

Ph.D. Thesis

Vincenzo Agate

Reputation Management Algorithms
in Distributed Applications

For my family and for my love, for everything you do

Abstract
Nowadays, several distributed systems and applications rely on interactions be-
tween unknown agents that cooperate in order to exchange resources and services.

The distributed nature of these systems, and the consequent lack of a single
centralized point of control, let agents to adopt selfish and malicious behaviors in
order to maximize their own utility. To address such issue, many applications rely
on Reputation Management Systems (RMSs) to estimate the future behavior of
unknown agents before establishing actual interactions.

The relevance of these systems is even greater if the malicious or selfish behavior
exhibited by a few agents may reduce the utility perceived by cooperative agents,
leading to a damage to the whole community. RMSs allow to estimate the expected
outcome of a given interaction, thus providing relevant information that can be
exploited to take decisions about the convenience of interacting with a certain
agent. Agents and their behavior are constantly evolving and becoming even more
complex, so it is increasingly di�cult to successfully develop the RMS, able to
resist the threats presented.

A possible solution to this problem is the use of agent-based simulation software
designed to support researchers in evaluating distributed reputation management
systems since the design phase.

This dissertation presents the design and the development of a distributed sim-
ulation platform based on HPC technologies called DRESS. This solution allows
researchers to assess the performance of a generic reputation management system
and provides a comprehensive assessment of its ability to withstand security at-
tacks. In the scientific literature, a tool that allows the comparison of distinct
RMS and di�erent design choices through a set of defined metrics, also supporting
large-scale simulations, is still missing.

iii

The e�ectiveness of the proposed approach is demonstrated by the application
scenario of user energy sharing systems within smart-grids and by considering user
preferences di�erently from other work.

The platform has proved to be useful for the development of an energy sharing
system among users, which with the aim of maximizing the amount of energy
transferred has exploited the reputation of users once learned their preferences.

Acknowledgments

I want to thank all the people who helped me along the way, both professionally
and personally. First, I would like to sincerely thank my advisor, Prof. Salvatore
Gaglio, for always sharing his knowledge and experience with me.

I wish to express my deepest gratitude to Prof. Giuseppe Lo Re, for everything
he has done for me, for being always there when I needed help with my work and
with my personal problems. I learned more from him than from anyone else since
the beginning of my Ph.D. research. I will forever be in debt.

I owe a huge debt of gratitude to Dr. Marco Morana and Dr. Alessandra
De Paola for constantly encouraging and inspiring me, and for all their comments
and suggestions to improve my research projects. Without their dedication and
hard work, none of this would have been possible.

Thanks to Prof. Simone Silvestri, your brilliant insights have been a tremendous
help, and I sincerely appreciate the time you took to guide me and my work.

I will be forever grateful to my dear friend Pierluca Ferraro for his invaluable
help over the past years and for being so incredibly supportive. When I didn’t feel
good enough, you always trusted me. You are the best.

Special thanks to all my amazing colleagues and friends at the NDS Research
Group and CPS Lab. It is always a great pleasure and honor to work with all of
you.

I am truly lucky to be surrounded by friends who always support me. I cannot
properly express what you all mean to me.

Last but not least, I can’t begin to express how thankful I am to my family,
and especially to my parents and my sister, who are always amazingly helpful and
patient in dealing with me. Thank you for your unwavering and unconditional
love and support. To my love, thank you from the bottom of my heart for your

v

unfailing enthusiasm, laughs and encouragement. I don’t know what I would do
without you. You make all the hard work worth it.

Contents

Abstract ii

Acknowledgments iv

Glossary xii

1 Introduction 1
1.1 Motivations and Goals . 4
1.2 Contributions . 6
1.3 Dissertation Outline . 7
1.4 Publications . 8

2 Model Assumptions and System Architecture 10
2.1 Existing Approaches . 11
2.2 Reputation Management Systems 13

2.2.1 RMS Model . 13
2.2.2 Security Attacks on RMSs 15

2.3 Simulation Models . 20
2.3.1 Platform Architecture . 22
2.3.2 Simulation Environment . 24
2.3.3 Agent-based Model . 26

2.4 Evaluation Metrics . 31
2.4.1 Accuracy Metrics . 31
2.4.2 Vulnerability Metrics . 33

CONTENTS vii

3 A General Purpose RMS 36
3.1 The Proposed RMS . 36
3.2 Experimental Evaluation . 39

3.2.1 Analysis of reputation trend 39
3.2.2 Analysis of accuracy . 42
3.2.3 Comparisons among di�erent RMS policies 43
3.2.4 Analysis of security . 45
3.2.5 System scalability . 46

4 A Domain Specific RMS 48
4.1 The Energy Sharing Application Domain 49
4.2 System Model and Assumptions . 54
4.3 Problem Formulation . 55
4.4 A Reinforcement Learning Approach for User Preference Learning . 59
4.5 Experimental Results . 62

4.5.1 Experimental setting description 62
4.5.2 Comparison approaches . 63
4.5.3 Performance Evaluation . 64

Conclusions 69

Bibliography 72

List of Figures

2.1 Overview of the DRESS architecture. 20
2.2 Logical overview of the simulation platform. Users can specify sim-

ulation parameters, agent characteristics, and algorithms used by
the RMS. The simulated network is analyzed through a customiz-
able evaluation module. 22

2.3 The distributed multi-agent simulation scheme. Agents are mapped
to system processes that communicate through the MPI protocol. . 24

2.4 Pool of processes managed by DRESS: (a) the MPI environment
starts a set of identical processes; (b) by reading the simulation
parameters, each process adopts its own behavior among leading,
active, or silent. (c) MPI messages sent by the leading process
cause some other processes to change their status (d). 25

2.5 Components of a specific agent. 26
2.6 The components of a distributed RMS. Each agent privately per-

forms the local trust evaluation and the information fusion algo-
rithms; the gossip protocol and the incentive mechanism regulate
the interactions with other agents. 28

2.7 The role of the truth-holder process. 33

3.1 Simulation of slandering attacks. Reputation values of the victim
agent as observed by neutral agents while varying the percentage of
attacking agents. 39

3.2 Simulation of promoting attacks. Reputation values of the victim
agent as observed by neutral agents while varying the weight — of
gossiped information. 40

LIST OF FIGURES ix

3.3 Simulation of Whitewashing attacks. Reputation values of a selfish
agent that joins the network after 70 time steps, varying the initial
reputation value assigned by the RMS. 41

3.4 Simulation of traitor attacks. Reputation values of a traitor agent
which alternates cooperative and selfish behaviors, varying the –

factor that weights the recent experience to build the local reputation. 41
3.5 Comparison between the reputation of the victim agent vi computed

by the truth-holder, i.e., Rú
i (t), and the average reputation estimated

by the distributed RMS, i.e., ri(t), while varying the percentage of
malicious agents involved in the slandering attack. 42

3.6 Average system error, i.e., eú
i (t), of the RMS considered as sample

case during a slandering attack against the victim agent vi, while
varying the percentage of malicious agent involved. 42

3.7 Reputation (a, c) and average system error (b, d) measured while
simulating slandering (a, b) and promoting (c, d) attacks performed
on a network of 300 nodes with 30% of implicated agents. The
di�erent curves are obtained while varying the parameter — which
weights gossip information with respect to the local trust. The GT
curve shows the reputation computed by the truth-holder. 44

3.8 Reputation (a) and average system error (b) measured while simu-
lating a slandering attack in which the 20% of the network is impli-
cated and all the agents have a cooperativeness degree of 0.8. The
di�erent curves are obtained in networks composed of 100, 200, 300,
400, and 500 nodes. The GT curve shows the reputation computed
by the truth-holder. 46

3.9 Simulation time using 4, 8, and 16 single-core nodes. 47

4.1 Mismatch between energy consumption (a) and PV generation (b). 50
4.2 Network topologies: (a) peer-to-peer model, (b) prosumers con-

nected to microgrids and (c) prosumers group model (Parag and
Sovacool, 2016). 51

4.3 E�ciency of the algorithms with perfect knowledge of the power
consumption. 64

LIST OF FIGURES x

4.4 E�ciency of the algorithms with prediction of the power consumption. 64
4.5 Losses incurred for the algorithms with perfect knowledge of the

power consumption. 65
4.6 Cumulative transferred energy divided by time for di�erent algo-

rithms in the course of a year. 66
4.7 Average absolute percentage error on learned probabilities after dif-

ferent periods, by varying the amount of available energy in the
system. 67

4.8 E�ciency of the system after di�erent periods, by varying the amount
of available energy in the system. 68

List of Tables

3.1 Simulation parameters of the RMS considered as sample case. . . . 45
3.2 Security evaluation of the RMS considered as sample case. 45

4.1 Notation Summary . 57

Glossary

AMI Advanced Metering Infrastructure
ART Agent Reputation and Trust
DC Direct Current
DR Demand Response
DRESS Distributed RMS Evaluation Software
ESS Energy Sharing System
EWMA Exponentially Weighted Moving-Average
GAP Generalized Assignment Problem
HPC High Performance Computing
MAS Multi-Agent System
MILP Mixed Integer Linear Programming
MPI Message Passing Interface
PV PhotoVoltaics
QoS Quality of Service
RMS Reputation Management System
SCN Single Core Node
UPL User Preference Learning
VPP Virtual Power Plant

Chapter 1

Introduction

The pervasive use of the Internet in many aspects of our lives, such as in com-
merce, social interactions and the exchange of information and services has led
to the establishment of a new generation of increasingly complex and advanced
applications. Most of the software tools through which users access the services
available on the network are based on agents who, while maintaining autonomy
and individuality, cooperate by solving shared problems. The early architectural
paradigm that exploited centralized computing platforms has been replaced by
distributed and strongly interconnected systems. This scenario, while o�ering fas-
cinating opportunities, presents numerous problems, among which one of the most
relevant is the need to estimate the reputation of the agents involved in the interac-
tions, in order to ensure a safe and e�cient collaboration between the participants
in the network. In fact, in a distributed system agents often have to interact with-
out having a prior mutual knowledge and without having su�cient information to
establish secure exchanges.

One of the most accepted solutions to this problem is the use of Reputation
Management Systems (RMSs). Typically, reputation-based systems of trust cal-
culate values of reliability of agents, whether they are software or humans, on the
basis of evaluations issued by participants at the end of direct interactions, also
taking into account past history. The applications that use these systems aim
to support the participants in identifying dangerous agents, who adopt malicious
and tampering behavior, in order to protect the entire system from possible abuse.

1. Introduction 2

Research into trust and reputation management systems is highly interdisciplinary
and cuts across a range of sectors such as networking and communication, data
management and information systems, e-commerce and service computing, artifi-
cial intelligence and social sciences.

In the recent past, many of the studies carried out in the field of reputation-
based trust systems have made enormous progress, both in defining solid theo-
retical foundations for the implementation of new methods and in verifying the
application of such systems to real scenarios. To better understand the importance
of such systems in everyday life, it is enough to remember that, in the e-commerce
sector, leading companies such as Amazon, eBay and NetFlix use reputation-based
mechanisms to ensure the quality and reliability of the services o�ered (Ayday and
Fekri, 2012). Many research e�orts have been made in the field of RMS, espe-
cially in the definition of specific metrics to obtain reliable evaluations and in the
creation of distributed algorithms for the propagation of reputation information.
Although a rich literature on RMS is available, the major limitation of many of
the solutions presented is the strong dependence of each of them on the specific
application scenario considered, and therefore the consequent lack of a general
formulation that can adapt to di�erent scenarios. Very little has been done to
integrate trust models related to di�erent communities and contexts, in order to
improve the robustness and reliability of data-intensive and large-scale distributed
applications. Nowadays it is necessary to face a precise study on the problem of
reputation management in distributed applications and this thesis wants to o�er a
contribution with the aim of filling the lack of generality of existing solutions. One
of the aspects that cannot be ignored is the robustness of RMS against cybersecu-
rity attacks. Most of the existing distributed algorithms for the implementation of
attack-resistant RMS often are inadequate to meet the requirements of generality
and abstraction from the specific application context. The need for new solutions
becomes evident and is still an open problem.

The aim of this thesis is to encourage the definition of innovative techniques
and models that can contribute to the creation of advanced reputation manage-
ment systems, distributed and adaptive. The research activity has been focused
on the creation of a simulation framework that allows an RMS designer to define
new methods that can be integrated into existing RMS, or combined in order to

1. Introduction 3

create innovative RMS. To achieve this goal, an innovative simulation platform
was designed and built to evaluate the e�ectiveness and robustness of di�erent
RMS solutions. The advanced model of simulation that is proposed, uses the tech-
nologies of High Performance Computing (HPC) to allow the inspection on a large
scale of the characteristics of an RMS, thanks to the high degree of parallelism
achievable. The development of simulation tools that allow to evaluate the perfor-
mance of RMS regardless of a specific application scenario, its robustness against
security attacks, and that also allow large scale simulations, has no precedent in
the scientific literature.

In order to show DRESS functionalities and to demonstrate the high degree
of configurability that can be achieved, part of the e�orts have focused on identi-
fying all the actions that a researcher must take step by step to implement their
application scenario and their RMS. For this reason it has been realized a case
study with all the characteristics of a distributed reputation system, to show how
to configure a particular RMS to be analyzed, and then how to run the simulation
using the features provided by the simulation tool. In this thesis an analysis of
the trend of the reputation agents will be described first, then an analysis of the
accuracy and a comparison between the same case study will be presented, modi-
fying some policies within the system under examination. A security analysis and
an assessment of scalability of the platform will be presented.

The experimental results show the usefulness of the simulation platform in the
application scenario of electricity distribution within smartgrid contexts, in partic-
ular in the integration of technologies for reputation estimation in the context of
Smart Grid Security. Renewable, heterogeneous and distributed energy resources
are the future of energy systems, as foreseen by the recent paradigm of Virtual
Power Plants (VPP). The generation of residential electricity, for example through
photovoltaic panels, plays a fundamental role in this paradigm, where users will
also have the opportunity to exchange energy resources by participating in a sys-
tem of energy sharing. Also in this context the reliability of the user has a leading
role, and succeeding in estimating the most participative users has turned out to
be a challenging task. The final part of this dissertation focuses on the application
scenario of such sharing systems and, unlike previous approaches, considers realis-
tic user behavior, taking into account preferences and the level of involvement in

1. Introduction 4

energy transactions. With the aim of maximizing the amount of energy exchanged
among smartgrid users, trying to minimize unsuccessful energy exchanges once
the nature of the users was known, the problem of matching energy resources is
addressed, as a MILP (Mixed Integer Linear Programming) problem, and it is
shown that the problem is NP-Hard. Since the solution to this problem requires
knowledge of the user’s behavioral model, in which reputation estimation is an
indicator of the degree of preference, involvement and participation, a heuristic
approach based on reinforcement learning and on a trade-o� between exploration
and exploitation for the learning of this model is proposed, while optimizing the
system’s performance. Comparison with state of the art approaches using realistic
simulations based on real tracks shows that the proposed method exceeds existing
schemes in terms of di�erent e�ciency metrics.

1.1 Motivations and Goals
Di�erent systems and distributed applications are based on interactions between
unknown agents that cooperate to exchange resources and services. The dis-
tributed nature of these systems, and the possible lack of a single centralized
control point, allows agents to adopt selfish and harmful behaviors to maximize
their usefulness. To tackle this problem, several distributed applications employ
Reputation Management Systems (RMS) to estimate the future behavior of un-
known agents before establishing actual interactions. The relevancy of these sys-
tems is even higher if the malicious or selfish behavior shown by a few agents can
reduce the perceived usefulness of the cooperative agents, causing damage to the
entire community. RMS enables the prediction of the expected outcome of a given
interaction, thus providing relevant information that can be used to make decisions
about the convenience of interacting with a certain agent.

The presence of a RMS represents an incentive to cooperative and honest be-
haviors, since a perceived high reputation generally corresponds to greater benefits.

RMSs are used in several application scenarios, such as online trading and e-
commerce frameworks (Tadelis, 2016), service oriented applications (Wahab et al.,
2015), peer-to-peer applications (Marti and Garcia-Molina, 2006), collaborative

1. Introduction 5

intrusion detection systems (Vasilomanolakis et al., 2015), social networks (Awuor
et al., 2018) and crowdsourcing (Wang et al., 2016).

Depending on the specific features of the considered application domain, RMSs
can be designed according to a centralized or a decentralized architecture. Central-
ized RMSs relies on a single server, which collects information about interactions
and computes a global and unique reputation value for each agent. Such a model
is best suited for those applications where interactions already follow centralized
paradigm, such as many e-commerce systems. On the other hand, distributed
RMSs, are characterized by the lack of central servers which manage and control
the interactions among agents. In such systems, the estimation of the reputation
values is performed by using feedbacks provided by the agents involved, and is
based on the execution of a distributed cooperation algorithm. Distributed co-
operation algorithms, generally allow the whole community to contribute in the
reputation evaluation (Hendrikx et al., 2015).

A distributed architecture prevents the existence of a single point of failure and
represents a well scalable solution because of the elimination of a potential perfor-
mance bottleneck. However, such an architectural choice poses several challenges
to designers. First of all, evaluating the accuracy of reputation values estimated
by the RMS and the time required to convergence is not a trivial task. Some
RMSs are based on a sound mathematical formulation, which allows to theoret-
ically evaluate them (Kamvar et al., 2003), but its underlying assumption is not
always valid and represents a strong constraint for designing new systems. More-
over, it is often di�cult to distinguish the e�ect of the adopted reputation model
from that of the distributed protocol used to spread information over the agent
network. Finally, another critical issue is that distributed RMSs are sensitive to
fake information disseminated into the system by malicious users. Such a behav-
ior represents an actual security attack, since, by altering reputation estimations
produced by RMSs, it is possible to induce users to interact with malicious agents.
The level of vulnerability of a specific RMS to di�erent types of attack depends
on the design of its components and it is very di�cult to evaluate the impact of
di�erent choices since the design phase.

A wide range of e�orts has been devoted to address these challenges. Neverthe-
less, no simulation environments which allow to address all these issues through a

1. Introduction 6

general approach that can be applied to di�erent application scenarios were found
in the literature.

In order to address the above issues, this thesis presents DRESS, a Distributed
RMS Evaluation Simulation Software, which allows researchers to evaluate the
performance of a generic RMS and its vulnerability against several security attacks.
DRESS allows to compare distinct RMSs and di�erent design choices through a
set of well-defined metrics, also supporting dynamic and large-scale simulations.
DRESS simulates a distributed environment where several agents interact, and
allows designers to define the specific features of the RMS to be evaluated, the
behavior of each agent, and the set of security attacks to simulate. A set of high-
level interfaces allows to disregard some low level details (e.g., implementing the
agent communications, driving the simulations), so that the researcher can focus
on more important tasks, such as defining new reputation algorithms, or selecting
the specific features to produce the desired robustness. DRESS also represents an
automatic assessment tool aimed at computing quantitative metrics to evaluate
the vulnerability of a RMS to di�erent attacks. These results can be immediately
used to show the e�ects of di�erent design choices on the RMS’s performance.

1.2 Contributions
The main contributions of the work presented in this dissertation are:

• The design and the implementation of a Distributed RMS Evaluation Simu-
lation Software, which allows a researcher to evaluate the performance of a
generic RMS and its vulnerability against several security attacks. DRESS
allows to compare distinct RMSs and di�erent design choices through a set
of well-defined metrics, also supporting dynamic and large-scale simulations.

• The provision of a solid formulation of the RMS components, a formal model
of four widely di�used security attacks, and a wider set of evaluation metrics.

• The test of all DRESS functionalities through a case study and the descrip-
tion of how a researcher can use this tool for RMS analysis.

1. Introduction 7

• The use of DRESS in a real case to design and implement an energy sharing
system based on user behaviors and preferences. Moreover the problem of
optimizing the performance of an energy sharing system while considering
realistic user behavioral models in terms of preferences and engagement is
defined. The problem using MILP and the demonstration that it is NP-
Hard is formulated. The proposition of an heuristic based on reinforcement
learning to learn the user behavioral model while optimizing the system
performance is presented. Finally, the proposed approach is compared with
state-of-the-art solutions using simulations based on real traces. Results
show that the proposed system significantly outperforms existing approaches
by e�ectively learning the user preference.

1.3 Dissertation Outline
The remainder of the dissertation is organized as follows.

Chapter 2 describes the main features common to most of RMSs presented in
the literature, providing the formal model adopted in the simulation framework,
and describes the most common attacks on the security of such systems. The same
chapter provides a description of the agent-based DRESS architecture, presents the
set of functionalities o�ered by the simulation framework to allow the definition
of new RMSs and describes the available evaluation metrics.

Chapter 3 describes a sample case in which DRESS is used to simulate di�erent
security attacks to a specific RMS.

Finally, Chapter 4 proposes a case of real use of DRESS in the simulation of
energy exchange between residential electricity producers within smartgrid and
in the implementation of an RMS for the optimization of this energy exchange
system. The use of DRESS has not only allowed to implement an RMS taking
into account the preferences of users, identifying the most collaborative, but has
also provided significant support for the design of a viable solution for maximizing
the amount of energy transferred.

1. Introduction 8

1.4 Publications
Parts of the work in this thesis have been published in several referred conference
proceedings and journals:

• Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re and Marco Morana.
DRESS: A Distributed RMS Evaluation Simulation Software. International
Journal of Intelligent Information Technologies (IJIIT), 16(3), 2020.

• Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re, and Marco Morana.
A Platform for the Evaluation of Distributed Reputation Algorithms. In
22nd IEEE/ACM International Symposium on Distributed Simulation and
Real Time Applications, DSRT 2018, Madrid, Spain, October 15-17, 2018,
pages 182-189, October 2018.

• Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re, and Marco Morana.
Vulnerability Evaluation of Distributed Reputation Management Systems.
In The 10th EAI International Conference on Performance Evaluation Method-
ologies, VALUETOOLS2016, pages 235-242, 2017.

• Vincenzo Agate, Alessandra De Paola, Salvatore Gaglio, Giuseppe Lo Re,
and Marco Morana. A Framework for Parallel Assessment of Reputation
Management Systems. In Proceedings of the 17th International Conference
on Computer Systems and Technologies 2016, CompSysTech ’16, pages 121-
128, New York, NY, USA, 2016. ACM.

• Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re, and Marco Morana.
A Simulation Framework for Evaluating Distributed Reputation Manage-
ment Systems. In Distributed Computing and Artificial Intelligence, 13th
International Conference, pages 247-254, Cham, 2016. Springer Interna-
tional Publishing.

Other articles have been submitted to international conferences and journals,
and are accepted or currently under review:

1. Introduction 9

• Vincenzo Agate, Atieh R. Khamesi, Salvatore Gaglio and Simone Silvestri.
Enabling peer-to-peer User-Preference-Aware Energy Sharing Through Rein-
forcement Learning. Submitted to IEEE International Conference on Com-
munications (Accepted).

• Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re, and Marco Morana.
A Simulation Software for the Vulnerability Evaluation of Reputation Man-
agement Systems. Submitted to ACM Transactions on Computer Systems.

During the PhD, the following other works were produced:

• Vincenzo Agate, Pierluca Ferraro, and Salvatore Gaglio. A Cognitive Ar-
chitecture for Ambient Intelligence Systems. In International Workshop on
Artificial Intelligence and Cognition (AIC 2018), Palermo, Italy, July 2018.

• Vincenzo Agate, Federico Concone, and Pierluca Ferraro. WiP: Smart Ser-
vices for an Augmented Campus. In The 4rd IEEE International Conference
on Smart Computing (SMARTCOMP 2018), Taormina, Italy, June 2018.

• Vincenzo Agate and Salvatore Gaglio. A Gesture Recognition Framework for
Exploring Museum Exhibitions. In International Conference on Advanced
Visual Interfaces (AVI 2018), Castiglione della Pescaia, Italy, May 2018.

• Vincenzo Agate, Calogero Crapanzano, Alessandra De Paola, Salvatore Gaglio,
and Go�redo La Loggia. SESAMO: An Integrated Framework for Gath-
ering, Managing and Sharing Environmental Data. In Proceedings of the
17th International Conference on Computer Systems and Technologies 2016,
CompSysTech ’16, pages 137-144, New York, NY, USA, 2016. ACM.

• Tiziana Catarci, Francesco Leotta, Andrea Marrella, Massimo Mecella, Daniele
Sora, Pietro Cottone, Giuseppe Lo Re, Marco Morana, Marco Ortolani, Vin-
cenzo Agate, Giovanni Renato Meschino, Giovanni Pecoraro, and Gabriele
Pergola. Your Friends Mention It. What About Visiting It?: A Mobile
Social-Based Sightseeing Application. In Proceedings of the International
Working Conference on Advanced Visual Interfaces, AVI 2016, Bari, Italy,
June 7-10, 2016, pages 300-301, 2016.

Chapter 2

Model Assumptions and System
Architecture

In distributed environments, a number of unknown entities interact with each other
in order to achieve complex goals. In such a situation, these entities could adopt
selfish behavior so as to increase their own advantages. For this reason, intelligent
techniques for estimating agents’ reputations are required. Reputation Manage-
ment Systems exploit feedbacks provided by the agents themselves, and are used to
predict their future behaviors. Unfortunately, these systems are very sensitive to
fake information injected into the system by malicious users; thus, evaluating the
robustness of a Reputation Management System to malicious behavior is a chal-
lenging task. This chapter presents DRESS, an agent-based simulation software
designed to support researchers in the evaluation of distributed Reputation Man-
agement Systems since the design phase. First, the literature related to simulators
for RMS is reviewed. Second, a formal model for the representation of reputation
management systems and a set of the most e�ective RMS attacks are defined.
Then, the general architecture of the proposed system is outlined, highlighting the
aspects that ensure its adaptivity and independence of the context. Furthermore,
an unbiased measure of the error between the reputation estimated by the RMS
and the true value of agent’s cooperativeness are described. Finally, some default
vulnerability metrics are introduced, in order to measure the robustness of a RMS
against the security attacks.

2. Model Assumptions and System Architecture 11

2.1 Existing Approaches
One of the earliest simulators for reputation systems is the ART-testbed (Agent
Reputation and Trust) (Fullam et al., 2005), whose main goal is the comparison of
two RMSs through objective metrics. It allows to evaluate di�erent strategies in
terms of the utility obtained by each agent, and also to estimate the accuracy of the
reputation with respect to the ground truth. However, ART does not support any
specific analysis of the vulnerabilities brought by the distributed RMS protocol,
that instead is fully enabled by DRESS. Moreover, ART has been designed for
Multi-Agent Systems (MAS) and its main limitation is that it forces the user to
meet specific constraints while modeling the RMS or the application scenario.

This limitation is common to many other simulation tools proposed in the lit-
erature. TREET (Kerr and Cohen, 2010) was designed to evaluate RMSs in a
marketplace scenario by measuring their robustness to some attacks (e.g., repu-
tation lag, proliferation, and value imbalance). This testbed introduces a certain
degree of dynamism by allowing agents to randomly join or leave the simulation,
but such events cannot be scheduled in advance. The testbed proposed in (Chan-
drasekaran and Esfandiari, 2015) requires the RMS to be modeled as a sequence
of graphs transformations and allows to evaluate the RMS vulnerability to few
attacks (e.g., slandering and self-promotion). However, the adoption of such a
very specific model may represent a limitation for many RMS designers and the
framework does not allow to simulate dynamic agents behaviors.

DART (Salehi-Abari and White, 2012) adopts a model based on prisoner’s
dilemma games to analyze di�erent RMSs, even against some security attacks. Its
main limitation is that the adopted decision making mechanism highly influences
the experimental evaluation, so preventing for a clear and unbiased assessment of
other RMS’s components.

Allowing the designers to implement their own model of RMS, and making it
easily comparable with other solutions drove some works such as, ATB (Jelenc
et al., 2013), TRMSim-WSN (Mármol and Pérez, 2009), and QTM (West et al.,
2010). Nevertheless, ATB mainly focuses on the decision making mechanism and
neglects other relevant components of a RMS, limiting once again the range of
systems that can be evaluated. An analogous limitation characterizes TRMSim-

2. Model Assumptions and System Architecture 12

WSN, which is intended only to model RMSs over wireless sensor networks. On
the other hand, QTM supports the definition of new RMSs without imposing con-
straints on the application scenario or the RMS model, and presents also a high
flexibility regarding the personalization of the security attacks. Researchers can
simulate an attack by using one of the six user models provided by the testbed,
or by defining new more complex user models. QTM adopts the hit rate, i.e., the
percentage of successful transactions performed by cooperative users, as the sole
metric to evaluate the RMS’s performance. Thus, the set of experiments that can
be run is quite limited and it is not possible to deeply evaluate which kind of
vulnerability mainly a�ects the considered system. The testbed proposed in (Iris-
sappane et al., 2012) introduces a wider set of metrics, even though it allows to
model as malicious only those agents that provide unfair ratings, so neglecting any
aspect related to the cooperativeness degree as service provider. TOSim (Zhang
et al., 2007) addresses the need for a flexible simulation by proposing a modular
framework, also intended for performing scalable simulations, whose application is
however limited to the evaluation of P2P overlay systems.

With respect to other works presented in the literature, DRESS is characterized
by the following desirable characteristics, partially identified in (Koutrouli and
Tsalgatidou, 2016):

• the inclusion of an abstract RMS model, that can be easily implemented
to represent a specific system, and that maintains the independence from a
specific application scenario;

• the inclusion of formal models for most common security attacks against
RMSs;

• the possibility of evaluating the e�ects of the decentralized nature of the
RMS under evaluation, by comparing the obtained reputation estimation
with reputation values obtainable by a centralized RMS which knows the
actual outcome of all transactions;

• the availability of a set of well-defined metrics, capable of evaluating both the
RMS’s accuracy and its vulnerability to security attacks while considering
di�erent facets;

2. Model Assumptions and System Architecture 13

• a high flexibility in varying the set of security attacks, the aspects of the
RMS to be analyzed, and the simulation scenarios;

• the possibility of performing large-scale simulations.

2.2 Reputation Management Systems
Regardless of the specific application domain, Reputation Management Systems
share the following common features. They are based on feedbacks provided by
the agents involved in interactions and use such information to build an overall
estimation of agents’ reputation. Feedbacks may be provided by human users, as in
e-commerce frameworks, or by software agents, as in QoS-based Service Oriented
Architectures, and this di�erence does not relevantly a�ect the formal definition
of RMS’s algorithms. For the sake of generality, in the rest of this dissertation the
term agent is adopted to indicate the generic participant of the RMS, both human
user and software agent. Reputation values are used to take future decisions, since
they enable a prediction of the future behavior of agents. Such decisions may be
taken directly by users, that may choose to not interact with users characterized
by a low reputation, or by software agents that may apply specific optimization
policies.

Given the above considerations, in what follows it is presented the adopted
RMS model which allows to highlight the main components common to most of
the RMSs described in the literature. Such a model is also exploited to provide
a formal definition of some security attacks which can a�ect the performance of
such systems.

2.2.1 RMS Model

Let V (t) be the set of agents, also called nodes, involved in the RMS, at time t.
Each agent vi œ V (t) acts as resource provider and can be characterized by an
intrinsic level of cooperativeness, R̃i. This information is unknown to other agents
and its estimation is one of the main goal of the RMS. Cooperativeness can be
related to quantity or quality of the provided resources, depending on the specific

2. Model Assumptions and System Architecture 14

distributed application. The cooperativeness can vary over time, thus it has to be
indicated as R̃i(t).

In a centralized RMS, after each interaction, the consumer agent vi sends a
feedback fij(t) about the provider agent vj to the centralized server, which aggre-
gates feedbacks to produce the reputation value of the provider, i.e., Rj(t). The
centralized information fusion function �C can accept as input the whole history
of collected feedbacks, as expressed by the following equation:

Rj(t) = �C

Q

ca[fij(tÕ)] tÕ=0:t≠1
viœV (t),vi ”=vj

R

db . (2.1)

In distributed RMSs, on the contrary, there is not a centralized server responsi-
ble for collecting feedbacks, and the agents are directly responsible for guaranteeing
that reputation information flows through the network. The interactions among
agents, aimed to exchange both services and reputation information, may be rep-
resented through an overlay reputation network, whose structure can be static or
can varies over time. At time t, the reputation network is represented by a set of
vertices and edges, i.e., G(t) = (V (t), E(t)). A network vertex in V (t) represents
an agent which is active at time t, while the presence of an edge (vi, vj) œ E(t)
indicates that the agents vi and vj know each other at time t. In such systems,
each agent vi estimates its own reputation of agent vj, i.e., rij(t), and sends its
opinions to its neighborhood in the reputation network, according to a distributed
gossip protocol. Messages collected from other nodes are used, together with the
past experience, in order to update the reputation estimation.

If neglecting the messages received from other agents, each agent vi can even
only exploit direct feedbacks in order to build a local reputation value, lij(t):

lij(t) = �
1
[fij(tÕ)]tÕ=0:t

2
, (2.2)

where � is the local reputation function, which considers as input the whole history
of direct feedbacks about agent vj and computes its current local reputation value.

On the other hand, according to the gossip protocol adopted by the distributed
RMS, at each time step, each agent vi may receive a set of messages from its
neighborhood in the reputation network, i.e., Mi(t). If Ni(t) is defined as the set

2. Model Assumptions and System Architecture 15

of neighbors of vi at time t, i.e., Ni(t) = {vk œ V (t) : ÷(vi, vk) œ E(t)}, Mi(t) can
be defined as follows:

Mi(t) = {Mkæi(t), ’vk œ Ni(t)} , (2.3)

where Mkæi(t) is the message received by vi from vk at time step t, or the void
message if no communication occurs between these two agents.

Messages may contain information about every agent vj regarding which the
sending agent vi has an opinion. We define Oi(t) as the set of agents for which the
agent vi has an opinion at time t. In general, the message generation, performed
through the function � can consider the whole history of direct feedbacks and
received information, as specified by the following equation:

Miæk(t) = �

Q

ca[fij(tÕ)] tÕ=0:t≠1
vjœOi(t≠1)

, [Mi(tÕ)]tÕ=0:t≠1

R

db . (2.4)

Messages collected from other agents, together with local reputation, can allow
agent vi to estimate the reputation of agent vj, as follows:

rij(t) = �
1
[lij(tÕ)]tÕ=0:t , [Mi(tÕ)]tÕ=0:t

2
, (2.5)

where � is the information fusion function which can accept as input the whole
history of collected feedbacks, expressed by the local reputation, and of received
messages.

It is worth noticing that RMSs presented in the literature do not consider
the whole history of feedbacks and messages at each time step. On the contrary,
commonly, current reputation depends on last reputation values and on latest local
reputation and messages, as follows:

rij(t) = � (rij(t ≠ 1), lij(t), Mi(t)) . (2.6)

2.2.2 Security Attacks on RMSs

This subsection introduces the most common attacks capable of weakening the cor-
rect functioning of distributed RMSs. Since the correct functioning of distributed

2. Model Assumptions and System Architecture 16

RMSs depends on the voluntary participation of agents in the coordinated e�ort
devoted to reputation estimation, fake feedbacks represent one of the most serious
threats. Indeed, while honest agents propagate truthful information, a malicious
agent may propagate fake information, in order to alter the reputation value for
some agents and achieve its own goals, that may contrast with systems goals.

Several type of security attacks which exploit the distributed nature of RMSs
and their dependence on agent feedbacks are reported in the literature (Ho�man
et al., 2009; Sun and Liu, 2012). Malicious agents performing these attacks are
insiders, i.e., authorized agents of the system that legitimately participate in rep-
utation evaluation. According to this assumption, the work in this thesis does not
consider security issues related to attacks performed by outsiders, such as threats
to authentication, integrity and confidentiality. Several approaches presented in
the literature can be adopted in order to guarantee a correct membership manage-
ment, such as that proposed in (Johansen et al., 2015). The following analysis also
assumes that attackers can obtain multiple identities and that are able to cooper-
ate in order to perform an orchestrated attack. A classification of security attacks
to RMSs performed by insiders can be made on the basis of their goals: promoting,
slandering, whitewashing, and traitor attacks. Promoting and slandering attacks
are characterized by the di�usion of fake information into the reputation network,
while whitewashing and traitor attacks are characterized by agents that adapt its
own behavior in order avoid the e�ect of an accurate estimation of their reputation.

Promoting Attack

The goal of promoting attacks (Lian et al., 2007) is to increase the reputation of a
target agent, in order to hide its antisocial behavior or to achieve an unjustified ad-
vantage over its competitors. For example, in an e-commerce scenario, a malicious
agent may want to increase its own reputation in order to hide its actual, unworthy,
behavior. Promoting attacks are usually performed by introducing fake positive
information into the reputation network, through the gossip protocol. Such an
attack is generally performed through an orchestrated plan which involves several
malicious agents, in order to bypass the typical rule which prevents an agent from
spreading feedbacks and information about itself. For the sake of our analyses,

2. Model Assumptions and System Architecture 17

it is possible to neglect whether an orchestrated attack is performed by distinct
malicious agents or by multiple identities of a single malicious agent.

Formally, if vi is the target agent which takes advantage of the attack, and V ú

is the set of malicious agents, for each vj œ V ú, performing a promoting attack
corresponds to send to each neighbor vk the message Mú which maximizes the
reputation that vk holds about the target agent vi. That corresponds to solve the
following problem:

’vk œ Nj(t), Mjæk(t) = argmax
Mú

(rki(t)) = argmax
Mú

(� (rki(t ≠ 1), lki(t), Mú)) .

(2.7)
It is worth noticing, that vj performs this optimization without knowing rki (t≠ 1)

and lki(t), which are known only to destination agent vk.
From eq. 2.7, it derives that the RMS component capable of withstanding

promoting attacks is the information fusion function, i.e., �, which determines
the balance among past history, direct experience, and gossiped information. In
order to increase the RMS resistance to fake information, the information fusion
function could also include di�erent weights to obtained information, e.g., on the
basis of reputation of gossiper agents.

Slandering Attack

The goal of slandering attacks (Ba and Pavlou, 2002) is to decrease the reputation
of some victim agents. Di�erently from promoting attacks, slandering attacks can
be performed by a single malicious agent. Nevertheless, in large communities,
an isolated intervention would have a limited e�ect, thus also slandering attacks
are generally performed through an orchestrated action which involves several
malicious agents. Such an attack is typical of e-commerce systems, where the
attacker aims to sabotage a competitor in order to obtain an indirect economic
profit. The slandering attack is performed by introducing fake negative information
through the gossip protocol.

If vi is the victim agent, and V ú is the set of malicious malicious agents, each
vj œ V ú performs the slandering attack by sending to its neighbors the message Mú

2. Model Assumptions and System Architecture 18

which allows to minimize their reputation about vi, as expressed by the following
equation:

’vk œ Nj(t), Mjæk(t) = argmin
Mú

(rki(t)) = argmin
Mú

(� (rki(t ≠ 1), lki(t), Mú)) .

(2.8)
Similarly as the promoting attack, the information fusion function is the main

component that can let the system resist through an opportune balancing of direct
experience and gossiped information.

Whitewashing Attack

A malicious agent performing a whitewashing attack (Feldman et al., 2004) aims
to avoid the consequences of its selfish past behavior, by leaving the system and
rejoining it with a new identity, thus to obtain the default reputation value assigned
to new users. The main vulnerability exploited by this type of attack is the choice
of a default reputation value which is comparable with the long-term reputation of
cooperative agents. Such a choice brings to RMSs which adopt an initial optimistic
approach and rely on negative feedbacks in order to discover malicious behaviors.

Let r0 be the default reputation value assigned to new agents, i.e., rij(0) =
r0, ’vi, vj œ V (0). The whitewashing attack can be modeled as the introduction of
a new node vk in the reputation network in a given time step t:

vk ”œ V (t ≠ 1), vk œ V (t). (2.9)

Agents that will interact with the new agent vk at time t, will assign it the
default reputation value:

rjk(t) = r0, ’vj œ Hk(t), (2.10)

where Hk(t) is the set of agents which hold an opinion of agent vk at time t, i.e.
Hk(t) = {vj : vk œ Oj(t)}.

If we define ui as the utility function which models the dependence of benefits
perceived by agent vi on costs due to maintain its cooperativeness and on its

2. Model Assumptions and System Architecture 19

reputation estimated by other agents, and cnew as the cost of creating of a new
identity, the whitewashing attack is advantageous for the agent vi if:

ui

1
R̃i(t ≠ 1), [rji(t ≠ 1)]vjœHi(t≠1)

2
< uk

1
R̃k(t), [rjk(t)]vjœHk(t)

2
≠ cnew. (2.11)

On the basis of such analysis, we can state that a greater resistance is expected
by RMSs that impose a low initial reputation value r0 and use positive feedbacks
to rise the reputation value.

Traitor Attack

In such an attack, a traitor agent (Marti and Garcia-Molina, 2006), alternates
cooperative and selfish behavior in order to maintain a reasonable reputation value
while keeps abusing system resources. Thus, a traitor acts honestly for a limited
portion of time in order to increase its reputation. Once such goal is achieved,
it starts to abuse system resources, and maintains an antisocial behavior until its
reputation became too low.

If �T1, �T2 and �T3 are consecutive time intervals, the behavior of a traitor
vi can be represented as follows:

Y
]

[
R̃i(t1) > R̃i(t2) ’t1 œ �T1, t2 œ �T2;
R̃i(t2) < R̃i(t3) ’t2 œ �T2, t3 œ �T3.

(2.12)

The length of cooperative and non cooperative time intervals is generally se-
lected in order to guarantee that the utility perceived by the traitor never goes
under a given threshold, i.e., uth. Thus, from the point of view of the traitor, the
selection of its cooperativeness has to respect the following constraint:

ui

1
R̃i(t), [rji(t)]vjœHi(t)

2
> uth, ’t œ �T2. (2.13)

RMSs more vulnerable to such type of attack are those which weight the past
history more than the recent experience.

2. Model Assumptions and System Architecture 20

AGENT&BEHAVIOR&

RMS&

DRESS%CORE%

SINGLE&POINT&
OF&VIEW&

GLOBAL&POINT&
OF&VIEW&

EVALUATIONS&

TOPOLOGY& BEHAVIOUR&
PATTERNS&

SERVICE&
EXCHANGE&

SIMULATION&PARAMETERS&

AGENT&CONFIGURATION&

DESIGNER&ANALISYS&

DESIGNER&

Figure 2.1: Overview of the DRESS architecture.

2.3 Simulation Models
DRESS aims to provide designers with high-level interfaces that allow to easily
define the behavior of a specific RMS according to the above described formal
model and to simply configure a simulation scenario, while neglecting low-level
implementation details1. A preliminary overview of the DRESS architecture is
shown in Fig. 2.1.

To achieve this goal, DRESS adopts a two-level architecture, where the up-
per level is designed for modeling the RMS and the simulation scenario, and the
lower level implements the communication and control primitives needed for ac-
tually driving the simulation. At the topmost layer, the RMS is modeled as a
fully distributed system in which autonomous agents interact in order to exchange
services. Such a behavior is implemented in the lowest layer through a computer
cluster where each agent is mapped on a di�erent process running on some physical
node, and where processes communicate with each other by exchanging messages
by means of the Message Exchange paradigm and using Message Passing Interface
(MPI). The MPI library allows each process to send and receive messages to and
from any other process within the simulation environment.

1The “DRESS Reference Manual” is available at http://diid.unipa.it/networks/ndslab/
DRESS/refman.pdf

http://diid.unipa.it/networks/ndslab/DRESS/refman.pdf
http://diid.unipa.it/networks/ndslab/DRESS/refman.pdf

2. Model Assumptions and System Architecture 21

The interaction between designers and DRESS involves only the highest level,
whilst all the low level functionalities remain hidden.

The simulator structure and its working mechanisms are developed with the
aim of hosting a generic RMS; thus, designers can define the behavior of a specific
RMS by implementing a set of specific classes which inherit their structure from
the abstract classes included in the DRESS library.

According to the available interfaces, designers can re-define some system fe-
atures in order to model a novel distributed application and its RMS, or they can
combine existing solutions already available in DRESS.

In particular it is possible to define the logic behind the agent service exchange
mechanism, the characteristics of a specific RMS through the implementation of
its algorithms and its communication patterns, and, finally, the set of di�erent
behaviors of agents to be simulated, both considering the collaboration degree
adopted in service exchanging and the truth exhibited while participating to RMS
functioning.

Even if these tasks require that designers are endowed with some programming
skills, they dramatically expand the range of applications and RMSs that is possible
to evaluate.

Once the distributed application and the RMS are fully defined, it is possible
to evaluate the RMS’s performance in di�erent simulation scenarios. The first
information required to define a simulation scenario is the topology of the dis-
tributed RMS, which specifies the set of neighbors each agent can interact with.
The simulation scenario is completed by defining the behavior pattern for each
agent over time. DRESS contains the definition of some basic behaviors, such as
cooperative/selfish, honest/slanderer/promoter, which can be applied with di�er-
ent degrees and changing over time. These behaviors can also be extended by
including in the simulation the new behaviors defined by the developer.

At the end of the simulation, DRESS allows to analyze the RMS’s performance
from the point of view of a specific agent, or by obtaining a global evaluation.
Focusing on a single point of view it is possible to analyze the trend over time of
the reputation of a given agent as estimated by another one, and of the percentage
of satisfied service requests for a specific agent.

2. Model Assumptions and System Architecture 22

SIMULATION
PARAMETERS

SIMULATION CORE

SERVICE
EXCHANGE

RMS

AGENT
BEHAVIOUR

AGENT
CONFIGURATION

EVALUATION
MODULE

SIMULATED
NETWORK

SIMULATOR
CONFIGURATION

Figure 2.2: Logical overview of the simulation platform. Users can specify sim-
ulation parameters, agent characteristics, and algorithms used by the RMS. The
simulated network is analyzed through a customizable evaluation module.

From a global point of view, DRESS allows to compare the performance of the
RMS under evaluation with that of an ideal centralized RMS which is not a�ected
by fake information and by the bias introduced by the gossip protocol, thus to
obtain a global error index. Moreover, it provides the quantitative evaluation
of the RMS’s vulnerability to the considered security attacks, according to some
well-defined metrics.

2.3.1 Platform Architecture

As shown in in Fig. 2.2, the simulator can be adapted to model di�erent RMSs
by specifying the agent configuration. This phase allows to detail the service re-
quest/response policies, the algorithms behind the RMS, and the di�erent behav-
iors that each agent can follow over time. Once such configuration is completed, it
is possible to perform the simulation configuration by specifying a set of available
parameters. In this phase it’s possible to specify the topology of the reputation
network that lists the set of neighbours each agent can interact with. Moreover,

2. Model Assumptions and System Architecture 23

users can specify the behavior each agent has to follow during the simulation, and
the possible sequence of actions to perform. Finally, the Evaluation Module, which
analyzes the RMSs performance at the end of the simulation, can be customized
by defining any ad-hoc evaluation metrics.

During the simulation, the agents interact with each other in order to pro-
vide/receive services and obtain a reward according to the synchronous, time-
discrete model. The role of the RMS is to apply an incentive mechanism that
makes the reward proportional to the cooperativeness of each agent, computed by
taking into account the whole community of agents. As result, agents are able to
select a service provider according to the policy established by the RMS, e.g., by
selecting the provider which corresponds to the highest expected utility.

The simulation evolves through a set of rounds during which all the agents
cyclically perform the same sequence of steps. The behavior of a single agent within
a round is defined by implementing some functions inherited from an abstract
agent class provided with the simulation library. More specifically, the designers
can specify:

• the service exchange logic, which rules the sending of service requests and
replies (according to the RMS policy);

• the set of RMS algorithms, which specifies how to spread agents’ opinion to
their neighbourhood and how to compute the reputation values;

• the agent behavior, which models its cooperativeness during the service ex-
change.

The adoption of the composition over inheritance principle allows to easily
define new agents whose behavior is a combination of two behavioral dimensions:
those identified as service providers and those specified as members of the RMS.
Moreover, new behaviors can also be defined by inheriting the available abstract
classes.

The Evaluation Module allows to analyze the RMS’s performance with di�erent
levels of detail. For instance, the simulator allows to evaluate the average reputa-
tion estimated by the RMS over the whole network, but it makes also possible to
analyze with a high degree of granularity the trend over time of the reputation of

2. Model Assumptions and System Architecture 24

AGENT

COMMUNICATION
INTERFACE

SERVICE
EXCHANGE

AGENT
BEHAVIOUR

REPUTATION
ALGORITHM AGENT

MPI

AGENT

MPI

COMMUNICATION CHANNEL

… …

Figure 2.3: The distributed multi-agent simulation scheme. Agents are mapped
to system processes that communicate through the MPI protocol.

a given agent as estimated by one of its neighbors. Furthermore, the Evaluation
Module allows to compare such outcomes with those obtained by the truth-holder
in order to understand whether the errors are due to the reputation algorithm, or
to possible bias introduced by false user feedbacks.

2.3.2 Simulation Environment

DRESS aims to support large-scale simulations modeling real-world scenarios.
One of the most important requirements of a simulation environment for RMS

evaluation is to guarantee a high degree of parallelism. To meet this constraint,
DRESS takes advantage of a distributed environment where each agent is sim-
ulated by a process running on a computer cluster. Fig. 2.3 highlights the four
elements characterizing an agent. Besides the aforementioned components, i.e.,
service exchange, RMS algorithms, and agent behavior, a communication interface
is needed to enable messaging over a communication channel. In order to provide
the programmers with a standard protocol, communication between processes is
based on Message Passing Interface.

The core of the platform is written in C++ and exploits MPICH, a MPI li-
brary available for many UNIX like distributions and Windows OS, to provide the
designer with an easy tool to implement his own distributed algorithm.

2. Model Assumptions and System Architecture 25

i	

1	

0	

A	 A	

A	

A	

A	

A	A	

L	 L	 L	

n	

(b)	 (c)	 (d)	(a)	 .me	

silent	
processes	

ac.ve	
processes	

leading	
process	

i+1	

Figure 2.4: Pool of processes managed by DRESS: (a) the MPI environment starts
a set of identical processes; (b) by reading the simulation parameters, each process
adopts its own behavior among leading, active, or silent. (c) MPI messages sent
by the leading process cause some other processes to change their status (d).

According to the MPI programming model, the distributed execution is ob-
tained by starting a fixed number of processes executing the same program, as
depicted in Fig. 2.4-a. The MPI library allows each process to send and receive
messages to and from any other process within the simulation environment. The
polymorphic behavior of various processes is obtained through a set of input pa-
rameters which are used to drive the execution flow.

In order to model a dynamic network, the fixed set of processes started at the
simulation start includes both a group of processes representing active agents, and
a group of silent processes corresponding to those agents that will successively join
the RMS network. While all processes are started as identical copies of the same
initial process, the choice of the actual process behavior depends on the simulation
parameters, as depicted in Fig. 2.4-b.

The mapping of each agent in a process allows DRESS to flexibly adapt the
simulation to available computation resources and leads to a software which ele-
gantly mirrors the distributed architecture of RMSs.

The set of processes also includes a leading process responsible for managing
the agents’ life cycle. When it is required to simulate a new agent joining the
RMS network, the leading process wakes up one of the silent processes by sending

2. Model Assumptions and System Architecture 26

SERVICE'
EXCHANGE'

REPUTATION'
ALGORITHM'

AGENT'
AGENT'BEHAVIOR'

AS'SERVICE'
PROVIDER'

AS'RMS'
MEMBER'

Figure 2.5: Components of a specific agent.

an opportune MPI message (see Fig. 2.4-c). As consequence, at the next time
interval, this process is added to the pool of processes which model active agents
(see Fig. 2.4-d). Analogously, when the simulated sequence of events includes the
exit of an agent from the RMS system, the leading process switches the status of
the corresponding process to silent.

It is worth noticing that the centralized coordination performed by the leading
process regards only the evolution of the state of processes, while service exchang-
ing and communications within the RMS are performed in a totally distributed
way.

During the simulation, a number of log files containing information on the tasks
performed by every agent are created. Using such files, the analyst may choose to
collect data about the reputation values computed, or observed, by the agents, the
number of incoming/outcoming service requests for each node of the network, the
number of satisfied/unsatisfied requests, and the cooperativeness degree of each
agent.

2.3.3 Agent-based Model

Each agent participating to the RMS interacts with other agents to receive some
services, and consequently perceives a certain utility. Generally, a RMS applies
some incentive mechanisms which make such utility proportional to the coopera-
tiveness of the agent, i.e., R̃i(t). Distributed RMSs estimate this cooperativeness
degree by relying on the whole community of agents, which further interact by ex-
changing information about their past experiences and opinions. As result, agents
are able to select a service provider according to the policy established by the

2. Model Assumptions and System Architecture 27

RMS, e.g., by selecting the provider which corresponds to the highest expected
utility.

In the proposed simulation software, agent interactions are orchestrated ac-
cording to the synchronous time-discrete model proposed in (Lynch, 1996). The
simulation is composed by a set of rounds, during which all the agents cyclically
perform the same sequence of steps, such as sending service requests to other
agents, replying to received requests, and communicating with neighbor agents to
implement the distributed RMS.

The simulation loop is designed with the aim of managing a set of agents,
whose structure and methods are defined by an abstract class included in the
DRESS library. An actual agent is defined through a specific class which inherits
and implements from the abstract class the functions associated to all the steps of
a round, as showed in Fig. 2.5, and described in the following.

Service Exchange Model

Without losing generality, interactions between agents are modeled according to
a producer-consumer pattern. In a typical scenario, agents can act both as ser-
vice providers and service consumers, i.e., an agent provides a service to some
consumers, while also consuming services from other agents of the network.

Each agent maintains a list of known providers and advertises the exported
services by means of the Service Interface. This list is shared as specified by the
service announcement protocol which allows providers to inform some consumers
about the set of available services.

The policy for selecting a service provider, is specified by the service selection
method.

Once a provider has been selected, each consumer can send the service request.
During the same simulation step, provider agents receive the requests sent by
the consumers and reply to each request according to the behavior defined in the
service reply method.

It is worth noticing that the service reply method is the core of the RMS since
it allows to implement the incentive mechanism of the modeled RMS, which could
discourage antisocial behaviors by rewarding trustworthy agents and limiting ma-

2. Model Assumptions and System Architecture 28
local trust evaluation information fusion gossip protocol incentive mechanism

Local Trust Information FusionGossip protocol Incentive mechanism

Figure 2.6: The components of a distributed RMS. Each agent privately performs
the local trust evaluation and the information fusion algorithms; the gossip proto-
col and the incentive mechanism regulate the interactions with other agents.

licious ones. E.g, it is possible to define a policy according to which a provider
replies only to agents whose reputation is above a given threshold, or randomly de-
cides to reply with a probability proportional to consumer’s reputation. Decisions
taken by the service reply method, are further influenced by the agent’s behaviour
as service provider, which depends on its cooperativeness, i.e. R̃i(t).

Finally, a consumer agent rates each interaction by providing a feedback fij(t)
which is locally stored and further spread over the community according to the
reputation algorithm, as detailed in the following.

Reputation Algorithm

One of the main feature of DRESS is the possibility of defining the RMS algorithm,
which specifies how to spread agents’ opinion to their neighborhood and how to
estimate the reputation values by exploiting the available information.

Reputation can be represented as scalar, discrete value (e.g., good, medium,
bad), vector containing di�erent parameters (e.g., type of behavior, cooperative-
ness, level of engagement), or generic object.

Regardless of the specific reputation representation and the reputation man-
agement algorithm, four common components were identified, as shown in Fig. 2.6,

2. Model Assumptions and System Architecture 29

included in any RMS (Agate et al., 2016a) which implement main functions of the
formal model described in Section 2.2.1:

• Local trust evaluation;

• Gossip protocol;

• Information fusion;

• Incentive mechanism.

The local trust evaluation is the general mechanism an agent uses to make a
first estimation of the reputation of other agents. It implements the � function and
exploits the set of feedbacks fij stored after each interaction. This method uses
only direct interaction outcomes, thus, it can not be used to predict the behavior of
previously unseen entities. For this reason, the local trust evaluation is supported
by two more components, namely the gossip protocol and the information fusion
mechanism.

The gossip protocol method implements the � function and allows to define
which information must be shared with other agents. For instance, a common
choice is to share recent reputation values, i.e. rij(t), with neighbors only.

The information fusion method, which implements the � function, allows each
agent to estimate the reputation of other agents by merging the local trust lij

with gossiped information Mi, provided by the local trust evaluation mechanism
and the gossip protocol respectively. If one of these two parameters is missing,
the reputation is computed according to the other. If both values are missing,
the information fusion method simply returns the default reputation value. The
reputation values computed within this method are updated at each time step.

The Incentive mechanism exploits reputation values in order to discourage
selfish behaviors and is generally implemented through the service exchange mech-
anism, as described before.

Agent Behavior

The last characteristic that designers can define is the agent behavior, which mod-
els its degree of cooperativeness during the service exchange, and his probity as

2. Model Assumptions and System Architecture 30

member of the distributed RMS. With respect to service provisioning, the agent
behavior can be fully cooperative, fully selfish, or partially cooperative, with a de-
gree that can be specified as parameter. As regards the contribution to the RMS,
the agent behavior can be honest, slander (if fake negative feedbacks are provided)
or promoter (in case of fake positive feedbacks). Moreover the designers can define
new behaviors.

Through the definition of the behaviors of di�erent agents, DRESS allows to
simulate di�erent types of security attacks that can be classified in two main
categories. The former includes attacks in which malicious agents try to alter
the RMS performances by providing fake reputation values, the latter involves
attackers that operate as bad service providers. Promoting and slandering are two
examples of attacks that require a malicious behavior of a group of agents as RMS
members, while whitewashing and traitor attacks imply the malicious behavior of
an agent as service provider (see Fig. 2.5).

The behavior of an agent as RMS members can be changed by altering the
content of data sent by means of the gossip protocol, according to equations 2.7
and 2.8, while the behavior as service provider can be defined by modifying the
cooperativeness parameter the which drives service reply method, according to
equations 2.11 and 2.13.

In order to allow for a high degree of personalization of the simulation envi-
ronment, DRESS includes a set of behavioral patterns the user can combine to
describe the behavior of specific agents. While configuring a specific simulation
scenario, it is possible to set how many agents should exhibit a behavior b, where b

can be either atomic, e.g., slander, or obtained by composing n atomic behaviors,
b = [b1, ..., bn]. For example, when planning a complex collusion attack, it might
be desirable that an agent A contributes both to rise the reputation of an agent,
and to reduce that of another one. In such case, its behavior could be expressed
as bA = [bslander, bpromoter] to let a specific agent perform both a slandering and
a promoting attack, with di�erent targets. Moreover, it is possible to define a
behavior which varies over time, simply specifying the time interval during which
each pattern has to be followed.

2. Model Assumptions and System Architecture 31

2.4 Evaluation Metrics
This section presents the metrics considered most relevant for a synthetic assess-
ment and under two interesting aspects for researchers: the accuracy of RMS in
estimating the reputations of agents and the vulnerability to security attacks in
order to determine its robustness.

2.4.1 Accuracy Metrics

In order to evaluate the RMS performance, the simulation platform provides the
designers with an unbiased measure of the error between the reputation estimated
by the RMS, i.e., Ri(t), and the true value of agent’s cooperativeness, i.e., R̃i(t).
Moreover, in order to highlight the e�ect of the distributed nature of a RMS on
its performance, DRESS evaluates the error with respect to an ideal RMS which
adopts the same reputation model, but uses the truthful knowledge of interaction
outcomes instead of agents’ feedbacks.

In order to define proper accuracy metrics, it is necessary to distinguish be-
tween absolute and relative reputation indices. In RMSs which adopt an absolute
reputation index, the reputation value of a specific agent is independent of others’
reputation. On the contrary, in reputation systems that adopt relative indices, the
reputation value is obtained through a normalization process which depends on
the reputation values of all known agents. The formulation proposed here assumes
an absolute reputation index.

We can assume that reputation and cooperativeness are values in the same
domain; we define the absolute error as the di�erence between the cooperativeness
of an agent and its reputation. In a centralized RMS, the absolute error obtained
about agent vi is simply represented by the following equation:

Ei(t) = |R̃i(t) ≠ Ri(t)|. (2.14)

On the contrary, in a distributed RMS, where each agent can have a di�erent
perception of reputation of agent vi, it is convenient to consider the error between

2. Model Assumptions and System Architecture 32

the average reputation and the true cooperativeness. If the average reputation of
agent vi at time t is defined as follows:

ri(t) =

q

vjœHi(t)
rji(t)

{Hi(t)}
, (2.15)

where # {Hi(t)} indicates the number of agents which hold an opinion about the
agent vi at time t. Then, the absolute error on a single agent vi can be defined
according to the following equation:

ei(t) = |R̃i(t) ≠ ri(t)|. (2.16)

The absolute error depends on (i) fake feedbacks introduced into the system
by malicious agents, (ii) the gossip protocol, and (iii) the estimation reputation
algorithm, expressed by local reputation and information fusion functions. In order
to enable DRESS to evaluate the impact of fake feedbacks and the e�ect of the
gossip protocol on the RMS under analysis, it is useful to consider the reputation
hypothetically estimated by an ideal omniscient RMS that knows the true outcome
of each transaction, and that can not be influenced by fake feedbacks.

Such an ideal RMS is implemented through a truth-holder agent (see Fig. 2.7),
external to the agent network, that, at each simulation step, is responsible for
collecting the truthful outcomes of agent interactions in order to build the ground-
truth reputation Rú

i (t) for each agent vi. It is worth noting that the truth-holder
is totally transparent to the RMS, and it only aims to provide a centralized tool
to compute the error associated with the reputation estimated by the RMS.

In order to distinguish the bias introduced by fake feedbacks, it is convenient
that the reputation aggregation algorithm adopted by the truth-holder is the same
used by the network agents; thus, it must be redefined by the designers in order
to meet the behavior of the RMS under analysis.

Thus, error on the single agent can be obtained as the di�erence between the
ground truth and the average reputation of the agent vi:

eú
i (t) = |Rú

i (t) ≠ ri(t)|. (2.17)

2. Model Assumptions and System Architecture 33

Truth&Holder&

Agents&

Figure 2.7: The role of the truth-holder process.

The mean value of these errors computed over the whole network represents
the average system error due to fake feedbacks and to the gossip protocol:

eú(t) =

q

viœV (t)
eú

i (t)

{V (t)} . (2.18)

This value can be used to evaluate the performance of the RMS since the first
simulation steps.

2.4.2 Vulnerability Metrics

In order to measure the robustness of a RMS against the security attacks, DRESS
allows developers to exploit a set of predefined metrics, or to define new ones
according to the simulation needs.

By default, DRESS implements the following set of vulnerability metrics, pre-
liminarily outlined in (Agate et al., 2016b):

• time-to-falsify (TF): the time required to succeed in an attack aimed to
falsify the reputation of a target agent;

• exploitation-time (ET): how long a malicious agent can operate before its
behavior is detected;

• collusion-degree (CD): the number of agents required for a cooperative at-
tack.

2. Model Assumptions and System Architecture 34

Each metric has a numeric score S, 0 Æ S Æ 10, that corresponds to a qualita-
tive rating according to the scale proposed by the Common Vulnerability Scoring
System (CVSS) (CVSS, 2015): none (if S < 0.1), low (0.1 Æ S < 4.0), medium
(4.0 Æ S < 7.0), high (7.0 Æ S < 9.0), critical (9.0 Æ S Æ 10.0).

In order to provide sound definitions of the vulnerability metrics, di�erent
success conditions are defined for each attack. Such conditions are valid for RMSs
based on absolute reputation. Typically, these definitions are related to the long-
term reputation of an agent, that is defined as the stable reputation estimated after
a time threshold, Tmax, typically corresponding to the simulation time and that can
be set by the user. For instance, the promoting attack succeeds if the long-term
reputation of a selfish agent is greater than half of the maximum reputation value
Rmax, i.e., Rth = Rmax/2, while the slandering attack succeeds if the long-term
reputation of a cooperative agent is below such limit.

The collusion-degree, CD, can be expressed as the percentage of malicious
agents needed for completing an attack within a time that for instance can be set
as Tth = Tmax/2. For collaborative attacks, such as slandering and promoting, the
vulnerability of the RMS can be measured by observing both the time-to-falsify
TF and the CD values.

When dealing with attacks whose aim is the abuse of system resources for
a period as long as possible, the most significant vulnerability measure is the
exploitation-time ET . For the whitewashing attack, if we assume that T ú time
steps are required for the reputation to go below the Rth threshold, the exploitation-
time can be defined as ET (whitewashing) = T ú/Tmax. Also the Rth threshold can
be overwritten in order to define stricter or weaker success condition for attacks,
and it aims only to define a common reference for evaluating di�erent RMSs.
Traitor attacks are performed by switching cooperative and selfish behavior for
a certain number of time steps, Tcoop and Tselfish respectively. In such case, the
exploitation-time is the lowest ratio ET (traitor) = Tcoop/(Tcoop + Tselfish) which
guarantees that reputation remains above the Rth threshold.

2. Model Assumptions and System Architecture 35

The vulnerabilities of a RMS exposed to slandering (S), promoting (SP), white-
washing (W), and traitor (T) attacks can be expressed as:

vS = [1 ≠ TF(slandering)] ◊ [1 ≠ CD(slandering)];

vSP = [1 ≠ TF(self -prom)] ◊ [1 ≠ CD(self -prom)];

vW = ET (whitewashing);

vT = ET (traitor).

The overall vulnerability index is a vector containing the list of the detected
vulnerabilities, and the number of vulnerabilities evaluated as high or critical, i.e.,
#hc:

RMS_vulnerability = {[vú
SP , vú

S, vú
W , vú

T], #hc},

where the vú values are obtained by applying a gamma correction, with “ = 0.5,
and a scale factor K = 10:

vú = K ◊ v“.

K and “ values have been experimentally determined so that the four vulner-
abilities metrics would be comparable in a network composed of 100 agents with
6 neighbors for each agent on average. DRESS users can modify these parameters
in order to obtain a di�erent scales for metrics.

Chapter 3

A General Purpose RMS

In order to better illustrate DRESS functionalities and to show the high degree of
configurability that can be achieved, this chapter presents all the actions that a
researcher must take, step by step, in order to implement their application scenario
and their RMS. For this reason, first of all, an RMS possessing all the characteris-
tics of a distributed reputation system is proposed. Moreover, it is described the
way to configure the particular RMS to be analyzed, together with an explanation
of how to execute the simulation using the functions provided by the simulation
tool. Then, an analysis of reputation trend of the RMS agents, an analysis of ac-
curacy of the proposed RMS and a comparison among di�erent RMS policies are
presented. Finally, a security analysis and an evaluation of the system scalability
are shown.

3.1 The Proposed RMS
The RMS considered here adopts an absolute reputation model with rij(t) œ [0, 1].

The number of available services and their distribution among providers can
be specified through the simulation parameters. All the agents provide the same
single service, and according to the implemented service announcement protocol,
each agent vi sends the list of provided services (in this case a singleton) only to
its direct neighbors Ni.

3. A General Purpose RMS 37

Consumer agents use the service selection method to select a service among
those available. In order to make the RMS analysis independent from a specific
decision making mechanism, a simple service selection method which does not
perform any specific choice was considerd, but rather it sends a service request to
all the neighbors. Consequently, the whole neighborhood is uniformly explored,
avoiding the bias potentially introduced by a specific policy, e.g., select the provider
with the highest reputation.

The service reply method implements an incentive mechanism proposed in (Cra-
panzano et al., 2010), that randomly provides a reply with a probability which is
proportional to the reputation of the requiring agent. The behavior as service
provider further enforces such probability by a factor corresponding to the agent’s
cooperativeness degree, which is expressed as a value R̃i œ [0, 1], where a fully co-
operative agent is characterized by R̃i = 1, while a totally selfish agent by R̃i = 0.

According to such method the probability pij(t) that agent vi provides a positive
reply to service request coming from agent vj at time t can be expressed as follows:

pij(t) = rij(t) ú R̃i(t). (3.1)

After each interaction, the consumer agent stores in its transaction record a
feedback fij(t) œ {1, 0} depending on whether the service has been provided or
not.

The components of the considered RMS are fully described by defining local
trust evaluation, gossip protocol and information fusion methods.

The local trust evaluation, inspired to (Kamvar et al., 2003), computes the
local trust of a given provider as the number of satisfactory transactions, over the
total number of requests in the last �T time steps, as specified by the following
equation:

lij(t) = �
1
[fij(tÕ)]tÕ=0:t

2
=

tq

tÕ=t≠�T
fij(tÕ)

#
Ó
[fij(tÕ)]tÕ=(t≠�T):t

Ô . (3.2)

The local trust of the proposed RMS is based on feedbacks about the transac-
tions in the previous 30 simulation steps, i.e., �T = 30.

3. A General Purpose RMS 38

The next step consists in sharing the reputation values with other agents
through the gossip protocol; in this sample case, information is exchanged with
neighbor agents only, i.e., vk œ Ni(t), and protocol messages contain only last
reputation values, as specified in the following equation:

Miæk(t) = �

Q

ca[fij(tÕ)] tÕ=0:t≠1
vjœOi(t≠1)

, [Mi(tÕ)]tÕ=0:t≠1

R

db =

= �
1
[rij(t ≠ 1)]vjœOi(t≠1)

2
= [(j, rij(t ≠ 1))]vjœOi(t≠1),vj ”=vk

.

(3.3)

The information fusion method allows agents to merge their direct experience
with information obtained through the gossip protocol. Such a method, proposed
in (De Paola and Tamburo, 2008), states that gossiped information is weighted
with reputation of the gossiper agents. In the sample case implementation, a
parameter – specifies the weight of last direct experience with respect to past
history, and a parameter — specifies the weight of received opinions on the overall
reputation, as specified by the following equation:

rij(t) = � (rij(t ≠ 1), lij(t), Mi(t)) =

= (1 ≠ —) ú [– ú lij(t) + (1 ≠ –) ú rij(t ≠ 1)] + — ú

q
vkœNi(t)

rik(t≠1)úrkj(t≠1)
q

vkœNi(t)
rik(t≠1) ,

(3.4)

where –, — œ [0, 1].
It is worth noticing that – and —, together with the initial default reputation

value r0, are declared as varying parameters so that they can be automatically
tuned by the simulator in di�erent simulation runs.

Once the RMS si fully defined, DRESS can be set to simulate di�erent topolo-
gies and di�erent security attacks, in order to obtain a quantitative evaluation of
the system robustness.

In order to run a simulation, it is necessary to define the network topology G,
and the behavior pattern for each node, through a set of configuration files.

3. A General Purpose RMS 39

time step
0 50 100 150 200 250 300 350 400 450 500

R
e

p
u

ta
tio

n
 v

a
lu

e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

30%
60%
90%

Figure 3.1: Simulation of slandering attacks. Reputation values of the victim agent
as observed by neutral agents while varying the percentage of attacking agents.

3.2 Experimental Evaluation
Experimental results have been obtained by simulating a network composed of 100
nodes, where each node has 6 neighbors on average, randomly selected ensuring
that the network is connected. The length of the simulation, i.e., Tmax, has been
set to 500 time steps.

3.2.1 Analysis of reputation trend

The first test focuses on using DRESS to analyze the reputation of a target of a
slandering attack. To this end it is possible to use the proper DRESS interfaces
to set the duration of the simulation, the target ID, and which information to
observe, i.e., the reputation value. This preliminary test is characterized by the
following parameters: the – factor, which weights the local trust to produce the
local reputation, is – = 0.1; the — factor, which weights the gossiped information
to produce the final reputation, is — = 0.1. A relevant aspect to evaluate in this
type of attack is how the number of attacking agents a�ects the reputation of the
victim. We can intuitively state that the greater is the number of attacking agents,
the more e�ective is the attack. However, DRESS may support this assumption
by quantifying how many agents should be involved to finalize the attack. Fig. 3.1
is based on the results obtained from di�erent simulation runs while varying the
percentage of malicious agents in the network. It shows that as long as the 60%
of the agents are hostile, the reputation of the victim decreases only by a factor of

3. A General Purpose RMS 40

time step
0 50 100 150 200 250 300 350 400 450 500

R
e

p
u

ta
tio

n
 v

a
lu

e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.3 0.5

Figure 3.2: Simulation of promoting attacks. Reputation values of the victim agent
as observed by neutral agents while varying the weight — of gossiped information.

0.5, whilst in order to tear down the reputation of the victim at least the 90% of
the agents should exhibit a malicious behavior.

The same experimental setup can be easily adapted to simulate the promoting
attack. In this case, the goal is to measure the behavior of reputation values of
the selfish agent as observed by a trustworthy agent, while varying the weight of
gossiped information. DRESS is able to automatically perform such an evaluation
since the weight — has been defined as a varying parameter during the RMS im-
plementation. Fig. 3.2 shows that a low weight assigned to gossiped information
(i.e., 0.1) allows the observer to detect the selfish behavior mainly on the basis
of direct interactions, whilst a higher weight (i.e., 0.5) makes that fake informa-
tion, advertised through the gossip protocol, increases the reputation of the target
agent.

Two more simulations have been performed in order to implement whitewashing
and traitor attacks.

During a whitewashing attack, a malicious agent creates new accounts so as to
obtain a default reputation value obfuscating its past selfish behavior. Evaluating
the e�ectiveness of such an attack corresponds to analyze how the reputation of a
new agent varies according to its behavior. To simulate this attack, it is necessary
to specify in DRESS the time when a new agent should join the network. For
example, Fig. 3.3 shows how the reputation of a new selfish agent that joins the
network after 70 time steps changes varying the initial default reputation value.
Di�erent default reputation values assigned by the RMS to new agents impact on
how long a malicious agent is able to abuse the community resources.

3. A General Purpose RMS 41

time step
0 50 100 150 200 250 300 350 400 450 500

R
e

p
u

ta
tio

n
 v

a
lu

e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.9
0.7
0.5
0.3
0.1

Figure 3.3: Simulation of Whitewashing attacks. Reputation values of a selfish
agent that joins the network after 70 time steps, varying the initial reputation
value assigned by the RMS.

time step
0 50 100 150 200 250 300 350 400 450 500

R
e

p
u

ta
tio

n
 v

a
lu

e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

α=0.9 α=0.5 α=0.1 degree of cooperation

Figure 3.4: Simulation of traitor attacks. Reputation values of a traitor agent
which alternates cooperative and selfish behaviors, varying the – factor that
weights the recent experience to build the local reputation.

Simulation of a traitor attack requires to define a complex behavior where
a given agent alternates cooperative and partially cooperative behavior, i.e., by
satisfying all or only part of the received requests respectively. DRESS allows
the easy composition of such a behavior and also the description of duration of
each atomic behavior. In the experimental setting adopted here, traitor agents
alternate fully cooperative and partially cooperative behavior, i.e., R̃i(t) = 0.5,
for regular time intervals, i.e., �T1 = 50, �T2 = 100 time steps. Exploiting such
configurations, a test is performed to evaluate how di�erent values of the weight
for recent experience, –, speed up the detection of variations of the agent behavior.
Fig. 3.4 shows the results of simulating a traitor attack when a malicious agent
alternates a fully cooperative and a partially cooperative behavior. As expected,
RMSs with higher values of – detect earlier a change in agent behavior.

3. A General Purpose RMS 42

Figure 3.5: Comparison between the reputation of the victim agent vi computed
by the truth-holder, i.e., Rú

i (t), and the average reputation estimated by the dis-
tributed RMS, i.e., ri(t), while varying the percentage of malicious agents involved
in the slandering attack.

Figure 3.6: Average system error, i.e., eú
i (t), of the RMS considered as sample case

during a slandering attack against the victim agent vi, while varying the percentage
of malicious agent involved.

3.2.2 Analysis of accuracy

Through the accuracy metrics adopted by DRESS it is possible to quantify the
error performed by the RMS under evaluation. In particular, the average sys-

3. A General Purpose RMS 43

tem error quantifies the deviation from the truth-holder ’s estimation, as defined
in Section 2.4.1. In this sample case the truth-holder computes the ground-truth
reputation of the agent vi, i.e., Rú

i (t), according to the local trust evaluation algo-
rithm:

Rú
i (t) =

q

vjœV (t)

tq

tÕ=t≠�T
fij(tÕ)

#

Y
_]

_[
[fij(tÕ)] tÕ=(t≠�T):t

vjœV (t)

Z
_̂

_\

. (3.5)

To show the analysis supported by DRESS through the available metrics, an
experiment was performed in a network where, for each agent, the behavior as
service provider is obtained by setting a cooperative degree equals to 0.8, and
where a slandering attack is performed after 50 time steps (in a simulation of 500
time steps).

Fig. 3.5 compares the ground-truth reputation and the average reputation esti-
mated by the distributed RMS, while varying the percentage of malicious agents.
As we can observe, the reputation estimated by the RMS deviates from ground
truth as much as the percentage of malicious agents increases. Specularly, Fig. 3.6
shows the average system error of the considered RMS, evaluated as the average
di�erence between the reputation value estimated by the RMS and the correspond-
ing ground truth. Results suggest that the estimation error made by this specific
RMS under a slandering attack grows quite proportionally to the percentage of
malicious agents. Thus, it does not exhibit an amplification of the fake negative
opinions, thanks to the inclusion of the direct experience (i.e., local trust) in the
reputation aggregation algorithm.

3.2.3 Comparisons among di�erent RMS policies

In the following set of experiments it is shown how the proposed platform allows
to compare di�erent RMS policies by evaluating their accuracy and resistance to
forged feedbacks, given the same network configuration. The reputation network
for this set consists of 300 agents, where 30% of them are implicated to perform a
slandering attack against a 10% of cooperative agents. This experiment compares

3. A General Purpose RMS 44

(a) (b)

(c) (d)

Figure 3.7: Reputation (a, c) and average system error (b, d) measured while
simulating slandering (a, b) and promoting (c, d) attacks performed on a network
of 300 nodes with 30% of implicated agents. The di�erent curves are obtained
while varying the parameter — which weights gossip information with respect to
the local trust. The GT curve shows the reputation computed by the truth-holder.

three policies obtained by varying the parameter — of the RMS considered as case
study. The first policy uses only direct experience to estimate agents’ reputation,
i.e., — = 0. The second policy is characterized by a good balance between local
trust and gossip information, and is obtained by setting — = 0.2. The third policy
relies excessively on gossip information, with a weight — = 0.8. Fig. 3.7a compares
the reputation computed by the truth-holder and the average reputation estimated
by these policies, while Fig. 3.7b shows the corresponding average system errors.
As expected, smaller weights to gossip information reduce the vulnerabilities to
attacks characterized by the injection of false information. In the borderline policy

3. A General Purpose RMS 45

Parameter Description Value
Topology N Number of agents 100

Varying
Parameters

– weight of recent
experience

0.1

— weight of gossiped
information

0.1

rep0 default initial
reputation value

0.9

Table 3.1: Simulation parameters of the RMS considered as sample case.

Metric Value Index Value
TF(slandering) 0.71

vú
S 1.78

CD(slandering) 0.65
TF(self -prom) 0.79

vú
SP 3.18

CD(self -prom) 0.85
ET (whitewashing) 0.054 vú

W 2.32
ET (traitor) 0.25 vú

T 5.00

Table 3.2: Security evaluation of the RMS considered as sample case.

where gossiped information are not considered at all, the estimated reputation
corresponds to the ground truth, thus obtaining an average error which quickly
goes to zero.

The same analysis can be performed considering promoting attacks, as shown
in Fig. 3.7c and 3.7d. In this case, using the same network configuration described
above, promoting attacks are performed to raise the reputation of a group of target
agents whose real cooperativeness is 0.2. As shown before, policies that limit the
weight of gossiped information are characterized by greater resistance.

3.2.4 Analysis of security

Besides accuracy analysis, DRESS allows to perform a global evaluation of the
considered RMS, according to the chosen set of security metrics. As described
in section 2.4.2, the base set of metrics of DRESS includes time-to-falsify (TF),
exploitation-time (ET), and collusion-degree (CD), which are summarized in a

3. A General Purpose RMS 46

(a) (b)

Figure 3.8: Reputation (a) and average system error (b) measured while simulating
a slandering attack in which the 20% of the network is implicated and all the
agents have a cooperativeness degree of 0.8. The di�erent curves are obtained in
networks composed of 100, 200, 300, 400, and 500 nodes. The GT curve shows
the reputation computed by the truth-holder.

global vulnerability index. Researchers can analyze such index in order to evaluate
the impact of the RMS design choices on its vulnerability to security attacks.

For the RMS considered as sample case, with the parameters specified in Ta-
ble 3.1, DRESS produces the set of indexes shown in Table 3.2, and the following
global vulnerability index:

RMS_vulnerability = {vú
SP , vú

S, vú
W , vú

T], #hc}

= {[1.78, 3.18, 2.32, 5.00], 0} .

These results show that the RMS does not exhibit any high or critical vulnera-
bility. In particular, the design choices produce a greater robustness to promoting
attacks than to slandering attacks, a low vulnerability to whitewashing attacks,
and a medium vulnerability to traitor attacks.

3.2.5 System scalability

Some tests were run to verify the capability of the proposed platform of measuring
the actual performance of a given RMS, regardless of the size of the reputation
network. In particular, a slandering attack launched by a set of implicated agents

3. A General Purpose RMS 47

Figure 3.9: Simulation time using 4, 8, and 16 single-core nodes.

(the 20% of the network) against other agents (the 10% of the network) that have
a cooperation degree of 0.8 was considered. Fig. 3.8a compares the reputation
computed by the truth-holder and the average reputation estimated by the RMS
on networks of 100, 200, 300, 400, and 500 nodes. Fig. 3.8b shows that the cor-
responding average system errors are quite similar, so proving that the diagnostic
capability of the simulator is not dependent on the size of the network.

Other tests have been performed to measure how the simulation time depends
on the number of deployed computational nodes. In particular, three experiments
were run considering clusters of 4, 8, and 16 single-core nodes (SCNs). Results
from Fig 3.9 show that the number of SCNs deeply impacts on the number of
agents the platform can simulate. In particular, the current implementation of
the simulator is not able to support more than 300 agents when using 4 SCNs,
while in order to simulate a network of 500 agents at least 16 SCNs are needed.
This is mainly due to the inter-process communication routines needed to support
the simulation, according to which every agent exchanges message with all other
agents in the network, regardless of the network topology. Nevertheless, for any
number of SCN, the simulation time exhibits a quadratic growth, which is quite
reasonable to simulate reputation networks of significant dimensions.

Chapter 4

A Domain Specific RMS

Reputation management systems can make a strong contribution to the recogni-
tion of reliability in many application contexts, such as the sharing of electricity
from renewable sources. Distributed and pervasive renewable energies, especially
photovoltaics (PV), are expected to be the future of power systems, as envisioned
by the paradigm of Virtual Power Plants (VPPs) recently proposed by several
research and governmental bodies (Johnson et al.; Asmus, 2010; Vasirani et al.,
2013; Hernández et al., 2013; Palizban et al., 2014). The goal of VPPs is to enable
renewable smart grid systems which are capable of delivering reliable ancillary
services, traditionally provided by large power plants.

VPP will enable a two-way flow of electricity and information (Wang et al.,
2017). Hence, users and providers will have the opportunity to build up a con-
structive interaction unthinkable in a standard power system. Thanks to this
interaction, and the di�usion of renewable energy sources at the consumer level,
users become the so-called prosumers (Parag and Sovacool, 2016), as they would
be able not only to consume, but also to produce energy at their premises. These
new advancements pave the way to the advent of energy sharing systems (ESS),
where users are able to exchange energy between themselves to reduce their energy
bill (Liu et al., 2017). In this scenario, having a precise idea of the degree of col-
laboration of users and their ability to respond positively to energy transactions
seems to be of the utmost importance. DRESS was used to simulate both an elec-
tricity sharing system and a reputation calculation system for the identification of

4. A Domain Specific RMS 49

the most cooperative users, proving to be an extremely flexible environment for
the design of a new RMS.

Therefore, an extensive introduction to the problem is presented, together with
a study of existing approaches for energy sharing systems, and a brief summary of
the main contribution made. Moreover, the system model and problem statement
are described. Finally, in order to address the energy sharing optimization problem,
a possible RMS-based solution is proposed, and the relative experimental results
are discussed.

4.1 The Energy Sharing Application Domain
To motivate and support the potential of residential customer participating in an
ESS, Fig. 4.1 shows a typical daily household energy consumption and production
with a 8kW PV panel1. Clearly, there is a mismatch between when the energy is
produced and when it is consumed. Currently in the U.S., the excess energy is
either wasted or sold to the utility company for low prices, depending on the state
regulations2,3. Batteries with su�cient capacities would solve this ine�ciency,
but they are not yet commonly adopted due to their high costs. In fact, it has
been shown that each home should be equipped with batteries larger than 12kWh
to store su�cient energy, costing more than $6, 000 per household (Zhu et al.,
2011). As a result, supported by the emerging paradigm of VPP, a viable and
more attractive alternative is to exchange excess energy between users through an
ESS. An additional benefit of ESS is the reduced loss incurred in energy transfer
resulting from the closer proximity of users’ homes with respect to the utility
company. An example of a commercial application of ESS is the Dutch start-up
Vandebron. Vandebron enables the local renewable electricity generators to sell
their energy under an online peer-to-peer marketplace platform independent of any
utility or government agency4.

1Pecan street inc. dataport 2014. URL www.pecanstreet.org.
2Serc: State environmental resource center, 2011. URL http://www.serconline.

org/netmetering/stateactivity.htm.
3Freeing the grid: Best and worst practices in state netmetering policies and interconnection

procedure, 2009. URL http://www.newenergychoices.org/ uploads/FreeingTheGrid2009.pd.
4Vandebron. URL https://vandebron.nl/.

4. A Domain Specific RMS 50

(a)

(b)

Figure 4.1: Mismatch between energy consumption (a) and PV generation (b).

Previous research in ESS, such as (Liu et al., 2017; Zhu et al., 2013; Althaher
et al., 2015; Jhala et al., 2018), is based on simplified models of human behavior,
for example assuming that users are always available and engaged with the ESS,
or will always follow the suggestions that the ESS would recommend. Recent
research in the social science domain has shown that, in fact, users have significant
heterogeneity in their preferences for energy sources (Contu et al., 2016) as well
as in engaging with energy management systems in general (RopuszyÒska-Surma
and WÍglarz, 2018). As a result, previous work in ESS may fail when implemented
in the real world (Dolve et al., 2018; Silvestri et al., 2017).

This part of the thesis studies a peer-to-peer network topology in which each
agent, as a producer or consumer, is able to trade energy with its neighbors.
To accommodate an interactive energy sharing as a multiuser system, di�erent

4. A Domain Specific RMS 51

a b c

Figure 4.2: Network topologies: (a) peer-to-peer model, (b) prosumers connected
to microgrids and (c) prosumers group model (Parag and Sovacool, 2016).

network structures can be assumed. For instance, (Parag and Sovacool, 2016)
investigates three network models in which the prosumers are connected (i) directly
to each other, (ii) to a microgrid, or (iii) form community groups. A schematic of
such topologies is depicted in Fig. 4.2.

The work in this thesis advances the state-of-the-art in ESS by considering re-
alistic and heterogeneous user behaviors in terms of preferences and engagement.
Specifically, here an energy community which implements an ESS is considered.
Within this platform, users are allowed to sell and buy energy to and from other
members in the community, as well as from renewable and standard power plants.
This scenario can be seen as a community in a microgrid connected to a larger
smart grid, and it is grounded on previous models proposed for ESS (Parag and
Sovacool, 2016). An active user participation in the energy exchange is envisioned,
where users may have di�erent preferences for di�erent energy sources (e.g., re-
newable, nuclear, coal, etc.), as well as a di�erent level of engagement with the
system.

4. A Domain Specific RMS 52

According to the proposed approach, periodically (e.g., daily) the ESS calcu-
lates for each user a prediction of the amount of needed energy, and based on
such prediction it matches production and consumption to maximize the system
performance given the users preferences and level of engagement. The matching is
translated into a personalized recommendation, sent for example through a smart-
phone app. This recommendation includes a list of energy sources and the amount
that should be bought from each source to fulfill the needs. If a recommendation
is accepted by the user, it needs to be honored by the system. Conversely, if a
user ignores a recommendation, for example because he/she is not engaged with
the ESS, or because the source of energy does not match his/her preferences, the
committed energy is wasted due to the limited energy storage at the producer side.
As a result, in order to maximize the system performance, it is fundamental to
take into account the user behavior while matching the produced and consumed
energy. In this dissertation this matching problem is formulated using Mixed Inte-
ger Linear Programming (MILP). The problem aims at maximizing the amount of
exchanged energy, while taking into account the user preference as well as physical
constraints imposed by the loss of energy in the transfer process. The consid-
ered problem is NP-Hard, and furthermore it requires prior knowledge of the user
behavioral model. For this reason, it was proposed an heuristic based on rein-
forcement learning that trades o� exploration and exploitation in order to learn
the user preference and used as reputation values, while optimizing the system
performance (Gai et al., 2012). The proposed algorithm has been shown to have
a bounded regret with respect to the optimal case in which the user preference is
known.

The proposed system was compared with an existing approach for ESS pro-
posed in (Zhu et al., 2013), using simulations based on real traces for consumption
and production of energy. Results show that the proposed approach is able to
e�ectively learn the user preference and significantly improve the performance of
the system.

In summary, the main contributions are the following:

• The problem of optimizing the performance of an ESS is addressed while
considering realistic user behavioral models in terms of preferences and en-
gagement.

4. A Domain Specific RMS 53

• The problem is formulated using MILP and is shown to be NP-Hard.

• An heuristic based on reinforcement learning is proposed to learn the user
behavioral model while optimizing the system performance.

• The proposed approach is compared with state-of-the-art solutions using
simulations based on real traces. Results show that the proposed solution
significantly outperform existing approaches by e�ectively learning the user
preferences.

The idea of Virtual Power Plants (VPPs) and distributed energy systems based
on renewable energy resources has attracted significant interest from both the aca-
demic and industry community (Ackermann et al., 2001; Asmus, 2010; Vasirani
et al., 2013; Hernández et al., 2013; Palizban et al., 2014; Rehmani et al., 2018).
Authors in (Lakshminarayana et al., 2014) studied the tradeo� between the use of
storage and the concept of distributed generation. The goal was to reduce the en-
ergy fluctuation due to the integration of renewable energy generation into smart
grids. Their results showed that in absence of large storage, the grid can notably
gain from exchange energy between the users. A DC power sharing among nearby
homes has been introduced by the authors of (Zhu et al., 2013) to address the
problem of mismatching between energy harvesting and consumption in micro-
grids. In a recent work, game theoretic and hierarchical optimization approaches
have been used to minimize the power mismatch in and among microgrids in a
multiagent-based energy market (Esfahani et al., 2019). Note that, none of the
above mentioned papers considers aspects of user preference, thus assuming users
to be either extraneous to the system or perfectly complaint with the system de-
cision.

Modeling user behavior in smart grids has been considered in the context of
Demand response (DR) (Commission, December 17, 2015). DR has been a major
research e�ort mainly focused on preventing the occurrence of demand peaks,
where the price of electricity is changed dynamically to alter the user behavior.
The authors of (Jhala et al., 2018) use a reverse approach, in which prospect theory
is used to model the user response to energy prices, and focus on the impact of
such realistic behaviors on the system. Although relatively easy to implement,

4. A Domain Specific RMS 54

thanks to the di�usion of advanced metering infrastructure (AMI) (Bhattacharjee
et al., 2017), DR adoption rates are low (Sioshansi, 2019 (accessed February 3,
2020), and its e�ectiveness is not clear as it can even lead to an increase of energy
consumption (Earle and Faruqui, 2006; Herkert and Kostyk, 2015; Delmas et al.,
2013).

Di�erently from previous work, this thesis focuses on learning and integrating
realistic user preferences and related reputations in the optimization of ESS. To
the best of found knowledge, this is the first e�ort that combines optimization,
machine learning and user behavioral modeling in the context of ESS.

4.2 System Model and Assumptions
Let us consider a set of users U . This set includes users equipped with on-site
power generators such as PV panels, users without power generation capabilities,
as well as larger power plants based on renewable energies (e.g., solar, wind, etc.)
and standard power plants (coal, nuclear, hydroelectric, etc.). Each producer may
sell energy at a di�erent cost, which is assumed does not change over time. For
convenience, let us partition the set U in a set of m producers B = {b1, b2, . . . , bm}
and a set of n consumers C = {c1, c2, . . . , cn}. Note that, consumers may include
residential users with power generation capabilities unable to fulfill their daily
energy needs. Let us envision that energy exchanges are performed daily, for
example during the evening for the next day. The ESS estimates for each producer
bi the next-day production capacity of Ri, with i = 1, 2, . . . , m, and for each
consumer cj the energy requirement of wj, for j = 1, 2, . . . , n, expected for the
next day. It has been shown that these can be accurately predicted with time-
series analysis techniques, such as exponential moving average (Zhu et al., 2013).

Let us consider an ESS in which users, and specifically consumers, have an ac-
tive role in the exchange process. Specifically, the ESS sends daily to each customer
through a smartphone app a personalized recommendation. This recommendation
consists of a list of producers, the amount of energy to be bought from each of
them, and the cost. Di�erently from previous works in this area, which assume
users to be always compliant and engaged with the system, let us consider a realis-
tic user behavioral model in which users may accept, reject or ignore each producer

4. A Domain Specific RMS 55

listed in the recommendation. This behavior is dictated by the consumer level of
engagement with the ESS and by their preferences for the source of produced en-
ergy (e.g., coal, renewable, nuclear, etc.) and the price at which energy is sold by
a producer. Let us model this preference through a probability pij œ [0, 1] repre-
senting the likelihood that consumer cj would like to buy energy from producer
bi. This probability is initially unknown, and to learn it a reinforcement learning
approach is proposed.

This same probability represents a very interesting information for the choice
of the most willing users to accept the transactions and from a di�erent point of
view it indicates the reputation that a certain user has inside the sharing system.

Let us consider that the recommendation list cannot exceed a maximum length
K and the energy exchanged between two users should be greater than a minimum
value –. These assumptions take into account the fact that it is unfeasible for
users to manually accept a very long list of suggestions, and it is not convenient
to exchange infinitesimal amounts of energy.

Note that, if a recommendation is accepted, the ESS will honor this exchange.
As a result, a recommendation is a commitment of energy resources. Consequently,
if a recommendation is rejected or ignored, it will result in an energy waste (or
in energy sold to the utility company for a much lower price). As a result, the
recommendations need to be carefully designed to maximize the performance of
the system.

Finally, let us assume that when producer bi sells energy to consumer cj, there
is an energy loss during the energy transfer (Zhu et al., 2013). This loss depends
on the physical distance between bi and cj and it is directly proportional to the
amount of energy exchanged. The loss is thus modeled as a fraction Lij œ [0, 1] of
the energy exchanged. Let us assume that there is a maximum tolerable loss Lmax

that the ESS allows.

4.3 Problem Formulation
The goal of the ESS optimization problem is to find the recommendations to be
sent to the customers so that the expected energy exchanged is maximized. This

4. A Domain Specific RMS 56

results in minimizing the amount of wasted energy. The problem is formulated in
Eqs. (4.1)-(4.7).

maximize
mÿ

i=1

nÿ

j=1
wjpijxij (4.1)

s.t.
nÿ

j=1
(1 + Lij)wjxij Æ Ri, ’i (4.2)

mÿ

i=1
xij Æ 1, ’j (4.3)

mÿ

i=1
zij Æ K, ’j (4.4)

–zij Æ wjxij Æ wjzij, ’i, j (4.5)

zij Ø xij, ’i, j (4.6)

xij œ [0, 1], zij œ {0, 1}, ’i, j (4.7)

The decision variables of the problem are xi,j œ [0, 1]. Given the energy demand
wj of consumer cj, xi,j is the fraction of wj that cj is being recommended to buy
from producer bi. The goal is to maximizes the expected amount of exchanged
energy, considering the probability pij that cj will accept the recommendation.
Let us also introduce a binary decision variable zij œ {0, 1}, which is equal to 1 if
xi,j > 0, i.e. if bi is included in the recommendation of cj. The variables zij are
used in the constraint in Eq. (4.4) to make sure that the recommendation has a
length limited by K.

The constraint in Eq. (4.2) guarantees that the production capacity of producer
bi is not exceeded, considering also the loss that is incurred in the transmission.
Similarly, constraint (4.3) ensures that the need of consumer cj are not exceeded.
Finally, Eq. (4.5) ensures that an exchange is larger than the minimum allowed
amount –, and Eqs. (4.6)-(4.7) define the domain of the decision variables. Note
that, the problem allows exchanges between all pairs of producers and consumers,
given the problem constraints. Nevertheless, an additional constraint can be added
to prevent losses above the maximum allowed fraction Lmax by setting xij = 0 if
Lij > Lmax.

4. A Domain Specific RMS 57

Notation Description
m Number of producers
bi ith producer

Ri
Production capacity of

ith producer
n Number of consumers
aj jth consumer

wj
Energy requirement of

jth consumer
t Time index

Pij

Random variable corresponding
to preference of consumer j

buying from producer i
pij Mean of Pij

‚pij Estimation of pij

mij
Number of suggesting producer j

to consumer i

Lij
Transmission loss rate between

producer j and consumer i
A Action matrix

Table 4.1: Notation Summary

Table 4.1 summarizes the notation.
The following theorem shows that the problem is NP-Hard.

Theorem 1. The optimization problem in Eq. (4.1) is NP-Hard.

Proof. This proof provides a reduction from the Generalized Assignment Problem
(GAP) (Fleischer et al., 2006). In a general instance of GAP, there are n tasks and
m processors. Processor i has Ri resources. By assigning task j to processor i, a
profit fij and consume gij resources can be obtained. A task can be assigned to a
single process, and the goal is to find the assignment that provides the maximum
profit given the resources of the processors.

4. A Domain Specific RMS 58

The GAP is formulated as below.

maximize
mÿ

i=1

nÿ

j=1
fijxij (4.8)

s.t.
nÿ

j=1
gijxij Æ Ri, ’i (4.9)

mÿ

i=1
xij = 1, ’j (4.10)

xij œ {0, 1}. ’i, j (4.11)

From a general GAP instance, an instance of the problem can be created as follows.
It is possible to consider a consumer for each task and a producer for each processor.
K is set to K = 1, so that the recommendation for a consumer can contain at most
a single producer. Furthermore, it is considered (1 + Lij)wj = gij and the energy
production of producer i as Ri. Let us considerer Lmax = Œ so that all exchanges
are possible.

At this point, the only di�erence between the reduced problem and the GAP
problem is that the decision variables xij are continuous, while the decision variable
under GAP are discrete. However, infinitesimal exchanges are not allowed in the
proposed system, as they need to be greater than or equal to –. By setting
– = wj, the constraint in Eq. (4.5) forces the decision variable xij to coincide with
the discrete variable zij.

As a result, the solution of the reduced problem provides the assignment that
maximizes the profit within the constrained processors’ resources. Therefore, the
considered problem is at least as hard as GAP, and thus it is NP-Hard.

Note that, although the problem is NP-Hard the scale of the problem is limited
by the constraint on the maximum loss. In fact, the complexity of the problem
is proportional to the number of possible producer/consumer pairs. However, the
loss in an energy transfer depends on the physical distance between producer and
consumer, as a result the number of actual possible pairs is limited. In performed
experiments, an optimizer such as Gurobi 5 is able to solve the problem in a very
short time in all the considered settings.

5Gurobi Optimizer Reference Manual, 2015-2014.

4. A Domain Specific RMS 59

However, the solution of such optimization problem requires the knowledge of
the user preferences (pij), the expected production (Ri), and the expected con-
sumption (wj). As mentioned, the latter two can be predicted using time series
analysis (Zhu et al., 2013). Conversely, learning the user behavior is challenging,
as users may significantly di�er in their preferences and engagement with the ESS
(Contu et al., 2016; RopuszyÒska-Surma and WÍglarz, 2018). For these reasons, a
reinforcement learning based RMS to learn user preferences was developed. Since
user preferences reveal valuable information about their ability to accept transac-
tions, an RMS that uses preference informations as reputation informations was
used.

4.4 A Reinforcement Learning Approach for User
Preference Learning

A possible way of predicting the expected user preference is to directly ask users
when the ESS is installed in their homes. However, social behavioral studies
show that such information does not always reflect the actual preferences. Such
situations typically occur when users make choices that are not always motivated
by a well-defined logic, such as in the addressed case (Kahneman, 2003).

In order to learn the user reputation and engagement, i.e. the probabilities pij

of the optimization problem, the user preference over time is observed and their
reputation is built as consequence. This is a typical problem of exploration and
exploitation in which the goal is to explore by sending recommendations to users
to learn their preference, but at the same time optimize the system performance
by exploiting what the algorithm has already learned, i.e. maximizing the ex-
changed energy by sending recommendations to users that are most likely going to
accept. This problem is well modeled by reinforcement learning (Gai et al., 2012),
as explained below, and this solution represents a useful and interesting Repu-
tation Management System to establish those most willing to accept the energy
transactions of users within the proposed energy sharing system.

Let us model the preference of consumer cj, with respect to accepting a rec-
ommendation for buying energy from producer bi, as a random variable Pij. The

4. A Domain Specific RMS 60

realization of such variable at day t is referred to as Pij(t) œ {0, 1}. The mean
value of Pij is denoted as pij, that represents at the same time the reputation of j in
accepting energy by i, and it is initially unknown. Let us also assume Pij evolves as
an i.i.d. process over time. Given the energy consumption/production predictions
for day t, the ESS decides which suggestions should be sent to the consumers. This
is modeled by an action matrix A(t) = [aij(t)]n◊m, where aij(t) œ [0, 1] represents
the fraction of wj that customer cj is suggested to buy from bi, similarly to the xij

variables of the optimization problem. As a result, the total number of unknown
variables is N = n ◊ m. The solution space F includes all feasible action matrices
that would satisfy all the constraints of the optimization problem.

Similar to the optimization problem, maximizing the amount of exchanged
energy is the goal. At each iteration of the optimization phase t, the ESS chooses
the action matrix A(t) that maximizes the optimization function given the current
knowledge. This knowledge is represented by the estimated averages ‚pij(t) for
each random variable Pij. For an action matrix A(t), the reward is defined as
RA(t)(t) = q

i,j wjaij(t)Pij(t). Given the initially unknown distribution of the
variables Pij, the goal is to find a policy (i.e., series of action matrices in F)
that minimizes the regret up to the current time t, i.e. the di�erence between
the expected reward having perfect knowledge of the variables realizations and
that obtained by a given policy. Formally, the regret is expressed as R(t) =
tRú

A(t)(t) ≠ E[qt
tÕ=1 RA(tÕ)(tÕ)], where Rú

A(t)(t) is the reward obtained with perfect
knowledge of the users’ preferences.

Minimizing the regret is a hard problem, given the initial unknown variable
distribution. However, an e�cient algorithm based on reinforcement learning that
ensures a bounded regret with respect to the optimal (Gai et al., 2012) can be
formulated. The pseudo-code of the algorithm is shown Algorithm 4.1: User Pref-
erence Learning (UPL), and it is composed of two consecutive phases: initialization
and optimization. During the initialization phase, N actions are played randomly
in order to observe all the N random variables at least once.

In the optimization phase, the system plays an action that maximizes the
function defined in line 8 of Algorithm 4.1, over the solution space F . This can
be accomplished by solving an optimization problem with constraint as in Eqs.

4. A Domain Specific RMS 61

Algorithm 4.1 User Preference Learning (UPL)
1: //INITIALIZATION PHASE
2: for r = 1, . . . , n and q = 1, . . . , m do
3: Select any A œ F s.t. Arq = 1 ;
4: Update [‚pij]n◊m and [mij]n◊m;
5: //OPTIMIZATION PHASE
6: while True do
7: t = t + 1
8: Select an action A s.t.

A(t) = arg max
AœF

mÿ

i=1

nÿ

j=1
wjaij

A
‚pij +

Û
(N + 1)ln t

mij

B

9: Update [‚pij]n◊m and [mij]n◊m;

4.2-4.7, but with the following objective function:

A(t) = arg max
AœF

mÿ

i=1

nÿ

j=1
wjaij

Q

a‚pij +
ı̂ıÙ(N + 1)ln t

mij

R

b .

The optimization problem solved at time t is based on the estimation of the average
values pij at time t≠1, denoted as ‚pij(t≠1). If the selected action at time t includes
an energy transaction between consumer cj and producer bi, i.e., aij(t) ”= 0, the
system observes a new realization Pij(t) of the random variable Pij. The system
uses this information to update the current knowledge estimation of ‚pij(t), as well
as the total number mij(t) of observations of the variable Pij, as follows:

‚pij(t) =

Y
_]

_[

‚pij(t≠1)mij(t≠1)+Pij(t)
mij(t≠1)+1 if aij(t) ”= 0,

‚pij(t ≠ 1) otherwise.
(4.12)

mij(t) =

Y
_]

_[

mij(t ≠ 1) + 1 if aij(t) ”= 0,

mij(t ≠ 1) otherwise.
(4.13)

Theorem 2. Assume wj to be homogeneous across users for a su�cient amount
of time, UPL provides a bounded regret given by:

R(t) Æ
C

4a2
maxN3(N + 1) ln(t)

(�min)2 + fi2

3 N2 + N

D

�max, (4.14)

4. A Domain Specific RMS 62

where, amax = max
AœF

max
i,j

aij, �min = min
RA<Rú

(Rú ≠ RA) and �max = max
RA<Rú

(Rú ≠ RA)
are the minimum and maximum di�erence to the reward obtained with perfect
knowledge of the users’ preferences, respectively.

Proof. The proof is obtained following Theorem 2 of (Gai et al., 2012).

4.5 Experimental Results
This section evaluates performance of the proposed approach against the approach
proposed in (Zhu et al., 2013).

4.5.1 Experimental setting description

The simulations that will be presented in this section have been carried out on the
simulation platform described in Chapter 2, which exploits a distributed environ-
ment where each producer and consumer is simulated by a process that runs on
the same cluster of computers. In this environment, a module for the exchange
of energy services based on Message Passing Interface has been implemented, i.e.,
a communication interface responsible to enable messaging over a communica-
tion channel. This simulator employed the platform introduced in (Agate et al.,
2018) as a core. It is written in C++ where it exploits MPICH, a MPI library
available for many UNIX like distributions and Windows OS. In particular, the
reputation management system based on reinforcement learning of the user pref-
erences, presented in Section 4.4, has been implemented in the RMS module seen
in Chapter 2. The whole application scenario, in particular the energy exchange
system, was simulated on the Service Exchange module of each agent of the net-
work. In this simulator, a particular process is responsible for energy prediction
as well as executing the reinforcement learning UPL algorithm to send consumers
recommendations. At each time step, Gurobi was used to solve the optimization
problem within the UPL algorithm to pick the next action. In order to keep trace
of all the energy transactions occurred, at the end of every time slot, the leading
process, called previously truth holder, collects all the output of every transaction.

4. A Domain Specific RMS 63

Real consumption data are obtained from the Pecan6 dataset that contains
daily aggregate energy consumption data of 53 residential buildings of di�erent
types and sizes over the course of 2014. Following the concept of VPPs, producers
were modeled as follows. Let us consider two groups of solar energy producers
located in Lexington, Kentucky. Producers are equipped with Photovoltaic (PV)
generation capabilities. The first group consists of 8 producers with 8 kW plant size
and the second group is 12 producers equipped with 4 kW plant size. Furthermore,
the NREL’s PVWatts Calculator of the U.S. Department of Energy were used to
generate the energy production over time given the solar irradiance in Lexington
and the size of the PV plants. Under this assumption, in the experiments m has
been set to m = 2. Finally, user preferences and losses were uniformly assigned at
random in the sets {0.6, 0.8, 1} and {1%, 2%, 3%, 4%}, respectively.

4.5.2 Comparison approaches

The proposed approach is compared to the algorithm proposed in (Zhu et al.,
2013). This algorithm matches producers and consumers in order to minimize
the transmission loss. In this method, first consumers are sorted in descending
order based on the quantity of energy needed. Then, the algorithm follows such
order and matches the consumers’ demand with the available producers by giving
precedence to those that provide the minimum loss. The experiments refer to this
algorithm as “Zhu”, and the reader is referred to (Zhu et al., 2013) for more details.

Since the original Zhu algorithm does not take into account the consumers’
preferences, the proposed algorithm is compared with two modified versions of the
original approach. In both versions, the matching criteria based on loss is replaced
with the consumers’ preferences to maximize the likelihood that the recommenda-
tion is accepted. Specifically, the system follows the sorted order of consumers and
match each consumer cj with the producer bi that has the highest value of pij. Let
us define an approach, called “ZhuP ”, in which the consumer preference probabil-
ities are perfectly known, as well as an approach called “ZhuP L” that learns these
probabilities over time by keeping track of the historic average of accepted/rejected
recommendations.

6Pecan street inc. dataport 2014. URL www.pecanstreet.org.

4. A Domain Specific RMS 64

10 20 30 40 50
of consumers

0

20

40

60

80

100
Ef

fic
ie

nc
y

%

Zhu Zhu_P Zhu_PL UPL

Figure 4.3: E�ciency of the algorithms with perfect knowledge of the power con-
sumption.

10 20 30 40 50
of consumers

0

20

40

60

80

100

Ef
fic

ie
nc

y
%

Zhu Zhu_P Zhu_PL UPL

Figure 4.4: E�ciency of the algorithms with prediction of the power consumption.

4.5.3 Performance Evaluation

The proposed system is evaluated considering three experimental scenarios, as
described in the following.
Experimental Scenario 1. In this scenario the e�ciency of the system, is stud-
ied, defined as the ratio of actual exchanged energy over the optimum value ob-

4. A Domain Specific RMS 65

0 50 100 150 200 250 300 350
days

1.9

2.0

2.1

2.2

2.3

2.4

2.5
Lo

ss
es

 %

UPL
ZHU
ZHU_P
ZHU_PL
Lmax

Figure 4.5: Losses incurred for the algorithms with perfect knowledge of the power
consumption.

tained by solving the optimization problem in Eqs. (4.1)-(4.7) with perfect knowl-
edge of the user behavior, each day. The e�ciency is averaged over a period of
a year. Figs. 4.3 and 4.4 show the result for perfect knowledge of the consumer
consumption and for consumption predicted through an Exponentially Weighted
Moving-Average (EWMA) with – = 0.5 (Kansal et al., 2007), respectively.

It can be observed that including user-preference in the matching of energy
resources improves the e�ciency of the sharing system. As a matter of fact, all
algorithms which take consumers’ preferences into account, i.e., UPL, ZhuP , and
ZhuP L, outperform the Zhu algorithm that just focuses on losses. As expected,
ZhuP usually performs better than ZhuP L, since it has perfect knowledge of the
consumers’ preferences. However, as number of the consumers increases, which
is equivalent to growing number of transactions, the learning method of ZhuP L

improves.
Overall, UPL significantly outperforms all versions of the Zhu approaches, both

with perfect and estimated required energy. In fact, it achieves an e�ciency close
to 100% even when only the prediction of energy consumption is available, as
shown in Fig. 4.4.

4. A Domain Specific RMS 66

Figure 4.6: Cumulative transferred energy divided by time for di�erent algorithms
in the course of a year.

Fig. 4.5 complements the previous results by showing the percentage of energy
loss in the case of perfect knowledge of energy consumption.The case of predicted
energy is omitted, since similar trends were observed. Lmax is set to 2.5%, therefore
UPL does not allow exchanges between users having a percentage loss higher than
this threshold. As expected, Zhu incurs the lowest loss, since this method explicitly
focuses on optimizing this parameter. However, this comes at the expense of a
lower e�ciency as previously discussed. UPL incurs losses which are well below
the Lmax threshold, showing the e�cacy of the proposed approach. Note that,
there is a period during Fall/Winter in which ZhuP has lower loss than Zhu. This
is due to the lower amount of energy transactions under ZhuP , which results in
lower losses.
Experimental Scenario 2. In this scenario the trend of energy transferred over
time is studied. To this purpose, for each time t, a metric calculated as the cumu-
lative energy transferred in the system until then, divided by t, is defined. Results
are shown in Fig. 4.6. Since realistic energy production data from PVWattCalcu-
lator7 are used, there is a seasonal e�ect that justifies the non-monotonic trend of

7SolarR Resource Data. URL https://pvwatts.nrel.gov/pvwatts.php.

4. A Domain Specific RMS 67

Figure 4.7: Average absolute percentage error on learned probabilities after di�er-
ent periods, by varying the amount of available energy in the system.

all approaches. In fact, during the Fall/Winter months there is a decrease in en-
ergy production of solar panels, which implies a decrease in the exchanged energy.
Nevertheless, as Fig. 4.6 shows, UPL outperforms all approaches, demonstrating
outstanding performance with negligible gap with respect to the optimal solution.
Experimental Scenario 3. In the last experimental scenario, the impact of the
ratio of the produced energy on the system performance is analyzed. Intuitively,
when less energy is produced, less exchanges are possible. This results in a slower
learning phase, which may impact the e�ciency of the system. In these experi-
ments the produced energy is altered to be a given percentage (10%, 40%, 70%,
and 100%) of the energy needed by the consumers, and investigated the system
performance after 10 days, 3 months, and 1 year.

Fig. 4.7, shows the average percentage absolute error in learning the consumers’
preferences, i.e., the probabilities pij. As expected, the error decreases as the
amount of energy increases, as well as with time. It is worth noting that, even
under just 10 days, the error is below 10% if at least 70% of the required energy
is available. Interestingly, the error never reaches zero, and it tends to stabilize
around 5%. This is due to the nature of reinforcement learning at the basis of
UPL, which prefers exploitation versus exploration, once su�cient knowledge is

4. A Domain Specific RMS 68

Figure 4.8: E�ciency of the system after di�erent periods, by varying the amount
of available energy in the system.

acquired. In fact, once the best consumers (i.e., those with higher chances of
accepting a recommendation) are identified, these are selected more often, in order
to maximize the system performance. As a result, other consumers’ preferences are
not learned exactly. Nevertheless, this does not prevent the system from achieving
high e�ciency. In fact, as shown in Fig. 4.8, the system is able to achieve more
than 85% e�ciency after three months of operation, under all energy availability
scenarios.

Conclusions

Distributed environments where autonomous agents act cooperatively need a Rep-
utation Management System to estimate the reliability of unknown agents before
starting a service exchange. In fact, in a distributed system agents often have
to interact without having a prior mutual knowledge and without having su�-
cient information to establish secure exchanges. Ensuring a secure and e�cient
collaboration between network participants leads researchers to design an RMS to
estimate the reputation of agents involved in interactions and, their solutions are
as good as the reputations better reflect the behavior patterns of participants. A
first concern of the designers is therefore the realization of an RMS that takes into
account specific accuracy requirements.

In addition, this goal leads them to worry about the application scenario on
which to model their solution and many of the e�orts must therefore be engaged
in the creation of a simulation that can verify the correctness of their RMS and
its applicability to the context of simulation. This nullifies every time the e�orts
of the researchers who contrarily could address their e�orts towards the modeling
of the RMSs.

Even more, because of their distributed nature, most RMSs are sensitive to
a number of security attacks designed to exploit specific vulnerabilities. Many
attackers exploit the vulnerabilities of such systems to abuse the shared resources.
The main vulnerabilities come from internal attackers, who have obtained the
right to participate in the sharing system, but who in di�erent ways want to cause
damage to the system by spreading, for example, false reputation information. By
changing perspective and focusing on the service exchange, it is possible to notice
that some agents are willing to become bad service providers and instead receive
resources in an inappropriate way.

4. A Domain Specific RMS 70

On the basis of knowledge acquired, a comprehensive framework to allow de-
velopers to assess their RMSs since the design phase, capable of evaluating its
vulnerability to security attacks, easily customizable, and supporting large-scale
simulation is still missing. To meet this challenge, this dissertation presented
DRESS, a Distributed RMS Evaluation Simulation Software.

In the design of the simulator, the theoretical concepts of the distributed algo-
rithms were used to model the RMS. The adoption of this model has been reflected
in the use of the paradigm of communication between processes through MPI, a
communication protocol for message passing.

The architectural model of the simulation framework takes advantage of the
intuition to associate each agent of the reputation system to a process. This feature
makes it suitable to run both on small hardware architectures and on clusters of
networked computers, enabling large-scale simulations.

DRESS allows researchers to achieve several tasks relying on a set of core
functionalities that can be immediately used, or extended to fit almost any need for
personalization. For example, the user can address custom application scenarios,
define new distributed services and generate ad-hoc agent models.

The simulation platform has been designed and developed also to give the pos-
sibility to choose di�erent RMSs, or di�erent policies, which should be applied to
the defined context in order to immediately observe the response of the distributed
application in terms of performance improvement. For example, in a resource shar-
ing system in which the focus is on maximizing the resources exchanged, DRESS
allows to immediately verify the validity of the choices made by the designers by
simply visualizing the trends of the agents’ reputations or the gain in terms of the
actual utility perceived by the participants.

The evaluation of the RMS against a set of di�erent attacks can be easily
performed by means of some vulnerability metrics that show how di�erent design
choices impact on the robustness of the reputation system.

In order to prove the e�ectiveness of the proposed solution, this thesis has
described how DRESS can be configured to evaluate a simple RMS that is victim
of four di�erent security attacks.

In this thesis it was shown how the designer can redefine the reputation manage-
ment model by intervening in the functionalities o�ered by the simulator. Finally,

4. A Domain Specific RMS 71

the framework showed good capabilities in terms of scalability, demonstrating the
possibility of being run on a computer cluster, reducing the simulation time.

A deeper analysis of the scalability of the simulation framework, in terms of
memory occupation, computational complexity and communication, could be car-
ried out as future research work, using advanced techniques for e�cient process
allocation.

In addition, the suitability of DRESS to simplify the construction of a RMS
on a specific real application has been proven. In particular, this dissertation
addressed a typical problem in the context of smartgrids by trying to implement
an energy sharing system(ESS) under the concept of virtual power plants (VPPs).
Di�erently from previous works, last part of this dissertation has been focused on
learning realistic consumers’ preferences in the optimization of ESS. A realistic
user behavioral model in which users may accept, reject or ignore each producer
listed in a recommendation has been considered. This model is learned through
a reinforcement learning approach at the basis of the User Preference Learning
(UPL) algorithm. User preferences were seen as the reputation of users and the
information obtained was used to select only the most cooperative users in energy
transactions in order to maximize energy exchanged. Compared to state-of-the-art
approaches, experimental results based on realistic data show that the proposed
approach achieves higher e�ciency with comparable energy transfer losses.

As future work it would be interesting to investigate the performance of DRESS
while varying the type of computational resources adopted, since not all researchers
may have access to computer clusters. Another aspect worth considering is study-
ing how to adapt DRESS to a cloud based computing platform. To achieve this
task it is possible to exploit simulation-as-a-service techniques and to provide a
user-friendly web interface.

Bibliography

T. Ackermann, G. Andersson, and L. Söder. Distributed generation: a definition.
Electric Power Systems Research, 57(3):195 – 204, 2001.

V. Agate, A. De Paola, G. Lo Re, and M. Morana. A simulation framework for
evaluating distributed reputation management systems. In Distributed Comput-
ing and Artificial Intelligence, 13th International Conference, pages 247–254,
Cham, 2016a. Springer International Publishing.

V. Agate, A. De Paola, G. Lo Re, and M. Morana. Vulnerability Evaluation of
Distributed Reputation Management Systems. In InfQ 2016 - New Frontiers
in Quantitative Methods in Informatics, pages 1–8, ICST, Brussels, Belgium,
Belgium, 2016b. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

V. Agate, A. De Paola, G. Lo Re, and M. Morana. A platform for the evaluation
of distributed reputation algorithms. In 2018 IEEE/ACM 22nd International
Symposium on Distributed Simulation and Real Time Applications (DS-RT),
pages 1–8, Oct 2018.

S. Althaher, P. Mancarella, and J. Mutale. Automated demand response from
home energy management system under dynamic pricing and power and comfort
constraints. IEEE Transactions on Smart Grid, 6(4):1874–1883, July 2015.

P. Asmus. Microgrids, virtual power plants and our distributed energy future. The
Electricity Journal, 23(10):72–82, 2010.

F. M. Awuor, C.-Y. Wang, and T.-C. Tsai. Motivating content sharing and trust-
worthiness in mobile social networks. IEEE Access, 6:28339–28355, 2018.

BIBLIOGRAPHY 73

E. Ayday and F. Fekri. Iterative trust and reputation management using belief
propagation. IEEE Transactions on Dependable and Secure Computing, 9(3):
375–386, May 2012.

S. Ba and P. A. Pavlou. Evidence of the e�ect of trust building technology in
electronic markets: Price premiums and buyer behavior. MIS quarterly, pages
243–268, 2002.

S. Bhattacharjee, A. Thakur, S. Silvestri, and S. K. Das. Statistical security
incident forensics against data falsification in smart grid advanced metering
infrastructure. In ACM CODASPY, pages 35–45, 2017.

P. Chandrasekaran and B. Esfandiari. Toward a testbed for evaluating computa-
tional trust models: experiments and analysis. J. of Trust Management, 2(1):
1–27, 2015.

T. F. E. R. Commission. Reports on Demand Response & Advanced Metering, De-
cember 17, 2015. http://www.ferc.gov/industries/electric/indus-act/
demand-response/dem-res-adv-metering.asp.

D. Contu, E. Strazzera, and S. Mourato. Modeling individual preferences for
energy sources: The case of iv generation nuclear energy in italy. Ecological
Economics, 127:37–58, 2016.

C. Crapanzano, F. Milazzo, A. De Paola, and G. Lo Re. Reputation management
for distributed service-oriented architectures. In Fourth IEEE Int. Conf. on
Self-Adaptive and Self-Organizing Systems Workshop (SASOW), pages 160–165,
2010.

CVSS. Common vulnerability scoring system v3.0. https://www.first.org/
cvss, 2015.

A. De Paola and A. Tamburo. Reputation Management in Distributed Systems. In
3rd Int. Symp. on Communications, Control and Signal Processing (ISCCSP),
pages 666–670, 2008.

http://www.ferc.gov/industries/electric/indus-act/demand-response/dem-res-adv-metering.asp
http://www.ferc.gov/industries/electric/indus-act/demand-response/dem-res-adv-metering.asp
https://www.first.org/cvss
https://www.first.org/cvss

BIBLIOGRAPHY 74

M. A. Delmas, M. Fischlein, and O. I. Asensio. Information strategies and energy
conservation behavior: A meta-analysis of experimental studies from 1975 to
2012. Energy Policy, 61:729–739, 2013.

V. Dolve, C. Jackson, S. Silvestri, D. Baker, and A. DePaola. Social-behavioral
aware optimization of energy consumption in smart homes. In IEEE DCOSS,
2018.

R. Earle and A. Faruqui. Toward a new paradigm for valuing demand response.
The Electricity Journal, 19(4):21–31, 2006.

M. M. Esfahani, A. Hariri, and O. A. Mohammed. A multiagent-based game-
theoretic and optimization approach for market operation of multimicrogrid
systems. IEEE Transactions on Industrial Informatics, 15(1):280–292, Jan 2019.

M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding and white-
washing in peer-to-peer systems. In ACM SIGCOMM workshop on Practice and
theory of incentives in networked systems, pages 228–236, 2004.

L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. Tight approx-
imation algorithms for maximum general assignment problems. In Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
611–620. Society for Industrial and Applied Mathematics, 2006.

K. K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol, K. S.
Barber, J. S. Rosenschein, L. Vercouter, and M. Voss. A specification of the
agent reputation and trust (ART) testbed: experimentation and competition
for trust in agent societies. In 4th Int. joint Conf. on Autonomous agents and
multiagent systems, pages 512–518, 2005.

Y. Gai, B. Krishnamachari, and R. Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual
observations. IEEE/ACM Transactions on Networking, 20(5):1466–1478, Oct
2012.

F. Hendrikx, K. Bubendorfer, and R. Chard. Reputation systems: A survey and
taxonomy. Journal of Parallel and Distributed Computing, 75:184 – 197, 2015.

BIBLIOGRAPHY 75

J. Herkert and T. Kostyk. Societal implications of the smart grid: Challenges
for engineering. In Engineering Identities, Epistemologies and Values, pages
287–306. Springer, 2015.

L. Hernández, C. Baladron, J. M. Aguiar, B. Carro, A. Sanchez-Esguevillas,
J. Lloret, D. Chinarro, J. J. Gomez-Sanz, and D. Cook. A multi-agent sys-
tem architecture for smart grid management and forecasting of energy demand
in virtual power plants. IEEE Communications Magazine, 51(1):106–113, 2013.

K. Ho�man, D. Zage, and C. Nita-Rotaru. A survey of attack and defense tech-
niques for reputation systems. ACM Computing Surveys (CSUR), 42(1):1, 2009.

A. A. Irissappane, S. Jiang, and J. Zhang. Towards a comprehensive testbed to
evaluate the robustness of reputation systems against unfair rating attack. In
20th Conference on User Modeling, Adaptation, and Personalization (UMAP),
pages 1–12, 2012.

D. Jelenc, R. Hermoso, J. Sabater-Mir, and D. Tr�ek. Decision making matters:
A better way to evaluate trust models. Knowledge-Based Systems, 52:147–164,
2013.

K. Jhala, B. Natarajan, and A. Pahwa. Prospect theory based active consumer
behavior under variable electricity pricing. IEEE Transactions on Smart Grid,
pages 1–1, 2018.

H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen. Fireflies: A secure
and scalable membership and gossip service. ACM Transactions on Computer
Systems (TOCS), 33(2):5, 2015.

J. Johnson, J. Flicker, A. Castillo, C. Hansen, M. El-Khatib, D. Schoenwald,
M. Smith, R. Graves, J. Henry, T. Hutchins, et al. Design and implementation
of a secure virtual power plant. Technical report.

D. Kahneman. Maps of bounded rationality: Psychology for behavioral economics.
American economic review, 93(5):1449–1475, 2003.

BIBLIOGRAPHY 76

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust algorithm
for reputation management in P2P networks. In 12th Int. Conf. on World Wide
Web, pages 640–651, 2003.

A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management in en-
ergy harvesting sensor networks. ACM Transactions on Embedded Computing
Systems (TECS), 6(4):32, 2007.

R. Kerr and R. Cohen. Treet: the trust and reputation experimentation and
evaluation testbed. Electronic Commerce Research, 10(3):271–290, Dec 2010.

E. Koutrouli and A. Tsalgatidou. Reputation systems evaluation survey. ACM
Computing Surveys (CSUR), 48(3):35, 2016.

S. Lakshminarayana, T. Q. S. Quek, and H. V. Poor. Cooperation and storage
tradeo�s in power grids with renewable energy resources. IEEE Journal on
Selected Areas in Communications, 32(7):1386–1397, July 2014.

Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. An empirical study
of collusion behavior in the maze p2p file-sharing system. In 27th Int. Conf. on
Distributed Computing Systems (ICDCS’07), pages 56–56, 2007.

N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei. Energy-sharing model with
price-based demand response for microgrids of peer-to-peer prosumers. IEEE
Transactions on Power Systems, 32(5):3569–3583, Sep. 2017.

N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

F. G. Mármol and G. M. Pérez. Trmsim-wsn, trust and reputation models simu-
lator for wireless sensor networks. In IEEE International Conference on Com-
munications (ICC’09), pages 1–5, 2009.

S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p reputation
systems. Computer Networks, 50(4):472–484, 2006.

O. Palizban, K. Kauhaniemi, and J. M. Guerrero. Microgrids in active network
management part i: Hierarchical control, energy storage, virtual power plants,

BIBLIOGRAPHY 77

and market participation. Renewable and Sustainable Energy Reviews, 36:428–
439, 2014.

Y. Parag and B. Sovacool. Electricity market design for the prosumer era. Nature
Energy, 1:16032, March 2016.

M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, and M. Radenkovic.
Integrating renewable energy resources into the smart grid: Recent develop-
ments in information and communication technologies. IEEE Transactions on
Industrial Informatics, 14(7):2814–2825, 2018.

E. RopuszyÒska-Surma and M. WÍglarz. Profiling end user of renewable energy
sources among residential consumers in poland. Sustainability, 10(12):4452,
2018.

A. Salehi-Abari and T. White. Dart: a distributed analysis of reputation and trust
framework. Computational Intelligence, 28(4):642–682, 2012.

S. Silvestri, D. A. Baker, and V. Dolce. Integration of social behavioral modeling
for energy optimization in smart environments. In ACM Social Sense, pages
97–97, 2017.

F. Sioshansi. The sorry state of demand response in the U.S., 2019 (accessed
February 3, 2020). https://energypost.eu/the-sorry-state-of-demand-response-
in-the-u-s/.

Y. Sun and Y. Liu. Security of online reputation systems: The evolution of attacks
and defenses. IEEE Signal Processing Mag., 29(2):87–97, 2012.

S. Tadelis. The economics of reputation and feedback systems in e-commerce
marketplaces. IEEE Internet Computing, 20(1):12–19, 2016.

E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer. Taxon-
omy and survey of collaborative intrusion detection. ACM Computing Surveys
(CSUR), 47(4):55, 2015.

BIBLIOGRAPHY 78

M. Vasirani, R. Kota, R. L. Cavalcante, S. Ossowski, and N. R. Jennings. An
agent-based approach to virtual power plants of wind power generators and
electric vehicles. IEEE Transactions on Smart Grid, 4(3):1314–1322, 2013.

O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad. A survey on trust and rep-
utation models for web services: Single, composite, and communities. Decision
Support Systems, 74:121–134, 2015.

K. Wang, X. Qi, L. Shu, D.-J. Deng, and J. J. Rodrigues. Toward trustworthy
crowdsourcing in the social internet of things. IEEE Wireless Communications,
23(5):30–36, 2016.

K. Wang, X. Hu, H. Li, P. Li, D. Zeng, and S. Guo. A survey on energy internet
communications for sustainability. IEEE Transactions on Sustainable Comput-
ing, 2(3):231–254, July 2017.

A. G. West, S. Kannan, I. Lee, and O. Sokolsky. An evaluation framework for
reputation management systems. Trust Modeling and Management in Digital
Environments: From Social Concept to System Development, pages 282–308,
2010.

Y. Zhang, W. Wang, and S. Lü. Simulating trust overlay in p2p networks. Com-
putational Science–ICCS 2007, pages 632–639, 2007.

T. Zhu, A. Mishra, D. Irwin, N. Sharma, P. Shenoy, and D. Towsley. The case for
e�cient renewable energy management in smart homes. In Proceedings of the
Third ACM Workshop on Embedded Sensing Systems for Energy-E�ciency in
Buildings, pages 67–72. ACM, 2011.

T. Zhu, Z. Huang, A. Sharma, J. Su, D. Irwin, A. Mishra, D. Menasche, and
P. Shenoy. Sharing renewable energy in smart microgrids. In 2013 ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), pages 219–228,
April 2013.

	Abstract
	Acknowledgments
	Glossary
	Introduction
	Motivations and Goals
	Contributions
	Dissertation Outline
	Publications

	Model Assumptions and System Architecture
	Existing Approaches
	Reputation Management Systems
	RMS Model
	Security Attacks on RMSs

	Simulation Models
	Platform Architecture
	Simulation Environment
	Agent-based Model

	Evaluation Metrics
	Accuracy Metrics
	Vulnerability Metrics

	A General Purpose RMS
	The Proposed RMS
	Experimental Evaluation
	Analysis of reputation trend
	Analysis of accuracy
	Comparisons among different RMS policies
	Analysis of security
	System scalability

	A Domain Specific RMS
	The Energy Sharing Application Domain
	System Model and Assumptions
	Problem Formulation
	A Reinforcement Learning Approach for User Preference Learning
	Experimental Results
	Experimental setting description
	Comparison approaches
	Performance Evaluation

	Conclusions
	Bibliography

