tructure or operate in a distributed way (Rashid et al.,
2020). In the first case, several fixed units named
Road Side Units (RSUs) are responsible for gath-
ering/providing information from/to vehicles; con-
versely, a totally distributed approach consists only of
vehicles that interact with each other based on their
mutual physical distance.

The infrastructure-free approaches are preferable
for real-word applications because they require a
lower installation and maintenance cost than their
counterparts; however, they poses severe challenges
to be addressed (Rashid et al., 2020). For instance,
message congestion can occur when the density of ve-
hicles is high, or also the dissemination of an event
may take a long time if there are few vehicles in the
area of interest. Unfortunately, there are no standard
approaches to deal with these issues and various so-
lutions have been proposed in the literature, each of
which is strongly dependent on the adopted routing
strategies (Bouk et al., 2015).



Some techniques exploit additional vehicle data
(e.g., driving directions) to select one or more elite
vehicles and create clusters through which informa-
tion can be routed efficiently. In (Esmaeilyfard et al.,
2017), the authors designed a middleware to be placed
in a three-layered architecture that includes mecha-
nisms to control the creation of dynamic groups based
on characteristics of the agents. Within the cluster,
one node is selected as the group leader to manage
and supervise the group itself, and to be the one al-
lowed to communicate with other road entities in or-
der to reduce the network overload.

In general, the existing strategies add a signifi-
cant processing and communication overhead to sup-
port reliable data dissemination to the vehicular net-
work, thus causing link failures or degradation in net-
work scalability in the worst case (Al-Rabayah and
Malaney, 2012). This aspect negatively affects the
detection of an event of interest to the driver com-
munity (Bouk et al., 2015). For example, in (Artimy
et al., 2005) a scenario is described in which a ve-
hicle detects an event in its surrounding and shares
it with the rest of the network by adopting a pre-
defined frequency for message broadcast. If every
nearby vehicle receives the message and forwards it to
its neighbors, the dissemination strategy that emerges
inevitably causes several problems, e.g. network con-
gestion, loss of messages, loss of signal, that im-
pair the vehicle’s ability to identify the event within
its range of interest. Most of the works present in
the literature achieve high performance in recogniz-
ing an event of interest, but do not address the method
through which detected events are disseminated.

In order to design an efficient and effective solu-
tion for event dissemination in vehicular networks, we
propose an adaptive communication scheme based on
Population Protocols (PPs). Vehicular networks rep-
resent a natural application domain for multi-agent
systems, where autonomous agents (vehicles) must
collaborate to solve distributed problems in dynamic
and resource-constrained environments. Leveraging
agent-based frameworks, such as PPs, enables the
design of scalable and adaptive solutions for com-
munication and decision-making in these networks.
Aim of the population protocols is to model the in-
teractions between agents, allowing them to act as
a distributed multi-agent system capable of collabo-
rative decision-making and efficient data dissemina-
tion; as shown in our approach, PPs can be success-
fully adopted for handling both data dissemination
and event detection tasks. This allows to meet the
requirements described above while not requiring ad-
ditional processing steps compared to state-of-the-art
techniques. Early implementations of the PPs were

focused on typical problems of distributed scenarios,
from majority problems (Berenbrink et al., 2018) to
leader election (Doty and Soloveichik, 2018). This
approach has also found direct use in vehicular net-
works, where a simple counting problem can be used
to validate a generic event that occurred in the ve-
hicular network (Hsiao et al., 2011). The actual ap-
plication of PPs to vehicle-to-vehicle communication
poses several challenges, as their implementation de-
pends on the specific scenario (Michail et al., 2011).
Furthermore, it is worth noting that adapting the PP
model to the vehicular context is not trivial as many
theoretical assumptions may not be satisfied, such as
vehicle speeds (Sadano et al., 2019) or transmission
failures (Di Luna et al., 2019) .

The remainder of the paper is organized as fol-
lows. Section 2 describes the proposed adaptive event
dissemination mechanism and details the underlying
communication protocol. The results of the experi-
mental assessment are discussed in Section 3, while
Section 4 states our conclusions.

2 ADAPTIVE EVENT

DISSEMINATION

The reference scenario for the proposed method in-
volves the exchange of information in a vehicular
network in which each node, modeled as an au-
tonomous agent, is capable of acquiring data (sens-
ing layer), transmitting it to other vehicles (commu-
nication layer), and processing information received
in order to perform the actual event detection (appli-
cation layer). The sensing layer may consist of either
physical devices capable of capturing environmental
data, or humans-as-a-sensor for reporting unexpected
events such as road accidents, assemblies, strikes,
traffic diversions. This paper focuses on the design of
the communication layer, which implements all the
required functionalities for communication between
vehicles or with other entities available on the road.
This layer models the interactions between agents in a
population to enable all of them to converge on a com-
mon state, which in our case corresponds to a high-
level view of monitored phenomena.The communica-
tion layer is composed of the two main modules illus-
trated in Fig. 1, namely the Population Protocol Mod-
ule (PPM) and the Adaptive Communication Module
(ACM).

2.1 Population Protocol Module

The PPM represents the core of the communica-
tion layer and implements the event dissemination al-
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Figure 1: Principal components of the Communication Layer.

gorithm among the vehicles. Population Protocols
(PPs) (Angluin et al., 2004) were originally conceived
to describe a population of resource-constrained de-
vices, named agents, characterized by random move-
ments, which rely only on their random interactions
in order to accomplish a distributed task. In this
work, this theoretical model is adapted to handle ve-
hicle interactions, while still guaranteeing its theoret-
ical properties. Each population agent i is modeled as
a finite-state automaton (see Fig. 2). It is initialized
with an input value si, from an alphabet S, that is
used by an input mapping function l(si) to set its ini-
tial state si 2 S, where S is the state space. When two
agents, i and j, interact with each other, their states are
updated according to a transition function d(si,s j).
PP agents are unable to determine whether the imple-
mented algorithm has achieved convergence, but, at
any time, they are able to return an output value that
describes their perception of the surrounding environ-
ment. This information is generated through an out-
put mapping function W(si), which maps the current
state into a value z 2 Z, where Z is the output alpha-
bet. According to this theoretical model, the PP pro-
posed here is defined by the following components.

2.1.1 Input Alphabet

The input alphabet S is defined as S = {id}, where
id is an n-bit symbol that represents the vehicle iden-
tifier assigned during the initialization. A fully dis-
tributed way of assigning the id is for each vehicle to
randomly choose its own; please note that since this
identifier is not used for critical functions, id colli-
sions are permitted.

2.1.2 State Space

The state of an agent should contain all the infor-
mation needed during the execution of the algorithm.
The state is encoded as s = {id, E, src}, where E is
a vector containing all the events that the vehicle has
collected, and src is a binary field which allows the

source of the state to be distinguished. Specifically,
src = 1 indicates that the state is generated by the ve-
hicle’s sensing layer, while src = 0 indicates that the
state comes from other vehicles.

2.1.3 Event Encoding

Events, both physical measurements and other infor-
mation, are stored in a list, E = {ei}i=1,M , that, for the
sake of simplicity, can be assumed to be of unlimited
length (this simple assumption avoids the implemen-
tation of a replacement strategy, e.g., remove the least
recent or least relevant event). Each ei consists of a set
of fields, namely ei = {Class, id, T T L, src, x, y, T},
where:

• Class: specifies the type of event. It is possible to
define a specific event ontology depending on the
specific considered scenario;

• id: identifier of the vehicle that detected the event;
• T T L: the Time-To-Live of the event. When GPS

is not available, TTL can be used to estimate the
proximity of the event;

• src: similarly to the state attribute src, it dis-
criminates the events detected by the vehicle it-
self (src = 1) from those coming from the others
(src = 0);

• x,y: spatial coordinates used only when GPS is
available;

• T : timestamp indicating the time at which the
event occurred (or was detected), e.g., 32-bit Unix
Epoch Time.

2.1.4 Input and Output Mapping Functions

The input mapping function defines the initial state of
a vehicle based on its input value. Since in our proto-
col, the input value is a random identifier, and initially
each vehicle is not aware of any event, the input map-
ping function for the i-th vehicle sets its initial state
as: si = {idi, E = /0, src = 1}. The output function W
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Figure 2: Population Protocol flow diagram for the i-th agent.

can be invoked by any service of the application layer
and returns the value produced by the vehicle on the
basis of its current state. In our model, it returns the
current list of events of which the vehicle is aware:
W(si) = W({idi, E, src}) = E.

2.1.5 Transition Function

The transition function represents the core of the en-
tire PP model and defines the high-level logic of the
event dissemination algorithm, whose goal is to prop-
agate events between vehicles as efficiently as pos-
sible. In the theoretical model, the agents’ interac-
tions are considered (i) unpredictable because there
is no knowledge about the order in which they oc-
cur, and (ii) asymmetric, i.e., one of the agents is
the initiator of the interaction and another the respon-
der. In order to adapt this model to the vehicular net-
works scenario, it is necessary to adopt a communi-
cation scheme that overcomes the communication is-
sues that characterise real-world message exchange,
while guaranteeing the main properties of PPs. In par-
ticular, we use the VPP communication scheme, pre-
sented in (Bordonaro et al., 2021), which guarantees
that state updates are performed consistently. During
VPP interactions it is possible to distinguish the trans-
mitting and the receiving vehicles, thus allowing for
an asymmetrical transition function, as envisaged by
PP models. The receiving vehicle updates its state by
incorporating into its event list the events contained in
the received state. When the received state is internal
(i.e., it comes from the transmitting vehicle’s sensing
layer), it is considered recent and is added to the event
list by setting the maximum TTL value. If the event
is already present, its TTL is simply updated to the
maximum value. Conversely, if the received state is
external (i.e., the transmitting vehicle is simply for-
warding state information), the TTL of the events is
decreased by one and the events are added to the event
list only if T T L > 0. This aging mechanism prevents
information that is no longer relevant (no longer di-
rectly detected by any vehicle in the area) from being

Algorithm 1: Adaptive Communication Module - Sending
Rate update function.

Input: min rcv rate, max rcv rate, min snd rate,
max snd rate, w

1: rcv rate = w.receivedMessages()/w.duration()
2: if rcv rate > max rcv rate then

3: snd rate = max(min snd rate,snd rate/2)
4: else if rcv rate < min rcv rate then

5: snd rate = min(max snd rate,snd rate⇤2)
6: end if

propagated in the network.

2.2 Adaptive Communication Module

The Adaptive Communication Module (ACM) oper-
ates in conjunction with the On-Board Unit (OBU),
whose aim is to physically implement the communi-
cation protocols, such as WAVE, IEEE 802.11p, and
the whole protocol stack adopted for VANETs. The
ACM can be considered as a controller that ensures
that all agents will adapt their individual behavior to
the network conditions, with the side effect of improv-
ing them.

This control strategy makes each vehicle capable
of regulating its sending rate according to its per-
ceived receiving rate. Namely, a high receiving rate
suggests that the vehicle is in a high-density area; in
this case, in order to reduce the overload on the com-
munication network, each vehicle decreases its own
sending rate. Since all vehicles act in accordance with
this strategy, such a reduction will result in a lower
receiving rate over the whole area. On the contrary, a
too-low receiving rate may negatively affect the time-
liness of event detection; in this case, all vehicles in
the area will increase their sending rate until the ef-
fect of this action will be perceived by the vehicles
themselves. More specifically, the ACM tries to main-
tain the receiving rate between two acceptable thresh-
olds, min rcv rate and max rcv rate, whose values
can be chosen empirically. The updating rule follows
a logic of multiplicative increase and decrease, so as



to quickly adapt to fast-changing working conditions.
The sending rate is doubled when the receiving rate is
below the minimum threshold, and halved when the
receiving rate is above the maximum threshold, as re-
ported in Algorithm 1. Such analysis is performed by
measuring the number of messages received within
fixed-length sliding windows (indicated as w in Algo-
rithm 1), whose size can be set empirically, e.g., in
our system we considered windows of 10 seconds.

Fig. 3 shows an example of the effect of this adap-
tive strategy on the vehicle’s sending rate. At time
instant t1, the vehicle detects that the receiving rate
is within the correct range, so the sending rate is not
changed. At instant t2, the receiving rate goes above
the maximum threshold and, as a consequence, the
vehicle halves its sending rate. All vehicles act ac-
cordingly, so that after a few time steps every vehicle
perceives a receiving rate that is in the safety range.
A symmetrical effect is observed at time t6, where an
excessively low reception rate causes the sending rate
to double.

3 EXPERIMENTAL EVALUATION

3.1 Experimental Settings and Metrics

The experimental evaluation was performed through
the VEINS framework (Sommer et al., 2011), which
is based on the SUMO traffic simulator (Lopez et al.,
2018) and the OMNET++ event simulator (Varga,
2010). We considered different scenarios, defined by
varying the following properties:

• Map Size: Large Maps (12 linear km of roads
over an area of 1 km2) and Small Maps (6 linear
km of roads over an area of 0.25 km2);

• Vehicle density: High Density (40 vehicles per
linear kilometer) and Low Density (20 vehicles
per linear kilometer);

• GPS availability: we assumed that in some cir-
cumstances vehicles are equipped with GPS sen-
sors, while in others this information is not avail-
able;

• Broadcasting Range: when the adaptive commu-
nication strategy is used, the sending rate is the
range [5,30] pkts/s; otherwise, the broadcasting
rate is set to 1 pkts/s.

In all scenarios, the communication range of the
vehicles is 70 m. The dissemination protocol is eval-
uated by considering the events detected by each ve-
hicle in its Area of Interest (AoI), using the follow-
ing metrics: true positives (relevant events within

rate_max

rate_min

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

snd_rate            rcv_rate

Figure 3: Example the changes in the receiving (rcv rate)
and sending rate (snd rate) as a result of the ACM strategy.

the AoI), true negatives (irrelevant events outside the
AoI), false negatives (events within the AoI that the
vehicle does not consider relevant), and false positives
(events outside the AoI that the vehicle considers rele-
vant). Based on these four basic metrics, also average
Precision, Accuracy, Recall, and F1-score are com-
puted over the n vehicles involved in the simulation.

Moreover, in order to quantitatively describe the
impact of the adaptive communication strategy on the
communication channel, the experiments report the
sending and receiving rate at time t, averaged over
all vehicles, and the number of messages sent from
the beginning of the simulation until time t, averaged
over all vehicles, i.e., pkts(t).

3.2 Evaluation Results

In order to evaluate the advantages of our design
choices, we compared three variants of the system
proposed here. The first, called “GPS”, requires ve-
hicles to be equipped with GPS sensors that make
them able to know their position and associate co-
ordinates to the detected events. Preliminary exper-
iments showed that when GPS is available, the event
dissemination protocol achieves very good perfor-
mance, regardless of the communication strategy cho-
sen. Therefore, for the sake of brevity, in the scenario
labeled as “GPS” a static sending rate is used. The
second and third versions of the system cover the most
challenging scenario where vehicles are not equipped
with GPS sensors, and can therefore adopt either the
“static” or the “adaptive” communication strategy.

Fig. 4 shows the performance evaluation of the
proposed event dissemination protocol in small and
large map scenarios, with high density and low den-
sity of vehicles. All plots indicate that GPS sensors
allow to achieve the best performance, with values
of accuracy, precision, recall and F1-score, averaged
over all scenarios, equal to 0.99, 1.00, 0.98, and 0.98,
respectively. It can also be observed that when ve-
hicles are equipped with GPS sensors, the precision
reaches the value 1, i.e., the system has no false pos-
itives. This is because the events detected by the ve-
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Figure 4: Comparison of Accuracy, Precision, Recall, and F1-Score in small and large map scenarios, with high density and
low density of vehicles. In each plot three variants of the system are compared: with GPS sensors (“GPS”), without GPS with
a static sending rate (“Static”), and without GPS with the adaptive communication strategy (“Adaptive”).

hicles are georeferenced, which makes each node re-
ceiving a message able to correctly detect whether an
event is in its AoI or not. Therefore, it never hap-
pens that an event outside the AoI is wrongly labelled
as relevant. Without GPS data, in all the considered
scenarios, the curves referring to the adaptive com-
munication strategy exhibit essentially the same trend
as those related to the static transmission rate. This
indicates that adaptive transmission does not lead to a
significant reduction in system performance, regard-
less of map size or density, but instead results in fewer
packets being sent, as will be observed in the experi-
ments below. To be more specific, the accuracy, pre-
cision, recall and F1-score values, averaged over all
scenarios are 0.85, 0.88, 0.87, and 0.85, respectively.
It is worth noting that under the high-density scenar-
ios (see plots in the first and third rows), the values of
all indicators, for all three system variants, are higher

than those related to maps of the same size but with
a lower density. This is mainly due the fact that in
denser networks, vehicles exchange more information
and, as a result, knowledge of detected events propa-
gates more quickly.

The behavior of the adaptive strategy without GPS
data was further analyzed by measuring the sending
and the receiving rates and the cumulative number
of packets sent, averaged over all vehicles. As men-
tioned above, a high transmission rate might cause ex-
cessive energy consumption, while lower values can
lead vehicles to lose useful information, thus reduc-
ing detection accuracy. Results reported in Fig. 5
and Fig. 6 show that the adaptive mechanism is ef-
fective in maintaining the receiving rate between the
min and max thresholds. This is achieved by adjust-
ing the sending rate according to the perceived con-
ditions. In high-density scenarios, both in small and
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Figure 5: Receiving and sending rates of the “adaptive” communication strategy (top row), and number of packets sent with
“static” and “adaptive” strategies (bottom row) on small maps with high density (a) and low density (b) of vehicles.

large maps (top of Fig. 5.a and Fig. 6.a, respectively),
the adaptive mechanism reacts to the perceived high
receiving rate, which is interpreted as a symptom of
high vehicle density, by reducing the sending rate.
This behavior results in significantly fewer messages
being sent than the static strategy (bottom of Fig. 5.a
and Fig. 6.a), leading to reduce energy consumption,
but without compromising event detection capability,
as discussed previously. Conversely, it is possible to
note that when low-density maps are considered (top
of Fig. 5.b and Fig. 6.b), the adaptive strategy com-
pensates for the presence of fewer vehicles in a given
area by slightly increasing the sending rate to ensure
that the event dissemination protocol is fed with an
adequate amount of information. As expected, this
results in a higher number of messages sent than the
static strategy (bottom of Fig. 5.b and Fig. 6.b).

4 CONCLUSION

This paper proposes an adaptive event dissemination
algorithm to support the development of efficient and
reliable event-based cooperative services in in vehic-
ular networks modeled as multi-agent systems. The
proposed algorithm is based on the distributed model
of population protocols, which allows the design of a
lightweight and efficient way of disseminating events
and information acquired by single vehicles, without
imposing any communication burden to coordinate
the interaction between peers, as required by other so-
lutions proposed in the literature.

The fully distributed nature of the approach allows
its adoption even in scenarios where external infras-
tructures are missing and thus cooperation between
vehicles can only be supported by agents interactions,
or even when vehicles are equipped with a reduced
set of sensors. Furthermore, the adaptive nature of the
proposed algorithm makes the system capable of re-
acting to rapidly changing network conditions by tun-
ing its behavior. The experimental evaluation, which
considered multiple scenarios characterized by differ-
ent map sizes and network densities, showed that the
proposed system achieves high performance in event
dissemination while optimizing resource consump-
tion according to network conditions. These results
confirm the robustness of the multi-agent approach,
demonstrating its ability to maintain efficiency and
scalability across different scenarios.

As future work, we plan to extend the proposed
system by dynamically adjusting the threshold with
adaptive behavior modulated through a self-learning
approach, thus eliminating any preliminary set-up and
implementing true plug-and-play behavior.
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REFERENCES

Al-Rabayah, M. and Malaney, R. (2012). A new scalable
hybrid routing protocol for vanets. IEEE Trans. on
Vehicular Technology, 61(6):2625–2635.

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., and Per-
alta, R. (2004). Computation in networks of passively
mobile finite-state sensors. In Proc. of the Twenty-
Third Annual ACM Symp. on Principles of Distributed
Computing (PODC ’04’), page 290–299.

Artimy, M., Phillips, W., and R.son, W. (2005). Connectiv-
ity with static transmission range in vehicular ad hoc
networks. In 3rd Annual Communication Networks
and Services Research Conf. (CNSR’05), pages 237–
242.
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