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Abstract	  
	  

During	   the	   last	  decades	   the	  availability	  of	   increasingly	   cheaper	   technology	   for	  pervasive	  monitoring	  

has	   boosted	   the	   creation	   of	   systems	   able	   to	   automatically	   comprehend	   the	   events	   occurring	   in	   the	  

monitored	   area,	   in	   order	   to	   plan	   a	   set	   of	   actions	   to	   bring	   the	   environment	   closer	   to	   the	   user’s	  

preferences.	  

These	  systems	  must	  inevitably	  process	  a	  great	  amount	  of	  raw	  data	  –	  sensor	  measurements	  –	  and	  need	  

to	  summarize	  them	  in	  a	  high-‐level	  representation	  to	  accomplish	  their	  tasks.	  An	  implicit	  requirement	  is	  

the	  need	  to	  learn	  from	  experience,	   in	  order	  to	  be	  able	  to	  capture	  the	  hidden	  structure	  of	  the	  data,	   in	  

terms	  of	  relations	  between	  its	  key	  components.	  The	  availability	  of	  large	  collections	  of	  data,	  however,	  

has	  increased	  the	  awareness	  that	  “measuring”	  does	  not	  seamlessly	  translate	  into	  “understanding”,	  and	  

more	  data	  does	  not	  entail	  more	  knowledge.	  Scientific	  literature	  documents	  a	  massive	  use	  of	  Statistical	  

Machine	  Learning	   in	  almost	  all	  data	  analysis	  and	  data	  mining	  applications,	  aiming	  at	  minimizing	  the	  

need	   for	  a-‐priori	  knowledge.	  A	  remarkable	  drawback	  of	  such	  algorithms,	  however,	   is	   their	   failure	   to	  

effortlessly	   provide	   insight	   about	   the	   most	   significant	   features	   of	   the	   data,	   as	   they	   typically	   just	  

provide	  optimal	  parameter	  settings	  for	  a	  “black-‐box”.	  

In	  this	  thesis,	   it	   is	  claimed	  that	  structure	  is	  the	  key	  to	  handle	  the	  complexity	  of	  acquiring	  knowledge	  

from	   unstructured	   data	   in	   real-‐life	   scenarios.	   A	   shift	   in	   perspective	   will	   allow	   to	   tackle	   with	   the	  

unaddressed	   goal	   of	   representing	   knowledge	   by	  means	   of	   the	   structure	   inferred	   from	   the	   collected	  

samples;	   more	   specifically,	   the	   suggestion	   is	   to	   state	   this	   process	   within	   the	   framework	   of	   formal	  

languages	  and	  automata	  borrowing	  concepts	  and	  methods	  from	  Algorithmic	  Learning	  Theory.	  In	  this	  

context,	   knowledge	   extraction	  may	   be	   turned	   into	   structural	   pattern	   identification,	   letting	   syntactic	  

models	  emerge	  from	  data	  itself.	  

In	   order	   to	   prove	   the	   soundness	   of	   this	   proposal,	   three	   different	   case	   studies	   will	   be	   presented,	  

exploiting	   statistical	   learning,	   syntactical	   methods	   and	   formal	   languages,	   respectively.	   The	   third	  

approach	   will	   be	   particularly	   useful	   to	   highlight	   the	   advantage	   of	   building	   intrinsically	   recursive	  

models,	  which	  give	  multi-‐scale	  –	  more	  natural	  –	  representations;	  as	  a	  result,	  the	  computational	  burden	  

that	  characterizes	  the	  huge	  volume	  of	  data	  will	  be	   lessened.	  Moreover,	   the	  task	  of	  designing	  reliable	  

and	   efficient	   automatic	   systems	   for	   knowledge	   extraction	   can	   be	   alleviated	   by	   using	   such	   human-‐

understandable	  models.	  
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We are drowning in information but starved for knowledge.

John Naisbitt

1
Introduction

In recent years, the availability of an ever-increasing number of cheap and unobtrusive

sensing devices has piqued the interest of the scienti c community about the need of novel methods

for automatic comprehension of the environment based on the collection of raw data measurements.

Wide-area sensor infrastructures,Wireless Sensor Network (WSN) andWireless Sensor and Actu-

ator Network (WSAN) bear massive volumes of data with diverse features [1], which need to be e -

ciently handled and processed to extract relevant information, in order to provide predictive insights

and support users in controlling the monitored environments. This unprecedented requirement has

given rise to a new research eld crossing several areas, such as machine learning, pattern recognition,

statistics, expert systems, data visualization and high performance computing [2]. Researchers of this

new eld work closely with domain experts in order to create reliable models deeply rooted into the

1



raw data provided by the complex set of monitoring sensors.

The applications of knowledge discovery from sensory data are numerous, ranging from energy

grid monitoring to disaster prevention. However, one of the most common use scenarios isAmbient

Intelligence (AmI), a new paradigm in Arti cial Intelligence that aims at exploiting the information

about the environment state in order to personalize it, adapting the environment to user preferences

[3]. The personalization process should be transpatent to the user, thus the intrinsic requirement of

any AmI system is the presence of pervasive sensory devices.

Themajority of traditional datamining andmachine learning approaches are not directly suitable

to deal with the new challenges in knowledge extraction and representation fostered by sensory data

analysis. So, the attention of researchers has been nudged towards representations able to capture

relationships in data, highlighting hidden structures, in order to acquire accurate and general models,

easy to be transferred across similar scenarios, and less tied to the speci c settings of the sensor set that

produced the data.

In this thesis, a general framework to extract and represent structural knowledge is presented,

along with several methods and approaches to implement it. Moreover, representative case studies

related to themain applications of sensory data are provided, thoroughly investigating themain issues

of each scenario, and proposing an e fective solution based on structural knowledge.

1.1 Knowledge discovery

The need for coupling semanticswith a sequence of sensor readings can be expressed in the framework

of knowledge discovery, which is well-known in literature. Thus, in this section, main issues related

to this research area and state-of-the-art approaches proposed in scienti c literature will be presented.

Inferring knowledge from data is an open issue in Computer Science, and in particular in data mining

[4]. In this context, de ning what can be deemed as interesting knowledge is a hard problem, because

it implies to nd out what can be interpreted as an important information.

Historically, a rst debate on the most pro table way to extract useful information (i.e, knowl-

2



edge) from a data collection was opened by John Tukey [5]. In the seventies, he proposed the Ex-

ploratory Data Analisys (EDA), as opposite to the Confirmatory Data Analys (CDA) or Statistical

Hypothes Testing (SHT), that was the standard approach in those years. In the EDA approach, data

is analyzed with di ferent techniques to summarize its characteristics. Unlike CDA, Tukey suggests to

let hypotheses emerge from data itself, rather than using data only to test a-priori hypotheses. EDA is

just an approach, not a set of techniques, i.e. a suggestion about how data analysis should be carried

out and what its goals should be. Most of the techniques inspired to EDA use the power of graphical

representation to reveal the structure of the data to the analyst, o fering new and of en unexpected in-

sights. In other words, EDA empowers the analyst’s natural pattern-recognition capabilities and was

the seminal work of modern approaches to data mining and pattern recognition.

One of the contemporary and independent by developed research on the track of EDA is the so-

called General Unary Hypothes Automaton (GUHA) [6]. The aims are to describe all assertions

which may be hypotheses, to verify each of such assertions and to nd the “interesting” ones, based

on collected data. These techniques systematically generate all interesting hypotheses with respect to

the given data (hypotheses describing relations among properties of objects) via a standard computer

system, and therefore represent a rst attempt to formalize an automatic inductive approach. Formal

logic is used to formulate hypotheses, coded as association of properties. Each object is represented

by a row in a rectangular matrix, whose columns are properties of the object. By analysing this data

structure, it is possible to discover dependencies between di ferent properties. The whole process is

composed by three steps: preprocessing, kernel and post-processing. In the rst step, matrix is arranged

in a form suitable for a quick hypothesis generation. In the kernel phase, hypotheses are generated

and evaluated, while in the last step hypotheses are analyzed in order to interpret them.

It is crucial to note that the problem of letting structure and explanation emerge from data it-

self and not from a-priori hypotheses was central since the beginning of data analysis history, and has

gained more relevance over the years, due to the ever-increasing size and heterogeneity that have char-

acterized the data to analyze. Nowadays, the collected sensory data make it impossible to promote

3



a-priori hypotheses to describe events of interest. The discussion between EDA and CDA approaches

has renewed in machine learning. In fact, two di ferent approaches have grown in importance: in-

ductive and deductive learning. This distinction re ects the di ferences and goals already underlined

by Tukey, with a special focus of attention to the learning matter. The inductive approaches state the

learning problem as nding a hypothesis that agrees with the examples, preferring the most simple

one.

One of themost famous and proli c inductive theory is the Statistical Learning Theory (SLT) [7];

its main goal is to analyze the problem of the inference, providing a framework that assumes statistical

assumptions about the data generated by a phenomenon. It includes a variety of algorithms, such as

instance-based learning, Support Vector Machine (SVM),Artificial Neural Network (ANN), etc.

Each of these approaches stresses di ferent aspects of learning problem, but they all relieve the

analyst and designer from formulating an a-priori hypothesis about data. On the other hand, their

results are not useful to increase the knowledge regarding a particular problem because they can be

considered as a black-box that can be applied on unseen data, but themodel of the data they use is not

human interpretable.

The deductive learning approaches constitute the other class of machine learning algorithms. For

example, a method to infer general concepts from examples is known as Explanation-Based Gener-

alization (EBG) [8]. This deductive approach explains why a training example is a member of the

concept being learned. It relies on four main components: a goal concept, training example, domain

theory andoperational criterion; explanations are representedbyHorn-clause inference rules arranged

in proof trees. The aim of the system is just to generalize concepts from examples, describing them

through high-level properties, while training examples are represented in terms of lower level features.

Generalization is achieved through the manipulation of the so-called domain theory through opera-

tional criteria. The domain theory is made up of a set of inference rules and axioms about the domain

of interest and it is used to demonstrate the validity of the example, whereas operational criteria indi-

cate how a concept must be expressed to be recognized. A slightly di ferent approach is that proposed
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by [9]. In this case the system is not only able to generalize a concept, but to check where a general-

ization fails for a particular example, so that the system can re ne it. Therefore it is possible not only

to infer a general concept, but also to check whether an example is coherent with that generalization,

or why it is not; in other words, the system is able to learn. This approach is called Explanation-

Based Learning (EBL). An evolution of the EBL is proposed in [10]. This approach tries to merge

the old EBL engine, based on symbolic knowledge representation, with the statistical approach. The

proposed system aims to take advantage of the robustness of statistical approach respect to real word

problems, but at the same time it exploits the expressive power of symbolic knowledge representation.

An alternative approach to generalization uses formal languages, and is known as syntactic pattern

recognition [11]. In these systems, concepts are decomposed into simpler parts and their description

relies on a grammar. The problem of inferring knowledge is stated as the problem of design a learning

machine for pattern recognition, where a pattern is a particular structure included into the grammar.

The system infers a grammar from training examples and applies it on the new data, in order to verify

if the string of terminal symbols belongs to the learned grammar. This kind of approach requires

preliminary work by the designer in ontology domain de nition, in order to identify the key elements

of the representation. The major drawback with this methods is the high computational cost needed

to infer grammars. Historically, these approaches have been considered as alternatives to statistical

learning systems, but during the last decades many e forts have been made to unify statistical and

syntactic pattern recognition (see [12]).

Other authors consider traditional approaches inadequate to copewith the complexity ofmanag-

ing knowledge and its evolution in complex phenomena. However, they believe that these scenarios

cannot be modeled only by mathematical or statistical means. For example, Evolving Transformation

System (ETS) is a formalism that tries to unify the syntactic and statistical pattern recognition, in or-

der to create a new kind of class representation. The de nition of class, according to the author, rests

on the generative side: objects belonging to the same class share similar generative histories. In this

context, a generative system is a nondeterministic system operating on actual entities and assembling
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them into larger entities (and eventually into class objects), guided by some hierarchical description of

the class [13]. This kind of representation is focused on the problem of giving a structural representa-

tion to the data. Each object in this formalism is thought of as a temporal structural process and the

representation of each element of a class evolve with the description of the class itself. ETS is a work in

progress framework, limited by the lack of newmathematical instruments to deal with the complexity

of a structural description.

In [14], Chazelle proposes a new vision to deal with phenomena arising from life sciences, stating

that means used in physical science are not adequate. According to his work, algorithms are more

suitable for these purposes, due to their rich and expressive language. Moreover, the author claims that

some problems can take an enormous advantage from the novelties introduced by a new perspective,

taking into account the peculiarities of complex non physical systems. In the case of sensory data used

to investigate andpredict humanhabits andbehaviour, the complexity is very high, because of the high

number of variables to include in themodel. Chazelle introduces thenatural algorithms tomodel these

systems. This approach relies on the so-called influence systems, i.e. networks of agents that perpetually

rewire themselves. These networks are speci ed by two functions: and ; the function calculates

the position of an agent, taking as input the location of its neighbour agent, given by function .

The output of is function of the state of the whole system, that is the position of all agents. In this

approach, it is possible to note how the information travels through the system, in away that separates

its syntactic or structural component and its semantic. In other words, this method models complex

systems exploiting equally qualitative and structural information.

1.2 Motivations and Goals

Onemain issuemotivated the work described in this dissertation: how to handle the huge complexity

implied in sensory data.

The main aim of a knowledge discovery system is to nd regularities in data produced by a phe-

nomenon, in order to obtain amodel that canpredict future data belonging to the samephenomenon.
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In other words, the model is an abstraction in terms of features coming from data. There are many

ways to achieve this goal, as the previous section has shown; however, all of them share a common

feature: they all need the injection of an amount of a-priori knowledge about the phenomenon gen-

erating the data.

This is a very important point in the design of a knowledge-related system. TheNo Free Lunch

(NFL) theorem states that [15]:

For all possible performance measure, no search algorithm better than another when its

performance averaged over all possible discrete functions.

It is a modern version of what Hume pointed out: “Even after the observation of the frequent or

constant conjunction of objects, we have no reason to draw any inference concerning any object beyond

those of which we have had experience”. Indeed, all the algorithms performwell on a random selection

of a sample set.

In other words, there is not a single best solution, suitable for all application scenarios and for

all observations. During the last years, the research in machine learning has rapidly evolved towards

unsupervised methods, that can be tuned by a limited set of parameters, giving general purpose algo-

rithm to classify and recognize data. Thus, the knowledge of the designer should be coded in terms of

feature selection andparameter tuning, in order to identify the best system, according to somemetrics.

In [16], the generalization ability of an inference method is de ned as:

pointing out that a-priori knowledge is essential for the aim of generalization.

In the sensory data scenario, this process is very complex, because of en a little or no a-priori as-

sumptions can be pointed out about the nature of the data produced by a phenomenon; moreover,

it of en turns out that the traditional assumptions, which are at the basis of a plethora of machine

learning approaches, are far from being preserved in the complex scenario of sensory data. Even the
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selection of an adequate set of features which e fectively describes data is a very hard task.

For example, in the next chapters, the activity recognition problem from simple sensor readings

will be presented; thinking about an a-priori model of an activity in terms of sensor readings (sensor

activation, item sensor activations, noise level, etc) is close to impossible, and the task gets worse if a

general enough model is required, that is able to deal with slightly di ferent sensor sets or con gura-

tions.

Clearly, the best algorithm can be chosen by measuring the performance on training data; but

the NFL theorem states that, without a restriction on the set of candidates, based on the possible

phenomenon expected, it is probable to only get an over tted algorithm.

Hence, in this thesis, the need to keep the designer in the loop of knowledge extraction is claimed;

this is translated into the demand for methods and approaches that can deal with huge complexity in

sensory data, providing human understandablemodels, to correctly encode the useful a-priori knowl-

edge into the process and to give handy insights into nature of observed phenomenon, in terms of

relevant data features.

Many approaches have attempted to deal with this complexity. In particular, many systems have

been proposed in the area of Ambient Intelligence, which typically deals with sensor readings and

their interpretation. For example, in [17], the authors suggest a three-tier paradigm for knowledge

extraction. In particular, this paradigm cuts irrelevant details o f from raw sensor readings, in order to

obtain more re ned data that can be analyzed by the reasoning module, at the top of this processing

hierarchy. Methodologies borrowed from Statistical Learning Theory are used in [18] to cope with

the complexity of large sensor reading dataset. According to the authors, user habits are coded into

sensor readings, thus they can be inferred by analyzing sensory data and discovering relations between

environmental conditions and user.

In this thesis an approach similar to knowledge extraction is proposed, but, focusingmainly on the

structure of knowledge itself. Hierarchical or recursive models of knowledge can be the key to handle

the issue previously presented, due to their divide-et-impera approach, able to limit the complexity at
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each level of representation.

Undoubtedly, this goal is very challenging, andmany issues are to be addressed; some of those are

related to theoretical open issues in computer science, so it is impossible to known if they are practically

solvable. The basic idea is that data collected from sensors share an underlying language, i.e., it can

be considered as generated by a particular language describing some phenomena. Similarly to what

described in [19], it can be assumed that data are drawn from a process that can bemodeled by aTuring

Machine (TM). This means, according to Chomsky, that there is a language that can describe such

data. Likely, this language is very complex and,moreover, data is corrupted by noise, so reconstructing

the original language from data is a very challenging task.

The proposed framework is inspired to systems that extract knowledge from text corpora. Ob-

viously, several changes have to be done in order to adapt these approaches to the context of sensory

data. However, the general structure of the process remains the same. The framework presented in

this thesis is composed by four steps:

1. individuating a set of basic properties (axioms) and features to discovery signi cant patterns;

2. discovery of relevant elementary patterns as terminology;

3. abstraction of patterns as concepts;

4. inferring hierarchical concept organisation;

In the rst step, the key elements of the hierarchy are de ned; it is the only phase

of the system that requires human intervention. The analyst has to specify a description of

the goal concepts in terms of general properties, like time, space or other very general features.

The main di ference from others approaches is how these features are described. For exam-

ple, consider the user activity recognition task. A user activity may be de ned as a recurrent

sequence of actions, that can be recursive decomposed in simpler subtasks. Two approaches can

translate this de nition in features on data: the deductive, and the inductive one. According to

the deductive approach, the de nition is transformed into an abstract and general model, that
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hypothesises sensor reading interactions that identify executions of the same activity. In the

inductive approach, the analyst translates the de nition in terms of properties the sensors can

measure, such as time duration; so, an activity is treated as a recurrent pattern in data, whose

instances have similar structures and time durations. No attempts at generating a general ac-

tivity model are made, but the model will emerge from data. The feature selection depends on

the experience of the analyst, but it is a simpler task than the other approaches. Moreover, it is

less prone to error and axioms chosen can be simpler checked.

The second step faces the problem of nding data with the properties

de ned at the previous step. Several techniques can aid themost signi cant patterns to emerge,

identifying the basic level of the hierarchy with the smallest, but more recurrent patterns in

sensory data. A-priori based algorithms are an example of these techniques.

As an alternative, this step can be considered as a data fusion, i.e. the system associates data

coming from di ferent source and of di ferent types. It is a very common approach (e.g., [3],

[20]) and it is useful to process data in a multi-sensor context, in order to exploit relations

between di ferent sensor triggers.

Pattern abstraction allows to obtain a generalization from the instances of pat-

terns present in data. The system addresses the problem of synonyms, grouping similar in-

stances of the same patterns. At the end of this step, the system will be able to associate a

model to each pattern and a classi er can be trained to recognize it.

In this step, the system nds recurrent terminology structures. Sev-

eral methods can be applied to recover the structure behind data. In this thesis, relationships

have been modeled throughMarkovian models or with the use of grammars.
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1.3 Contributions

The hierarchy presented in the previous section has been implemented with three di ferent ap-

proaches, in the context of di ferent application scenarios, representing very common goals in knowl-

edge discovery from sensory data: namely, activity recognition, energy demand optimization andmo-

bility model extraction. The selected application scenarios share some commons features and issues,

such as heterogeneity in data and large amount of raw sensor readings.

The main contributions presented in this dissertation can be summarized as follows:

• Chapter 2 describes how the framework can be applied using tools by Statistical Learning; in

other words, the identi cation and representation of the elements of the proposed approach

are carried out through algorithms belonging to the StatisticalMachine Learning. The chapter

describes a system for recognizing human activities by exploiting the information encompassed

in depth images acquired by the Kinect sensor. Activities are modeled as sentences built up

from a posture vocabulary, extracted by classical Machine Learning algorithms. In particular,

a clustering algorithm is used to highlightmain postures revealed by the depthmaps and a clas-

si er is employed to generalize the models provided by clustering. The structure of an action

is encoded by a probabilistic model that considers the sequence of postures in the action.

• InChapter 3, structural knowledge extraction is handled bymeans of a syntactic approach, that

takes advantages of classical tools of DataMining andMachine Learning to recover the hidden

structure behind the raw data. The design and implementation of a system for energy demand

optimization taking advantage of the prediction of user activities is presented. The application

scenario is that of activity discovery and recognition in smart homes, using a pervasive sensor

network, made up by very simple sensors. A speci c language was devised to describe activities

and itsmain constituents emerge directly from data, without any prede nedmodel, exploiting

recursive nature of activities. Themain idea is that, despite this variableness, a resilient recursive

structure persists even if an activity is carried out fromdi ferent subjects. Algorithms borrowed
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from data mining are used to recover this hidden structure.

• Chapter 4 outlines how grammatical inference can be used to accomplish the task of struc-

tural knowledge extraction, completely exploiting the recursive nature hindered in data. In

this chapter, a system for extracting user mobility models from ne-grained localization data is

presented. The system is based on the idea of representing user mobility models with the use

of formal languages, letting models themselves emerge from data and obtaining an actual lan-

guage describing user mobility habits and behaviour at di ferent scales. In particular, a set of

regular languages are inferred from raw data, one for each level of spatial granularity, covering

di ferent levels of mobility behavior (from neighborhood to wide-area paths).

There is an increasing level of di culty in the analysis of data of the three scenarios. The rst

one can be considered as a massive data scenario, but the nature of data is simpler to understand, thus

feature extraction is easier than in the following applications. Postures are a very e fective and intuitive

model to express actions, so, the models coming from this representation can be easier to build.

The second application is strictly tied with the unstructured representation of raw data. In this

application, relationships embedded in data are very counterintuitive, thus, the hierarchical approach

allows to decompose the problem of activity models into simpler ones, that can be solved by mining

frequent paths into data.

The third application is very hard to solve, due to the quantity of data. The dataset used is con-

sidered a big data source, thus traditional algorithms can not be applied in order to mine relevant

patterns. Thus, the proposed multi-scale representation is an e fective way to obtain some insights

regarding the main data features.

1.4 Publications

Several parts of this dissertation have been published in various referred conference proceedings, jour-

nals and book chapters:
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Computers are useless. They can only give you answers.

Pablo Picasso

2
Statistical Learning for Activity

Recognition by Postures

Knowledge extractionvia StatisticalLearning is themain topic of this chapter. In partic-

ular, it is shown how Statistical Learning can be used in order to identify themost important relations

embedded in the raw data and then to model them.

The chosen application scenario is the problem of human activities recognition by exploiting

depth images provided byMicrosof Kinect sensor [29].

Several issues have to be solved in order to get a reliable system:

• activity models should be invariant to people’s di ferent features (height, silhouette, etc);
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• activities can be performed at di ferent speeds;

• a comprehensive and representative set of prede ned models can hardly be created only from

a-priori information.

In this chapter, it is shown that activities can be modeled as sentences built up from a posture

vocabulary. The main idea is to let this vocabulary emerge directly from data, without any prede ned

model. Postures are obtained as the most frequent con gurations of the main joints of the human

skeleton.

In order to preserve the pervasiveness of the system, the motion detection sensor provided by

Kinect is coherently connected to a miniature fanless computer with reduced computation capabili-

ties.

2.1 Human action recognition

During the last years, the issue of human action recognition has been addressed in several works.

In [30], the authors use a set of binary silhouettes as input of a framework based on Hidden

MarkovModel (HMM). An activity is described as a sequence of the poses of the person. The silhou-

ettes are extracted from video images, thus this method lacks of exibility since it requires a number

of image processing steps (e.g., background removal, vector quantization, image normalization).

Two di ferent recognition systems based on Silhouette features and Discrete Hidden Markov

Model (DHMM) are presented in [31], [32]. The authors of [31] use Fourier shape descriptors, while

in [32] the features are obtained by combining RGB and depth information. In both works, features

classi cation is performed by SVM and the classi ed postures are considered as the discrete symbols

emitted from the hidden states.

Severalworks [33], [34] address the problemof activity recognitionbyusing intrusive sensors, e.g.,

wearable sensors. The release of the Kinect sensor allowed researchers to perform activity recognition

in a unobtrusive way, i.e., by using depth and RGB information.
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Figure 2.1: Kinect components.

In [35], salient postures are characterized as a bag of 3Dpoints obtained from the depthmap. Such

postures represent the nodes in an activity graph that is used to model the dynamics of the activities.

Amodel for human actions calledActionlet EnsembleModel is presented in [36]. Human bodies

are considered as a large number of kinematic joints and actions are characterized by the interaction of

a subset of these joints. The authors introduced the concept of Actionlet as a particular conjunction

of the features for a subset of joints. As there is an enormous number of possible Actionlets, a data

mining approach is applied to discover the discriminative Actionlets. Then an action is represented as

an Actionlet Ensemble, which is a linear combination of the Actionlets.

A supervised algorithm that use a dictionary of labeled hand gestures is presented in [37]. The

authors useKinect SDK to extract a sequence of skeleton-model parameters that represents the feature

space. The covariance matrix of this space is used to discriminate the gestures and action recognition

is performed by aNearest Neighbour (NN) classi er.

A histogram based representation of human postures is presented in [38]. In this representation,

the 3D space is partitioned into bins using a spherical coordinate system. The authors built a model

of human postures on 12 selected joints. Each joint position belongs to a bin with a certain level of

uncertainty. The set of the vectors from the training sequences are reprojected using Linear Discrim-

inant Analys (LDA) and clustered into a K-postures vocabulary. The activities are represented as

sequences of postures in the vocabulary and are recognized using HMM classi ers.
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Figure 2.2: Activity recognition via depth images: an overview of the whole system.

2.2 Activity recognition via depth images

According to the considered scenario, Kinect represents themost suitable device both in terms of cost

and functionalities since it is equipped with ten input/output components (see Fig. 2.1) that make it

possible to sense the users and their interaction with the surrounding environment [29]. The Kinect

sensor rests upon a base which contains a motor (Fig. 2.1- ) that allows for controlling the tilt angle

of the cameras (30 degrees up or down). Three adjacent microphones are placed on the bottom of

the device, in the right side (Fig. 2.1- ), while a fourth microphone is positioned on the lef side

(Fig. 2.1- ). A 3- axis accelerometer (Fig. 2.1- ) can be used for measuring the position of the sensor,

while a led indicator (Fig. 2.1- ) shows its state. However, the core of the Kinect is represented by the

vision system composed of: anRGB camera (Fig. 2.1- ) with VGA standard resolution (i.e., 640x480

pixels); an IR (Fig. 2.1- ) projector that shines a grid of infrared dots over the scene; an IR (Fig. 2.1- )

camera that captures the infrared light. Thanks to the factory calibration of theKinect, it is possible to

know the exact position of each projected dot against a surface at a known distance from the camera;

this information is used to create depth images * of the observed scene that capture the object position

in a three-dimensional space.

The system proposed in this chapter (see Fig. 2.2) aims at automatically inferring the activity

*A depth image is an image whose pixel values represent distances.
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Figure 2.3: The 20 joints of the human body. Reference joints (red): neck, hip center. Selected joints (green): head,

elbows, hands, knees, feet. Discarded joints (grey): shoulders,wrists, spine, hips, ankles.

performed by the user according to a set of known postures. Each posture is de ned by the position

of some body joints extracted by means of the OpenNI/NITE skeleton detection method. The set

of detected joints is clustered by applying the K Means algorithm in order to build a vocabulary of

postures. The obtained “words” are validated by SVMs. Finally, HMMs are applied to model each

activity as a sequence of vocabulary words.

2.2.1 Features Analysis

The OpenNI/NITE skeleton detection method performs real-time detection (i.e., to nd the 3D co-

ordinates) of 20 body joints (see Fig. 2.3). However, due to the sensitiveness of the IR sensor, some

overlaying detected joints (e.g., hands touching other body parts) or occlusions (e.g., objects placed

between the sensor and the user) may lead to signi cant errors.

For this reason, some redundant joints (i.e., wrists, ankles) have been discarded due to their close-

ness to other selected joints (i.e., hands, feet), while others (i.e., spine, neck, hip and shoulders) are not

relevant for activity recognition. The selected joints are shown in green in Fig. 2.3, while the discarded

ones in grey.

Moreover, since the distance of the skeleton joints from thehipdepends on several factors (e.g., the

users height, arm length, distance from the sensor), all feature vectors have been normalized according

to the distance between the neck and hip center joints. A scale-independent representation of the
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body posture is then obtained by xing the center of the reference coordinate system at the hip center

and considering as x-direction the lef -right hip axis. Reference joints are shown in red in Fig. 2.3.

2.2.2 Postures Analysis

Once the joints have been detected, a clustering algorithm is applied to quantize the number of ob-

served joints con gurations. Thus, the detected features are clustered into K classes (i.e., building a

K-words vocabulary) by using the K-means algorithm. Each posture is then represented as a single

word of the vocabulary and therefore each activity can be considered as an ordered sequence of vocab-

ulary words.

In order to obtain a better statistical description of the content of each cluster, the output (i.e.,

the pairs features/cluster) of the K-means algorithm is used to train a multi-class SVM. SVMs are

supervised learningmodels used for binary classi cation and regression. Amulti-class SVM is a net of

SVMs able to perform a multi-class classi cation [39].

Moreover, sequences of joints con gurations are turned into the corresponding sequence of K-

words, only postures transitions are considered: all repeated sequences of the sameposture aremerged.

Thus, a more compact representation of the sequences is obtained, mitigating the problem of recog-

nizing executions of the same activity performed with di ferent time durations.

2.2.3 Activity Recognition

The issue of recognizing di ferent sequences of postures referred to the same activity is addressed by

means of a probabilistic approach. In particular, each action is modeled using a discrete HMM [40].

AHMMthathas states and output symbols

is fully speci ed by the triplet . The state transition probability distribution

is

(2.1)
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where is the actual state at time .

The observation symbol probability distribution in state , is

(2.2)

where and .

And the initial state distribution is

(2.3)

Once each HMM has been trained on the posture sequences of each activity, a new (unknown)

sequence is tested against the set ofHMMs and classi ed according to the largest posterior probability,

if such a probability rises above a pre xed threshold.

2.3 Experimental assessment: accuracy of the activity recognition

Activity recognition accuracy has been evaluated on the publicMSRAction3Ddataset [35] containing

20 actions: high arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw,

draw x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick,

jo ing, tenn swing, tenn serve, golf swing and pickup & throw. Every action is repeated 3 times by

10 di ferent subjects.

During the training phase, itwas noticed that the skeleton tracker heavily failed in correspondence

of some particular actions or subjects, as reported by the authors of the dataset†. For this reason, the

“bend” and “side kick” actions and the subject 4havebeen removed. Thus, “ ltered”dataset is reduced

to 18 actions performed by 9 subjects.

†http://research.microsof .com/~zliu/ActionRecoRsrc
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Activity Set 1 Activity Set 2 Activity Set 3

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward Kick

Forward punch Draw x Jogging
High throw Draw tick Tennis swing
Hand Clap Draw Circle Tennis serve
Tennis serve Two hand wave Golf swing

Pickup & throw Side boxing Pickup & throw

Table 2.1: The three Activity Sets.

Three Activity Sets (ASs) have been obtained from the ltered dataset in similar way as done by

[35] and [38]. Each Activity Set contains 7 activities, as shown in Table 2.1.

Since a number of solutions based on the SVM-HMM chain are presented in literature, each

processing module has been individually tested to estimate its e fect on the overall performance. For

this reason, four di ferent con gurations have been used to assess the whole system:

1. NONE configuration: posture analysis is performed by applying only the K-means algorithm;

2. PCA configuration: a Principal Component Analys (PCA) transformation on original data

(i.e., joints positions) has been added to the feature analysis process in order to evaluate the

impact of a reduced feature space on the system performance;

3. SVM configuration: posture classi cation is performedbymeans of amulti-class SVMclassi er

based on a RBF kernel with and regularization parameter , where is the

number of features considered;

4. SVM_PCA configuration: both PCA and SVM are employed.

The number of posture clusters (K) and HMM states (N) were obtained through a Grid Search

[41] in the range for K and for N. For every node of the grid, the error of Leave One

Out Cross Validation [42] was computed. For each of the three Activity Set, 188 action sequences
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Figure 2.4: Comparison of themean accuracy for the three Activity Sets according to the four system configurations.

Con guration (K,N) Accuracy

NONE (25,4) 86.50%
PCA (45,7) 88.09%
SVM (25,5) 90.47%

PCA_SVM (25,10) 90.47%

Table 2.2: Best mean accuracy obtained for each configuration.

were used for training and the remaining sequence was used for validation; each test set was repeated

10 times for every con guration. As a result of these experiments, the pair minimizing the

mean error on the three Activity Sets was chosen.

The results obtained for the best pairs of each con guration are reported in Table 2.2.

The reduction of the feature space, obtained by applying PCA on original data, decreased the sys-

tem performances. This result is motivated by the preliminary selection of joints, demonstrating that

original feature space does not contains correlated features.

A comparisonof the accuracymeasuredwith respect to thenumber of clusters is shown inFig. 2.4.

The best performances are obtained by SVM and SVM_PCA, both giving an overall mean accuracy

of . However, the results obtained by the SVM configuration showed a smaller variance,

demonstrating that the former is preferable.

Such a result is con rmedby comparingSVM andSVM_PCA ondi ferent values ofK, as showed
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Action Accuracy Action Accuracy

Horizontal arm wave 100% Hand catch 71%
Hammer 100% Two hand wave 100%

Forward punch 100% Draw x 68%
Golf swing 83% Draw tick 100%
Hand Clap 95% Draw Circle 68%
Tennis serve 92% High arm wave 83%

Pickup & throw 100% Side boxing 83%
High throw 84% Forward Kick 100%
Jogging 100% Tennis swing 100%

Mean Accuracy 90.4%

Table 2.3: Recognition rate of SVM system configuration

in Fig. 2.5. Moreover, according to the Minimum Description Length (MDL) principle [43], the

model given by SVM is better than the SVM_PCA one, since the former use a smaller number of

states (i.e., versus ) as shown in Table 2.2.

In table 2.3 are reported the mean accuracy values obtained by the SVM configuration for the

whole set of considered activities.

The confusion matrices reported in Table 2.4 - 2.5 - 2.6 show classi cation errors related to the

three activity datasets listed in Table 2.1. Please note that some activities are not correctly classi ed

since they are considered as parts of more complex ones (e.g.,Hand catch gesture is the beginning of

High arm wave,Draw tick and Two hand wave).

Since the quality of existing public datasets is of en poor, a new dataset was collected; it contains 8

activities (Catch Cap, Toss Paper, Take Umbrella, Walk, Phone Call, Drink, Sit down, Stand up), each

performed 3 times by 10 di ferent subjects. This dataset is an earlier version of Kinect Activity Recog-

nition Dataset (KARD), described in [44]. Several tests have been performed on the 240 captured

sequences to verify the accuracy and the robustness of the activity recognizer.

In particular, the SVM con guration was used for the system. The experimental tests started by
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Figure 2.5: Difference of accuracy between the proposed system configuration SVM and SVM_PCA.

1 2 3 4 5 6 7

1 100 - - - - - -

2 - 100 - - 5 10 -

3 - - 100 - - - -

4 - - - 84 - - -

5 - - - 16 95 - -

6 - - - - - 90 -

7 - - - - - - 100

8 - - - - - - -

Table 2.4: Confusionmatrix of Activity Set 1. (1) Horizontal armwave, (2) Hammer, (3) Forward punch, (4) High throw,

(5) Hand Clap, (6) Tennis serve, (7) Pickup & throw, (8) Unknown.

applying aGrid Search approach to nd out the best couple of values for the number of clustersK (i.e.,

the number of postures) and the number of theHMMstatesN.The value of each node of the grid has

been computed as the mean rate of a Leave-One-Out Cross Validation (LOOCV) repeated ten times

to overcome the randomness of the clustering algorithm. The best recognition rate is obtained with

K = 39 and N = 5, with a mean accuracy of 95% and standard deviation of 2.45 between the di ferent

runs of the LOOCV.

Motivated by the results obtained over the whole dataset, the in uence of choice of the training

set on performances was investigated. For this reason, the whole dataset is divided into subsets and

each subset is tested three times in a way similar to the one proposed in [35]:
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1 2 3 4 5 6 7

1 83 9 - - - - -

2 - 71 - - - - -

3 - - 68 - - - 7

4 - 11 - 100 12 - -

5 - - 32 - 68 - -

6 17 9 - - 10 100 -

7 - - - - - - 83

8 - - - - 10 - 10

Table 2.5: Confusionmatrix of Activity Set 2. (1) High armwave (2) Hand catch, (3) Draw x, (4) Draw tick, (5) Draw

Circle, (6) Two handwave, (7) Side boxing, (8) Unknown.

1 2 3 4 5 6 7

1 84 - - - - - -

2 - 100 - - - - -

3 - - 100 - - - -

4 - - - 100 - - -

5 - - - - 94 - -

6 - - - - - 83 -

7 16 - - - - - 100

8 - - - - 6 17 -

Table 2.6: Confusionmatrix of Activity Set 3. (1) High throw (2) Forward Kick , (3) Jogging, (4) Tennis swing, (5) Tennis

serve, (6) Golf swing, (7) Pickup & throw, (8) Unknown.

Accuracy

1/3 Validation 93.75%
2/3 Validation 94.87%

Cross Subject Validation 90.98%

Table 2.7: Accuracy of the SVM configuration on our dataset.
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• 1/3 Validation: 1/3 of the data captured for each subject is used for training, the remaining part

is used for testing;

• 2/3 Validation: 2/3 of the data captured for each subject is used for training, the remaining part

is used for testing;

• Cross Subject Validation: 1/2 of the subjects is used for training and the remaining part for

testing.

Each of the above tests was repeated ten times, randomly choosing the sequences or subjects of the

training and testing sets. The results of the three performed tests are shown in 2.7. The rst two rows

report accuracy values of 93.75% and 94.87% respectively, which are comparable to the mean accuracy

of 95% obtained over the whole dataset. The most signi cant result is the one obtained by the cross

subject test (bottom row) that aimed tomeasure the ability of the system in recognizing activities per-

formed by new subjects. The achieved recognition rate of about 91% shows that themethod proposed

is able to capture a general model of the activity regardless to the user that performed it.
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Non est ad astra moll e terr via.

Lucius Annaeus Seneca

3
Syntactic Methods for Optimization of

Energy Demand

Syntactic approaches have been widely investigated and used to analyze symbolic data. In this

chapter, an application of syntactic method is presented, aiming at recognizing daily life activities per-

formed by users in a smart home in order tominimize energy consumption by guaranteeing that peak

demands do not exceed a given threshold.

The main idea behind this approach is to relieve the designer from the task of creating a detailed

model for each activity to track, so, unlike previous proposals, this problem is addressed from an al-

gorithmic perspective, rather than a learning one. A general high-level description of what may be

regarded as an activity is all it is required, thus bypassing the di culty of creating a reliable model of
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an activity in terms of sensory triggers or supposed interactions between users and their home appli-

ances.

The resulting system should be able to work without an explicit human intervention, so a speci c

challenge is related to the language used to obtain a high-level, generalizable description of human

behaviour, using only data coming from themeasurements of a typical environmental sensor network

and no speci c knowledge of the particular sensor set.

Activities models are de ned as recursive structur and identi ed by extracting relevant events,

which, in this context, may be thought of as short and recurrent sequences of raw sensor readings.

Hence, the designer is not forced to embed too speci c knowledge into the system and may rather

choose a description of events in terms of simple basic concepts, such as time duration or type of

sensor measurement. It can be implicitly assumed that “ground” events are characterized by a short

duration, and will directly correspond to readings; most of them will likely be not very meaningful

for characterizing user activities, and their information content will not be apparent unless they are

considered in a combinationwith other ground events, thus having the hidden structure of the activity

progressively emerge.

Main focus has thus been on adaptiveness, and e forts have been speci cally directed toward learn-

ing and prediction of user activities, as a rst step towards an e fective approach to energy saving.

3.1 Energy saving and user habits

User habits play a central role in household energy demand, thus recognizing activities carried out by

the user should be an important part of every system aiming at optimizing energy consumption.

3.1.1 Activity recognition by simple sensors

In literature, several works have addressed the problem of activity recognition. Common proposals

include (i) methods based on the use of logic, (ii) probabilistic methods, or (iii) methods based on

common sense reasoning. In the context of logic-based methods, activity recognition consists in re-
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constructing the plan an agent is following, based on the observation of its actions, and the main

di culty lies in the hypothesis of rationality, which of en does not hold when the agent is human,

especially in the presence of illness or disability. The authors of [45] use reticular theory and a logic

language for describing actions in order to detect non-standard behaviors; their system can generate

new plans and provide explanation for unusual actions. In [46], event calculus is used to recognize

activities and support users in performing the correct action at the right place and time. The signif-

icant advantage of using a logic language, such as event calculus, is the possibility to embed a-priori

knowledge about the application domain, which reduces the need for annotations and allows for easy

interpretation of the produced rules; the drawback, however, is the inability to deal with ambiguity,

which arises when the system fails at detecting the on-going activity and can not even estimate the

most likely one.

Probabilistic methods regard the sequence of events as a time series, and the goal is to determine

the chain of hidden stateswhich generated the observations. Theprobabilistic approach requires com-

puting the sequence whichmaximizes the probability of the hidden states, given a particular set of ob-

servations. Several methods, such as Semi-HiddenMarkovModels, Skip Chain Conditional Random

Fields, and many others, have been applied to address the issue of activity recognition, as reported

in [47]–[49]. Probabilistic methods require the availability of a large amount of labeled data in order

to show acceptable performance; the need for annotation may be partially mitigated by hard-coding

knowledge about how activities are typically carried on, e.g. by extracting it from the Web. In [50],

for instance, a system whose purpose is to create a database of bits of common-sense knowledge is

proposed; such data may be integrated in automated systems in order to augment their ability of in-

teractingwith the real world. Translation of sensory data into high-level abstractions ismade bymerg-

ing knowledge with information from theWeb, and transforming the obtained data into clauses; the

system then performs a statistical inference reasoning.

From a data mining perspective, activity discovery is of en seen as the problem of detecting recur-

ring patterns within a sequence of events; however, there are substantial di ferences between frequent
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itemsets detection, and discovery of patterns corresponding to activities. First of all, itemsets do not

account for the ordering of the elements, which on the other hand is quite relevant during activity dis-

covery; secondly, each itemset must not contain repetitions, whereas a pattern might do. In order to

overcome such limitations, most proposals rely on the so-called T-patterns [51], and candidate item-

sets are chosen according to criteria de ning their meaningfulness within the event sequence. The

authors of [52] use a variant of the Apriori algorithm [53] to discover sequences of events repeating

with regular periodicity, besides patterns related to frequent activities. The system starts from elemen-

tary sequences and expands them to obtain longer ones, up to a maximum prede ned size. Another

approach, proposed in [54], relies on standardApriori and considers the event sequence as a stream of

incoming data; af er identifying all sequences of prede ned size and support, a transformation func-

tion maps them into models for activities. A hierarchical description is proposed for such models,

and activities are divided into tasks and sub-tasks; the bottom of the hierarchy is represented by ac-

tivities that cannot be further decomposed; activity recognition, as well as description, is carried on

in a bottom-up fashion. A similar approach is described in [55], where the authors address the issue

of broken or concurrent activities by considering emerging patterns, i.e. those patterns able to cap-

ture meaningful di ferences between two classes of data. Finally, an approach worth mentioning is

proposed in [56], where Activiti of Daily Living (ADL) are discovered by means of evolutionary

techniques; the purpose is the creation of an Evolving ADL Library containing models for activities;

the library evolves by learning additional models from new sequences.

3.1.2 Energy saving and BECM systems

The ever-increasing energy demand in recent years is becoming amajor issue as it represents a possible

drawback in our society’s future development, where energy is arguably the singlemost valuable good.

Current consumption trends are unsustainable from an environmental point of view, and e cient us-

age and overall energy demand reduction have become two major concerns of the international com-

munity andmost governments, due to both economic and environmental motivations [57]. Namely,
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according to the classicalmarket laws, those trends have caused a burst in energy pricewhich eventually

has attracted greater attention to the energy problem.

The periodical shortages in energy supply during the last century, led to the birth of new research

areas, and considerable e fort is being carried out to devise viable solutions to the energy issue, ranging

from discovering new energy sources to raising people awareness. In this context, a steady attention

has been devoted to energy saving in buildings, starting from the energy crises of the 1970s [58], [59].

User habits play a central role in household energy demand: an ine cient control of electric ap-

pliance and heating systems is amajor energywaste source. Current literature about building automa-

tion, however, shows that building control is stillmainly performedmanually, as in the case of arti cial

lighting setting, powering appliances, or seasonal control of heating systems; additionally, automation

in buildings has historically focused on narrow-scope tasks, such as lighting control with simple mo-

tion detection and a xed timeout, or indoor climate control based on temperature andCO level. On

the other hand, user activities and behavior have a considerable impact on the amount of consumed

energy in all kinds of buildings (i.e., residential, o ce, and retail sectors). Thus, the design ofBuilding

Ener and ComfortManagement (BECM) [60] systemshas grown tobecome a self-standing research

area, in order to optimize energy use in home scenario. A signi cant amount of the energy dissipated

in these areas can be saved by ne-tuning deployed devices and appliances according to actual user

needs; for instance, many research e forts have been focused on proposing “smart thermostats” based

on occupancy prediction, or on maximizing user comfort by providing appropriate arti cial lighting,

based on the activity carried on at a given moment.

This research area belongs to the greater eld of AmI, however, while the general scope of AmI is

to apply arti cial intelligence techniques to transparently support users in their everyday activities, a

BECM system can be de nedmore speci cally as a control system that uses arti cial intelligence and a

distributed sensor network formonitoring a building in order to ensure e cient usage of the available

energy sources. A system implementing this approach must be able to predict the users’ course of

actions, in order to cope with the issue of reducing energy consumption without negatively a fecting
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the user experience. Keeping intrusiveness at a minimum is essential to promote this kind of systems

and to allow acceptance by a broad target of users; in fact, their impact on energy consumption will

be signi cant only if they are used at a large scale. Several studies (e.g. [61]) have shown that a user-

centric optimization of energy consumption, with no perceivable e fects on user comfort, can lead to

signi cant energy saving. In other words, the primary goal of energy saving systems is to automatically

adapt to user preferences; this suggested to follow the AmI paradigm, which requires minimizing

user intervention, by “hiding” the system within the surrounding environment, while still enabling

support to the users for their everyday-life activities.

Substantial research e fort has been devoted to address the complex issues related to the design of

a BECM system, and most proposals agree on the need for automated approaches to energy demand

optimization; the presence of peaks in energy demand is of en regarded as a symptom of a suboptimal

scheduling of the use of electric appliances and the authors of [62]–[64], for instance, point out that

even straightforward approaches, such as turning o f unused devices, can be very e fective in terms

of energy saving. The challenging aspect of those proposals is their potential impact on user percep-

tion: if automated energy saving policies are so intrusive as to become a hindrance to the overall user

experience, they might hardly be accepted from householders.

The key is to design a system capable of adapting to its users’ needs is to correctly identify their

activities. Several state-of-the-art proposals assume the availability of considerable a priori knowledge,

which makes them of en prone to over tting. Results obtained by these systems depend on the par-

ticular features of the application scenario, and their activitymodels are tted onto data, as opposed to

“emerging” from data itself [20]; this may be a major issue, if the goal is the design of a fully adaptive

and generalizable system. The system proposed in this chapter is partly inspired to the key ideas pre-

sented in [65] and [66]. The authors of [65], in particular, proceeding from a scenario characterized

by scarcity of labeled data and uncertainty about activity granularity, showed that formal grammars

are suitable to capture the inherent structure of activities. Their system, called Helix, initially gener-

ates a vocabulary combining unlabeled sensor readings, and attempts to incrementally merge them,
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by grouping similar activities into high-level ones. Grammar induction is used as a tool for hetero-

geneous sensor fusion in order to build up the structure of activities; each activity is regarded as a

cluster in a multi dimensional space where the data streams coming from the di ferent sensors present

in the monitored area are represented; a hierarchical structure is then induced on this space, through

statistical analysis. The authors of [66] focused on formalizing computational models for every-day

human activities; they claim that global structural information about activities can be encoded by us-

ing a subset of their local event subsequences; hence, an activity is de ned as a nite sequence of events,

expressed in terms of the objects present in the observed environment, whose functionalities may be

needed for the execution of a particular activity. An event is de ned as a speci c interaction between

two ormore objects in a nite duration of time, and a list of key objects for each environment needs to

be provided as a priori knowledge. This approach does not need to rely on prede ned activity mod-

els, whose creation is typically very challenging, rather it is pointed out that an analysis of continuous

event subsequences su ces to discover and track every-day activities.

In order to test the e fectiveness of activity recognition for energy saving, a data set including both

power consumption and sensor measurement would be needed; however, despite the fact that data

sets about activity recognition, as well as about power pro ling have been independently collected,

to the best of my knowledge none is available that encompasses both aspects. One of the data sets of

the Center for Advanced Studi in Adaptive Systems (CASAS) project [67], for instance, contains

readings from a power meter; however it provides information only about the overall consumption,

which is not very useful in the context of activity recognition, where ne-grained energymonitoring is

needed. Namely, aggregated information about energy consumption of en leads to non optimal con-

sumption control. Indeed, new systems have been developed to produce ne-grained energy reports,

at an individual-device scale [68], although in the context of the new research area of “energy report-

ing”, whose aim is that to guarantee a higher resolution in monitoring energy consumptions. In this

context, a very promising data set, provided by the Smart* project [69], was collected by continuously

gatheringmeasurements from awide range of sensors andmeters placed in three di ferent households;
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however the sensor set should be signi cantly enriched before it may be pro tably used for activity

discovery and recognition. A natural alternative to gathering actual measurements consists in resort-

ing to use synthesized ones; energy demand simulation, in particular, has been widely discussed in

scienti c literature. The authors of [70] discuss the use of models for end-use energy consumption;

they point out that residential consumption represents a substantial part of energy demand in every

countries, and suggest a partition ofmodeling techniques for residential energy consumption into two

major classes; top-down, and bottom-up approaches. In the former case, no individual house energy

pro le is built, rather historic data is aggregated and analyzed to regress the energymodel of the whole

housing stock; on the contrary, in the latter case, energy consumption is estimated for a representative

set of individual houses, and is later generalized to form the residential consumption model. For the

purposes of this application, the bottom-up approach is more interesting; its main drawback is the

need for detailed information about the home environment (the trend of common environmental

measurements might need to be estimated, or simulated [71], [72]; supplier billing data, for instance,

is private information, and typically it may be obtained only by disaggregation on the overall con-

sumption); on the other hand, bottom-up techniques are of en the only means to evaluate the impact

of new systems or technologies, which are likely to lead to more e fective power usage optimization.

Some modeling techniques for residential power consumption simulation are reviewed in [73]–

[75]; those proposals share the idea that realistic energy usage simulation depends on three main fac-

tors: occupant behavior (i.e., activities), appliance models, and a model of energy consumption per

activity. A slightly di ferent approach, highlighting the importance of user activity simulation, was

proposed in [75], where aMarkov chain is used to simulate user presence and habits, modeled in terms

of nine energy-hungry activities, such as for instance cooking, using a personal workstation, or simply

being absent. The work presented in [74] performs energy demand simulation by summing up the

contribution of each appliance in a dwelling, in a bottom-up fashion. The authors speci cally focus

on modeling user “active occupancy” and characterize an activity through a pro le, storing its incep-

tion time, and duration; each activity pro le is assigned to an appliance, strictly tying user presence
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to energy consumption; this choice also allows to model dependences and time correlations between

appliances.

Besides detecting user activities, and linking them to a consumption pro le, the ultimate task of a

BECMsystem is the achievement of signi cant energy saving. In thepast years, particular attentionhas

been devoted to the speci c issue of avoiding peaks in energy demand, which is a very complex issue,

due to the high variability in user consumption demand and to the limited exibility in scheduling

in order not to negatively a fect user experience; moreover, price policies adopted by providers are

of en insu cient to modify user habits and lower peak energy demand. In [76], [77], a demand-side

load management system is proposed, suitable to be integrated in the future Smart Grid technology.

The proposed system acts in real time, interacting with appliances and users, and adopts a layered

structure, processing data coming from actual on-line consumption and schedule user requests, in

order to balance electricity demand. Each appliance is modeled as a nite state machine, triggered

by events generated by user or the balancing system. The core of the system is the admission control,

thatmanages accesses to power resource and controls appliances. Its scheduling algorithm is heuristic-

driven and nds a greedy solution; so the optimality of the solution is not guaranteed. The requests set

is checked and, based on the state of appliances and the requested power, the system decides about its

delivering. In [78], the authors propose a system to schedule only the so-called background loads, that

is refrigerators, dehumidi ers, and so on. An algorithm inspired to the well-known Earliest Deadline

First is used; the authors claim that scheduling non background loads may have an impact on user

comfort, so they opt against controlling them. Finally, they introduce the concept of slack, that is

the maximum amount of time a device can be disconnected from power, while still guaranteeing its

performance; each load is assumed able to maintain an estimate of its remaining slack time. At xed

intervals, the algorithm checks the slack of each background load and gives priority to the onewith the

smallest slack; if a load reaches zero slack, then it is powered on, regardless of the increase in energy use.

When the aggregated sum of background loads power reaches a pre xed threshold, no other loads are

powered. Finally, in the approach presented in [79] the problem of shaving peaks in energy demand
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is formulated as amixed integer linear program, in amixed (i.e., renewable and non renewable) power

source scenario. Authors aim at investigating the potential of a combined optimization approach that

takes into account every possible kind of loads, namely shif able, sliceable, stretchable ones, and so

on. Each energy-demand task is characterized by a completion deadline, while each day is divided into

equal time slices. The goal is to minimize the combined power of all slices. Some constraints are to be

met; for instance, each device may be powered by only one source, and the amount of power needed

by shif able loads in each period is constant.

3.2 Learning UserHabits for Energy Saving

Peaks of energy consumption canbe shavedo f pby trackinguser activities in order tomodify the func-

tioning period of appliances that are not immediately useful for the current task; the approach aims to

lower energy demand in the proximity of predicted peak loads so as to keep the overall consumption

below a pre-set threshold. In order for the system to perform e fectively and to be generalizable to

previously unforeseen scenarios, it needs to capture and formalize the activities that actually account

for user habits.

General a priori models of activities, appropriate to exemplify the behavior of any possible kind

of user, are too complex to be realistically feasible. Designers are typically able to explain what an ac-

tivity is in terms of the sensor set actually deployed, but they seldom succeed in describing how each

activity can possibly be carried out by every user. Accurately discovering user activities and learning

reliablemodels for them is however a very challenging task, so an initial preprocessing step is included,

ful lling twomain goals: focusing future computation on themore interesting bits of data, and iden-

tifying events; hence, the original undistinguished stream of sensor readings can be translated in a

more meaningful stream of events.

Figure 3.1 shows the overall architecture proposed in this chapter; energy consumption modeling

is implemented by the Ener Demand Simulator (EDS) block, whereas energy saving algorithm,

through peak load shaving, is represented by theEner Demand Optimizer (EDO). The system core
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Figure 3.1: Energy demand optimization via activity recognition: overview of the whole system.

is represented by the Activity Model Builder (AMB) and Activity Recognizer and Tracker (ART),

preceded by a Preprocessing block. The AMB is devoted to provide models of the most common user

activities, which will be used by the ARTmodule for on-line recognition; an optimal energy planmay

thus by elaborated by the EDOmodule, on the basis of the energy demand provided by the EDS, the

recognized and predicted activities and a user plan, containing the tasks to be executed in a given time

interval.

In the following, the detailed descriptions for each of the mentioned modules are provided.

3.2.1 From sensor readings to a compressed event stream

Abasic assumption is that a pervasive deployment of heterogeneous sensors is available over themon-

itored environment. In order to discover hidden relations between sensor triggers originated by dif-

ferent sources, a preprocessing step is needed; sensor readings can bemerged to form templates for the

most common events, which can be de ned as signi cant frequently co-occurring triggers.

Performing an activity will generate a great number of sensor readings; for instance, breakfast

preparation may involve proximity sensors (to the cupboard, to the oven, etc), item sensors (toaster,

co feemaker, taps), and environmental sensors (temperature, water ow), whose state may be repre-

sentedby a binary,discreteor continuo variable, respectively. A tri er is de ned as thepair composed

38



!"#

$%&#

$%'# $%(#
$%)#

$%*# $%+#

,"#

!%#

$-#

!"#"$%&

$./.0#1201.3#

,-# ,2452367832#1201.3#

!-# 96723#:68;27#1201.3#

<=%#

<="#

Figure 3.2: Two sample events extracted by the algorithm: captures the user walking toward the kitchen, while

corresponds to using the kitchen faucet for washing. Themaximum duration of events for template abstraction

was set to 5s in both cases.

by sensor ID and sensor state.

Representative information must be extracted from a series of raw sensor triggers; to this end, a

speci c language is devsed, where an event is de ned in terms of triggers according to the following

syntax:
,

According to this de nition, each event is identi ed by the minimum and maximum expected

duration of the whole sequence, an initial trigger followed by an optional sequence of triggers with

intervening gaps of duration in the range . An example of two events extracted

by algorithm proposed in this chapter is shown in Figure 3.2.

Initially, the most frequent pairs of trigger occurrences are selected via a sliding window algo-

rithm that lters out pairs whose duration would not satisfy search criteria; moreover, in order to

select meaningful items, additional constraints are imposed applying a lower bound on the acceptable

frequency:

freq freq freq

where mean freq and standard deviation freq are computed over the frequencies of all pairs.

Pairs of triggers may already be considered as elementary event templates, and may be expanded

by iteratively addingmore triggers to them. In order to discover themost frequent triggers comprised
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within each pair (if any), the conditional probability that a trigger falls within a given pair is exploited.

Upon adding a new trigger to a sequence, the algorithm looks for the next possible value maximizing

the updated conditional probability; addition of a trigger may reduce, but never increase the number

of occurrences of a sequence in the overall trigger sequence, so the iterative procedure will terminate

when such number falls below a preset value.

As a nal step, all basic events made up of a single trigger are added to the newly found templates,

thus producing a complete list of templates sorted by their relative frequency in the sequence.

Discovering the possible list of event templates enables for scanning previously unseen trigger

sequences in order to identify the actual occurrences of events contained therein.

This step is accomplished by String mAtching with wIldcards and Length constraints (SAIL) [80],

an on-line algorithm able to locate patterns as soon as they appear in the sequence, whichwasmodi ed

to account for representation of events and triggers.

Extract Alphabet for event encoding.
string int
alphabet

1: nlist extract_ngrams
2:
3: nlist
4: nlist sort nlist
5: ngram get rst nlist
6: get_obtainable_compression ngram
7:
8:
9: ngram
10: nlist nlist ngram
11: delete ngram
12: nlist update nlist ngram
13:
14:

The use of SAIL transforms the tri er sequence into an event sequence, ready to be scanned to

nd frequent and relevant patterns, representing high-level activities. Information theory principles
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are used in order to keep this problemmanageable, and to cope with the complexity of exploring the

search space. Event sequence is compressed by lossy optimal coding so that events with low infor-

mation content will be discarded; in other words, the most relevant patterns will be those that better

describe the whole sequence, according to the MDL principle [81]; additionally, the compression of

the event sequence allows for a decrease in the computational cost of later processing, thus copingwith

the exponential complexity of frequent event pattern mining.

Compression algorithm for activity discovery is inspired to arithmetic coding and entropy-based

approaches. In order to nd an optimal encoding for the event sequence produced by SAIL, it is

regarded as a string of symbols over the alphabet of event IDs. Algorithm 1 shows the pseudocode for

the compression algorithm.

Borrowing the terminology from information theory, an -gram is a subsequence of contigu-

ous items from a given string, so the goal is to translate the original sequence using a new alphabet

whose symbols are the most signi cant -grams in . Line 1 of the algorithm extracts the list of -

grams of size between min and max together with their frequencies.

The algorithm then proceeds iteratively (lines 3-14). The -grams are sorted according to the

MDL principle: basically, each of them is viewed as a potential new symbol of the alphabet, and the

length of string is re-computed accordingly, using a binary encoding; the -grams are sorted accord-

ing to the degree of compression the can produce, and the -gram producing the best compression

is chosen (lines 4-5). In the following instructions, the frequencies of the remaining -grams are up-

dated, avoiding overlapping; the iteration stops when no -gram is able to produce a compression

rate above the chosen threshold. Convergence is ensured since addition of an -gram to the al-

phabet may only cause the frequencies of the remaining -grams (hence, their potential compression

rate) to decrease. The algorithm then returns the -gram alphabet resulting in better encoding.

Once a shorter version of the event sequence is obtained thanks to the new encoding, the

most frequent patterns have to be discovered.

The entire preprocessing algorithm is shown in Figure 3.3.
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Figure 3.3: The preprocessingmodule.

3.2.2 Discovering, modeling, and tracking user activities

Activity discovery is formulated as a data mining problem, and frequent recurrent event patterns are

regarded as instances of the yet unknown activities. Figure 3.4 depicts the process of information

re nement underlying this approach: the system attempts to infer models for activities de ned as re-

cursive structur symbolically expressed in terms of a basic “alphabet”; the process starts by identifying

relevant events, which, in this context, may be thought of as short and recurrent sequences of triggers,

i.e. raw sensor readings. This bypasses the di culty of creating a reliable model of an activity directly

in terms of sensory triggers or supposed interactions between users and their home appliances.

Other proposals adopt a similar approach, but of en rely on supervised algorithms,with the aimof

looking for a translation of a prede nedmodel of activity into data; however, explaining data through

model established in advance implies some constraints and limitations: for instance, all users are sup-

posed to carry out the same activities in a very similar way, and a great amount of data has to be col-

lected and consistently labeled in order to create a su ciently large training set.

In order to have activities naturally emerge from sensor observations, theAMB looks for recurrent

structures; given the event sequence obtained fromMDL encoding, the most frequent patterns have

to be discovered.

AMB module is based on a modi ed version of Discontinuo Varied-order Sequential Miner

(DVSM) [82], which is an Apriori-based iterative algorithm, relying on vemain components: a can-
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Figure 3.4: The process of activity discovery as an identification of recurrent structural patterns.

didate generation function, a pruning function, a candidate set, and a frequent pattern set. Initially, a

candidate set is generated by considering the pruned set of all pairs of consecutive events in . The

idea of the algorithm is that each pattern in the candidate set is expanded at each iteration, according

to a generation function. New patterns are checked against a pruning function, and only the ones

surviving pruning are added to the new candidate set. Only those patterns whose expansions are all

discarded (i.e. they are not “covered” by their expansions) will be part of the frequent pattern set.

The algorithm stops when the candidate set is empty. The candidate generation function expands a

pattern by adding the previous and the subsequent event in , in order to create two new patterns.

The pruning function is based on the MDL principle, and discards those sets of patterns unable to

produce a su cient compression rate for , according to a prede ned threshold.

In order to compute the compression rate, DVSM iteratively creates a hierarchical structure: at

each step, variations of similar patterns in terms of the Levenshtein distance [83] are grouped together

into general patterns. The compression rates of variations and general patterns are checked against
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Figure 3.5: The AMBmodule.

two threshold values, and respectively:

DL
DL (3.1)

DL
DL DL (3.2)

where is a general pattern, one of its variations,DL a measure of the description length and

is a continuity measure of the pattern, as in [82].

The nal frequent pattern set returned byDVSM contains themost relevant patterns, which will

be clustered into meaningful classes to obtain the discovered activities, by integrating temporal in-

formation with other features of interest, such as composition similarity, with an approach similar

to [82]. This step is accomplished by -medoids, a variant of the well-known -means clustering,

where representative points are bound to belong to the initial dataset; -medoids uses a dissimilar-

ity measure computed over all the possible pairs of points, giving it more robustness than traditional

-means measures with respect to noise and outliers [84]. Similarly to -means, the number of parti-

tions is a parameter chosen by the user.

The chosen dissimilarity measure re ects de nition of pattern dissimilarity according to the T-

pattern model, and consists of three components:

– causality is expressed by the order of the events in the pattern: earlier occurrences within the

patternmay provide an explanation for occurrences found later on; therefore, themore dissim-

ilar two patterns are with respect to the order of their events, the higher the probability that
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they represent instances of di ferent activities. In this approach, causality is implemented by

means of the Levenshtein distance;

– critical intervals deal with the relations between the distributions of components of a pattern;

in other words, this measure considers the time distances between consecutive components.

The corresponding function measures temporal information about the pattern element (time

of day, duration, etc) and, clearly, the distance between two di ferent components;

– the so-calledmissing components, i.e. the di ferences between the events present in twopatterns,

are determined based on the best pair of corresponding events between two patterns, if any.

In order to choose the best partitioning of the original pattern set, the algorithm is run multiple

times with di ferent initial random representative points. In the end, the partition that achieves the

best overall dissimilarity measure among the obtained clusters is chosen. Such clusters constitute the

so-called discovered activities, i.e. activities emerging from collected data.

The sof ware modules involved in activity discovery and modeling are represented in Figure 3.5.

In the last phase, the features of the obtained clusters are encoded into models representing the

discovered activities. An approach based on boosting was adopted; HMMs [40] are used to describe

activities: anHMM is trained for each discovered activity, using the corresponding cluster set as train-

ing set. In the recognition phase, a window of xed size is slid over the input events, and an activity

label is assigned to the last event in the window, according to the HMM that achieves the higher pos-

terior probability in correspondence to that event.

Once models for activities are available, the ARTmay process the incoming stream of sensor trig-

gers, convert them into event sequences, and use a sliding window on them in order to recognize the

current activity; the label assigned to the last element of the window is that of the activity correspond-

ing to the HMM that maximizes the posterior probability.
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3.2.3 Optimizing Energy Demand by Peak Shaving

Energy demand optimization is based on the assumption that recognizing user activities automatically

and non disruptively for the inhabitants of the monitored environment is the key to e fective energy

demand optimization; to the best of my knowledge, no comprehensive dataset is available to date

with details about power pro ling and the corresponding information about user activities. However

a few repositories have been created in the context of pervasive monitoring for activity recognition via

simple, o f-the-shelf sensors; such publicly available datasets were used and enriched with synthetic

information about energy demand.

For the purposes of the present discussion, the overall energy demand of a smart home is charac-

terized by identifying its main sources, from a user’s point of view; energy consumption may thus be

seen as the sum of three di ferent components: a baseline demand, the (activity-driven) user loads, and

what is called the schedulable loads (see Ener Demand Simulator (EDS) block in Figure 3.1).

3.2.4 Simulating energy consumption

The baseline consumption is generated by all appliances operating in background, such as heaters, de-

humidi ers, freezers, refrigerators, and so on. Most loads belonging to this class can be shif ed in time,

getting a better execution order from an energy saving point of view; moreover, price forecast could

be considered in order tominimize costs. De nition of baseline loads is inspired to the works by [78],

and [76]. All such appliances are somewhat transparent to the end user, who does not perceive their

presence and does not make an explicit scheduling plan for them. Moreover, they may be assumed

to always have an impact on energy demand, as they account for essential services, or are necessary to

guarantee a minimal comfort level. The baseline load pro le can be modeled by considering a typi-

cal usage in an ordinary house. Once the set of baseline appliances is de ned, their consumption is

predictable according to themost common consumption pro le, whichmay be obtained by referring

to well established references. In particular, the study described in [85] was followed and the energy

pro le for a few common appliances was built, matching their respective loads to the previous taxon-
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omy. For instance, the energy demand pro le for baseline loads was inferred from the typical use of

the corresponding appliances; a daily demand curvewas generated based on the data provided by [85],

and was parameterized to produce a set of standard daily usages.

User loads are a byproduct of the current user activity; microwave ovens, TV sets, computers rep-

resent typical examples of devices belonging to this class. EDS follows the approach proposed in [78],

where the authors choose to leave out all those appliances that can be scheduled by the user in a pre-

de ned fashion (e.g. dishwasher); on the other hand energy demand due to user loads is likely unpre-

dictable, hence very di cult to cope with, in order to prevent a negative impact on peak demands.

The energy demand due to each activity is simulated by combining the e fects of some randomly cho-

sen devices that can be possibly turned on during its execution. For example, cooking may require

the use of di ferent appliances (e.g stove, as opposed to microwave oven), so di ferent instances of the

same activity may result into very di ferent energy consumption pro les. In order to account for this

peculiarity, only simulated consumption is considered as due to a random selection of devices from

the set of all the appliances related to that activity. The coupling between appliances and activities was

de ned a priori; moreover, for each device activation, a random duration is chosen, by simulating the

use of the same appliance in di ferent executions of the same activity.

Schedulable loads, the third component of the proposed energy model is obtainable by analyzing

a plan provided by the user. It includes all the appliances that are characterized by long-lasting tasks,

as compared to normal user activities. Washing machines and tumble dryers are typical examples of

this kind of appliances, similarly to “burst loads” in the terminology proposed by [76].

Finally, user plan is considered, which is a prede ned list of tasks; for each of them, the user needs

to provide two intervals de ning the acceptable ranges for the beginning and ending time for the task;

moreover, a priority is associated to every task, expressing its importance in the user’s opinion. Time

intervals associated with tasks may possibly take into account price forecasting, in order to minimize

energy costs. The plan also takes into account dependencies between tasks, thus preventing the execu-

tion of meaningless chains of tasks. For example, a user might want the task executed
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only af er the one; furthermore if, for any reason, was not

executed, then neither should be. The idea of including a user plan might be prof-

itable in other contexts as well; for instance, in a scenario where energy cost minimization is required,

priorities can be chosen according to dynamic price strategies.

3.2.5 Peak shaving

Optimization of energy demand is implemented by the EDO block in Figure 3.1; it is focused on peak

avoidance, considering the estimates of the baseline, user and schedulable loads. Energy optimization

is regarded as a variant of the Knapsack Optimization (KP) [86], a theoretical approach that has al-

ready been applied to several practical elds. KP belongs to the integer combinatorial optimization

domain, and encompasses a set of problems in the eld of integer linear programming. It is known to

be an NP-complete problem, and it has been widely studied due to its possible applications, ranging

from nancing to resource distribution; it has also found application in the context of energy opti-

mization [64]. Given a set of objects, characterized by a volume and a value, the KP aims at selecting

the best subset of objects that maximizes the total value, while maintaining the overall volume below

a pre-set threshold (which is termed the capacity of the knapsack).

In this context, the main goal of the system is to estimate the current energy usage, and to predict

its short-term trend in order to check that it is compatible with the activity the user is performing;

the system then tries to rearrange loads generated by the appliances, in order to avoid exceeding a pre-

set threshold for the overall demand, while satisfying user requirements, and completing the planned

tasks. The underlying assumption is that the total energy consumption can be parted into two main

components, namely the predictable consumption and the unpredictable one. The rst component

includes all the baseline loads simulated by the EDS module, as well as the schedulable loads due to

the user plan; both components are intrinsically predictable. On the other hand, user loads generated

by the current activities are hardly predictable, unless a short term prediction is considered by taking

advantage of user activity recognition. Figure 3.6 shows a sample of a breakdown of energy demand in
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Figure 3.6: Example of a breakdown of energy demand in terms of baseline, schedulable and user loads.

the proposed scenario. The constraint represented by the pre-set threshold is thus further narrowed

by an amount corresponding to the estimate of the consumption due to user loads; hence, predictable

loads energy consumption is rearranged in order to meet the more restrictive threshold.

This functionality is provided by the block named EDO in Figure 3.1, which represents a sof ware

module accepting the following inputs: the current estimated energy consumption, the predicted user

activities, and the user plan. When the predicted short-term energy use exceeds the pre-set threshold,

EDOmodule attempts to select the minimum necessary amount of devices to be temporarily turned

o f so as to satisfy the energy use constraint, while respecting the provided priorities. Once the pre-

dicted load falls within the limit, the system attempts to restore the device; another option is to look

for another device to turn o f in order to trade for the reactivation of the old one.

In order to take user requirements into account, the proposals of [78], [79] is followed, providing

a slack time for each baseline appliance; this piece of information is used to prevent the optimizer from

turning a device on and o f too quickly, which would cause a degradation in the overall performance,

or even a possible failure. In the end, the deactivation time for a device is minimized, causing as little

inconvenience as possible for the users.

Time is split into xed-size slices; for each slice, the system selects the optimal set of devices to turn

on in order tomeet the energy consumption constraint, andmatch the user plan as closely as possible;
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as already mentioned, the optimal selection of devices is formulated as a KP, to be solved at each time

slice.

The capacity of the knapsack is de ned as:

(3.3)

where is the estimated maximum energy of user load component for the considered time slice,

and is the pre-set consumption threshold. The maximum consumption value is stored for each

activity instance, together with the timestamps of its beginning and end time; for each new instance,

a probability distribution parameterized over the initial time of the activity is recomputed; a similar

approach is used for the baseline estimation, based on a whole day prediction.

The function to be maximized is expressed as:

, (3.4)

where the summation is taken over all the appliances generating baseline and schedulable loads. The

integer variable is de ned as:

if the device is turned ON

if the device is turned OFF
(3.5)

The coe cient indicates the priority of the task, corresponding to the user-de ned one for the

schedulable appliances and to a function of the slack value for the baseline loads.

The constraint to meet is:

, (3.6)

where is the consumption of the device, according to its consumption model.
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3.3 Experimental assessment of the peak shaver system

In order to assess the performance of the whole system, two reference scenarios were considered, ac-

cording to activity recognition or energy saving tasks; in the former case, events generated by sensors

deployed in a smart home environment was analyzed, where each sequence of triggers was labeled ac-

cording to the activities performed by the user, whereas for the latter the system was assumed able to

control a prede ned set of appliances, and an energy consumption demand was simulated, according

to a realistic energy use pro le. In particular, three public datasets were used to measure the accuracy

of the system: adlnormal [87], and aruba [88] (both from the CASAS project), and the one called

kast [47] from the Context Awareness in Residence for Elders (CARE) project. All datasets are an-

notated, i.e. their sensor trigger sequences are labeled with the activity the user was performing in

correspondence to that portion of data: the so-called actual activities; however, the three datasets are

very di ferent with respect to the set of employed sensors and to the way the data was collected; their

descriptions are reported in Table 3.1.

3.3.1 Evaluation of theMDL event encoder

The MDL encoder represents the core of the preprocessing step, and its main goal is to reduce the

“uncertainty” inherently present in data so that the subsequent modules of the system may focus

only on the most signi cant information. Thanks to the new encoding, dissimilarities among event

patterns are magni ed, so that they get scattered throughout the ideal representation space, which

ultimately results in more easily distinguishable activities.

The e fects of user activities are observable by the system only in terms of the e fects they produce

on the environment, so an activitymight be abstractlymodeled as a stochastic source of sensor triggers;

more speci cally, an activity is regarded as a source of alphabet elements (the -grams selected by the

MDL encoder) and compute its emission probability. Telling di ferent activities apart is only possible

if each element canbe associated to the correct source; this taskbecomesmoremanageable as the source

emission probability distributions are most di ferent from each other.
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Table 3.1: The datasets used for testing the system.

adlnormal 20 users (one at
a time), about
6,000 sensor read-
ings, 100 activity
instances

5 activities (Telephone use, Hand
Washing,Meal Preparation, Eating
and Medication Use, Cleaning)

motion sensors, analog sensors for
monitoring water and stove burner
use, as well as sof ware sensors
(VOIP), and contact switch sensors
on phone book, cooking pot and
medicine container

aruba 1 user, about 6,000
sensor readings
(out of 1,600,000
total), 120 activity
instances (6,471
total)

11 activities: Meal Preparation, Re-
lax, Eating, Work, Sleeping, Wash
Dish , Bed to Toilet, Enter Home,
LeaveHome,Housekeeping,Resper-
ate

binary sensors: motion sensors and
door closure sensors (temperature
sensors were also present, but they
were not used by the proposed sys-
tem)

kast 1 user, 2,120 sensor
readings and 245
activity instances
spanning 28 days

7 activities (characterized by dif-
ferent time duration and di ferent
frequency): Leave house, Toilet-
ing, Showering, Sleeping, Prepar-
ing breakfast, Preparing dinner and
Preparing a beverage

14 binary sensors deployed in the
house, placed on doors, cupboards,
refrigerator and a toilet ush.

The assessment of this module was thus carried out by comparing the statistical properties of the

di ferent activities, in terms of probability distribution of their basic elements. Temporal information

was purposely disregarded at this step, as it does not carry additional signi cant information in this

context. Di ferent instances of the same activity can be very dissimilar in terms of their temporal un-

folding, depending on how speci c users perform them, but the relevant information content consists

in their respective subtask composition, regardless of the exact duration and consequentiality*. The

statistical properties of an activity, thought of as a stochastic source, might reasonably be considered

invariant and distinctive of the activity itself.

Hellinger distance was chosen as a measure of dissimilarity between di ferent activities [89]. This

is a -divergencemeasure, which quanti es the di ference between two probability distributions

*For example, Cooking will likely involve a set of tasks such as opening the cupboard, grabbing a pot, and
switching on the stove burner, but their duration and exact sequencemay vary among di ferent instances of this
activity.
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Table 3.2: Comparison of Hellinger distance with original triggers and afterMDL encoding.

0.6116 0.6931 0.8360 0.8533 0.9007 0.9024
0.9423 0.9793 1 1 1 1
0.2483 0.1668 0.3190 0.3076 0.1666 0.1600

and :

, (3.7)

where:

(3.8)

is a unit vector in -norm, is the probability that the activity ‘emits’ the symbol, and

is the cardinality of the encoding alphabet.

By de nition, the Hellinger distance is symmetric and satis es the triangle inequality, so it is a

proper distance, which induces a metric space. This metric space was used to get a quality measure of

the preprocessing; namely, if Hellinger distance was computed for every pair of activities, both before

and af er preprocessing, it would expect that a useful encoding imply a larger distance on average in

the latter case.

Tests show that an improvement in Hellinger distance was achieved for every dataset, with an in-

crease as high as 8% as compared to the original representation in the case of adlnormal, demonstrat-

ing the e fectiveness of the MDL encoder. For this dataset, the average Hellinger distance computed

between all the ten pairs of the ve considered activities is 0.6116, when only activation triggers are

considered as suggested by [82]; af er MDL encoding, it increases up to 0.6931. Table 3.2 summarizes

the results of the tests. Table 3.3 shows how much the Hellinger distance matrix di fers, for each cou-

ple of activities of adlnormal, with and without applying the MDL encoding; element of this

matrix is the di ference of the Hellinger distance between activity and activity in the two cases;

obviously, it is a strictly triangular matrix. The obtained results show a signi cant improvement, in
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Table 3.3: Confusionmatrix of the difference of Hellinger distance between original triggers andMDL encoding.

0 0.1572 0.0370 0.1465 0.0996

0.1572 0 0.1151 0.1407 -0.0815

0.0370 0.1151 0 0.0528 0.1102

0.1465 0.1407 0.0528 0 0.0375

0.0996 -0.0815 0.1102 0.0375 0

terms of a higher Hellinger distance, for most of the activity description dissimilarities. The original

encoding outperformed MDL encoding only for the (Hand Washing, Cleaning) pair, probably due

to the extreme similarity of the two activities. Figure 3.7 shows a detailed comparison of the two ac-

tivities, in terms of distribution of triggers and alphabet elements; theHand Washing activity clearly

shows how theMDL encoder succeeds in compressing the statistical description of the activity; how-

ever, this eventually resulted in an increased similarity to the Cleaning activity. On the other hand,

themost signi cant improvement was obtained for the (HandWashing,Telephone use) pair, likely be-

cause encoding is able to emphasize the di ference in terms of the predominant set of subtasks; these

two activities indeed involve very di ferent sensor sets, as they are carried out in di ferent areas of the

house and with di ferent tools.

Similar results were obtained for the other considered datasets, with an overall increase in the

Hellinger distance, except for those pairs composed by only a very reduced set of signi cant elements.

3.3.2 Testing the AMB and ARTmodules

In order to assess the ability of ART and AMB to correctly identify patterns of events, their perfor-

manceswere tested against the 3 datasets, with varying compression thresholds for theDVSM module
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Figure 3.7: Hellinger distance: difference between original triggers (left column) andMDL encoding (right column) for

Cleaning (top row) andHandWashing (bottom row).

(i.e. in uencing general patterns, and for variations, see Eq. (3.1) and (3.2) on p. 44). Figure 3.8

shows that the algorithm performs similarly in all cases, but the resulting number of patterns is very

threshold-dependent. Higher values for both thresholds increase the number of discovered patterns,

up to a saturation point; the best performance is obtained with adlnormal, arguably due to the fact

that test users were instructed to simulate daily actions by following a preset script. A bad choice of

thresholdsmay result in failing to discover any patterns at all, as is the case with for aruba.

The results show that appropriate values of and allowDVSM to prune most of the less mean-

ingful patterns, also in combination with the preprocessing and encoding steps, that purge the input

trigger sequence from non-signi cant data.

Performance of -medoids algorithm in producingmeaningful classes of activities was also tested,

in terms of the goodness of its clustering. To this end, the same metrics as in [82] was used, namely:
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Figure 3.8: No. of extracted patterns as a function of the compression threshold , parameterized on .

• : the ability to identify activities, computed as the ratio between the number of actual labels

assigned to the discovered cluster representatives, and the total number of actual activities;

• : the ability to assign correct labels to the extracted patterns with respect to actual activities,

computed as the fraction of patterns actually belonging to the activity assigned to the cluster

medoid, per each cluster.

The obtained results are shown in Figures 3.9 and 3.10 for di ferent values of , ; in order to

assess the in uence of the chosen number of clusters ( ) on the selected metrics, this parameter was

initially set equal to the number of actual activities for each dataset, and then increased it. The results

show that is more sensitive to than to the thresholds and , and higher values of cause an

increase in , as is particularly evident in adlnormal. The worst performance is obtained on aruba,

due to the presence of many unlabelled triggers, re ecting the fact that actual activities poorly corre-

spond to the user’s normal life; this is also highlighted by the results for on the same dataset, which

show that when the cluster does represent an actual activity, its patterns are labeled in the correct way.

For the other datasets, con rms the results from , and shows good performance on accuracy in

classi cation. The number of patterns does not in uence thismetric asmuch as it does for , suggest-

ing that increasing the number of clusters improves the “coverage”, but not the quality of produced

clusters.

Finally, the accuracy of the HMM-based activity recognizer was assessed, with respect to discov-
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ered and actual activities.
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(a) adlnormal: 5 clusters
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(b) adlnormal: 7 clusters
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(c) aruba: 11 clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
.1

 0
.1

3
 0

.1
5

 0
.1

7
 0

.2
 0

.2
2

 0
.2

5
 0

.2
8

 0
.3

 0
.3

2
C

(d) aruba: 22 clusters
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(e) kast: 7 clusters
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(f) kast: 11 clusters

Figure 3.9:Metric for the 3 different datasets as a function of the compression threshold e and number of

clusters.
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(a) adlnormal: 5 clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
.1

 0
.1

3
 0

.1
5

 0
.1

7
 0

.2
 0

.2
2

 0
.2

5
 0

.2
8

 0
.3

 0
.3

2

C

(b) adlnormal: 7 clusters
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(c) aruba: 11 clusters
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(d) aruba: 22 clusters
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(e) kast: 7 clusters
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(f) kast: 11 clusters

Figure 3.10:Metric for the 3 different datasets as a function of the compression threshold e and the number

of clusters.
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The best values for setting the HMM parameters, i.e. the number of hidden states ( ), and the

size of the sliding window ( ), were computed; to this end, a grid search was used, with

and , and computed the accuracy of the system at each point in the grid. Two separate

tests were conducted, aimed at the recognition accuracy of actual and discovered activities, respec-

tively. Results for the best con guration of parameters with respect to actual activities are shown in

Table 3.4, where the corresponding value for discovered activities is also shown. As expected, better re-

sults are achieved for actual activities in adlnormal, due to better correspondence between actual and

discovered activities. The achieved accuracy is very high, con rming the capacity of the method of

building reliablemodels. The results obtained for the aruba and kast show that the proposed recogni-

tion system is able to createmodels of discovered activitieswithno assumption regarding the particular

scenario. On the other hand, results on actual activities in these dataset su fer from the poor corre-

spondence between discovered activities and actual activities. The setting for parameters and is

also dependent on the speci c dataset; such values need to be carefully chosen with respect the data at

hand, as they basically represent howdi ferent activity de nitions aremirrored into the corresponding

datasets.

3.3.3 Energy consumption optimization by peak load shaving

The lack of a su ciently rich dataset to measure the e fects of real-time user activity recognition on

energy usage optimization motivated us to generate synthetic data to assess the performance of the

EDOblock. Simulation takes advantage of the typical home appliance pro les, as documented in [85];

additional pro les were generated by using the models proposed in [74]. With such information fed

into the EDSblock, two energy demand curves can be computed in order to compare the performance

Table 3.4: Best results in recognition accuracy.

k
adlnormal 0.17 0.38 7 4 12 0.95 0.98
aruba 0.30 0.42 11 6 3 0.66 0.92
kast 0.13 0.40 11 6 3 0.55 0.97
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Table 3.5: Correspondence between activities and the relative appliances.

Meal Preparation , , ,
Cleaning
Eating and Medication Use
Telephone use
Hand Washing

Table 3.6: List of appliances associated to schedulable and baseline loads.

Schedulable , ,
Baseline , , ,

,

obtained without the intervention of the EDO block with the one resulting from the inclusion of

the energy optimizer. In the former case, the EDS was tuned to simulate a typical domestic usage,

considering the actual sequence of activities in a fashion similar to [74], [75]. In the latter case, the

optimized energy demand is computed by following the indications of the EDOblock about toggling

the appliances on and o f.

Tests were conducted by considering the adlnormal dataset so as to build an energy pro le for

each of the ve tracked activities (namely, Telephone use, Hand Washing, Meal Preparation, Eating

and Medication Use, and Cleaning). Table 3.5 indicates the subset of appliances involved in their

execution. Adlnormal activities of en span a short interval, hence the simulation makes use of time

slices of appropriate length (2 minutes in this case).

As regards the user plan, itwas assumed that the applianceswhose usewas suitable to be scheduled

were those reported in the rst row of Table 3.6, while the baseline loads were simulated according to

the devices reported in the second row. The dependencies between di ferent tasks was also coded,

where applicable; for instance, the use of the is only admissible af er the

task has been completed. In the experiments, the pre-set threshold for limiting peaks in

energy demand was set to 3 kW; in order to solve the knapsack problem, the capacity may thus be

recomputed at each time step by subtracting the predicted energy demand due to the user activity
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from such threshold (see Def. 3.3 on p. 50).

Figure 3.11 shows some signi cant examples of the outcome of the peak shaving algorithm. The

reported charts are representative of the caseswhere energydemandwas successfullymaintainedbelow

the pre-set threshold; overall, the system managed to reduce the number of unacceptable peaks by

about 30%, on synthetic data; however, there were circumstances when the excess of energy demand

could not be avoided due, for instance, to the combined e fect of the user plan and the requirements of

the current activity or, much less frequently, to a wrong prediction of the activity recognitionmodule.

The two charts shown in the topmost row illustrate a common situationwhen the operating time

of some baseline appliances is delayed until the overall load falls below the given threshold (see the

shadowed are in the charts).

A di ferent behavior is shown in the middle row, where the original loads are presumably due

to appliances for which a considerable slack time was provided; the nal e fect is that the system is

allowed to give priority to the energy constraint at the expense of slightly bending the requirements of

the users, who experience a delay in the services o fered by baseline appliances; basically over-threshold

loads are immediately switched o f, and their re-activation (if any) falls beyond the currently shown

window.

Finally, the last row shows a speci c instance of the action of the optimizer on schedulable loads.

Those are typically characterized by long activation times; for instance, one such load is present for

about 50 minutes (from time 1050 to 1100 in the lef chart). The right chart shows the action of the

optimizer resulting in an immediate re-scheduling of the critical loads, which are temporarily removed;

this is followed by an additional deactivation at time , and some loads appearing again at time .

However, it is evident from the chart that, at time , some loads start “competing” for re-activation,

thus producing an oscillation in the optimizer behavior; this is likely due to their relatively similar

priorities, or simply to an intrinsic “bursty” consumption (which is typical of some appliances, such

as ).
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Figure 3.11: Comparison of original energy demand, and the one obtained after applying the proposed approach.
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To iterate human, to recurse divine.

L. Peter Deutsch

4
Formal Languages for Mobility Models

The high flexibility of algorithms based on Statistical Learning is also their weakest

point. Considering analysis of very large and unstructured data, performance of these algorithms, in

terms of knowledge extraction, is very hard to assess, because they can not give real insights about the

most signi cant features of data; indeed, they are encoded as “black-boxes”, i.e., the set of parameters

used to tune the learning algorithms. Thus, only parameters to adapt known hypotheses to the data

are available: relations can be found only if they are supposed to exist. Hypotheses are represented by

class of functions and operators, therefore parameters can hardly be understood in terms of original

data and choosing between several models that t the data comparably well is rather impossible.

A shif in perspective may be of help to tackle with the unaddressed goal of representing knowl-

edge by means of the structure inferred from the collected samples; more speci cally, concepts and
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methods borrowed fromAlgorithmic Learning Theory (ALT), which relies on formal languages and

automata, can be very useful in knowledge extraction. Unlike its statistical counterpart, ALTdoes not

require any speci c constraints on the statistic properties of the available data, and it rather relies on

formal languages and automata theory. Itsmost interesting peculiarity is that the obtained knowledge

is syntactically driven, hence intrinsically “structural”.

In this framework, knowledge extraction may be formulated in terms of Grammatical Inference

(GI) [90], an inductive process able to select the best grammar (according to ametric) that is consistent

with the samples, according to the learning model known as identification in the limit [91]. Unlike

statistical approaches, data is not encoded into a vectorial space, rather it is regarded as strings generated

by an unknown grammar [92].

GI can be successfully applied in order to get relevant insights about the hidden structure embed-

ded in large collections of data, enabling the user to ask and answer to new kinds of questions, taking

advantage of the generative models obtained by the inductive process. Indeed, grammars are very in-

formative if used to explain the relations between di ferent subsets of samples. Moreover, thanks to

their recursive nature, grammars are also able to perform multi-scale analyses, nding out what the

most recurrent relations at di ferent granularities of data are.

All these concerns are also central in data mining, whose main goal is to highlight the most im-

portant characteristic relations in data, in order to predict future trends; thus, GI can be the right tool

to enable a deeper understanding of large collections of data, characterized by counter-intuitive and

hard to guess relations.

In order to highlight the potential of the suggested approach, grammatical inference, and more

speci cally inference of regular languages [93], is applied to the problem of inferringmobilitymodels.

In this context, the availability of generative and multiscale models allows to simulate and predict

changes in user habits, according to variations in viable paths.

65



4.1 Knowledge and formal languages

Threemain formsof knowledge canbe identi ed, according to [94]: declarative, procedural and struc-

tural.

• declarative: it expresses the awareness about some items or events or concepts *. It is the knowl-

edge of the “knowing that”, i.e., it allows to identify and describe an item or a concept, but it

does not enable to use them.

• procedural: it describes how learners use or apply declarative knowledge; it is the knowledge of

“knowing how”.

• structural: it mediates the translation of declarative into procedural knowledge and facilitates

the application of the latter; it is the knowledge of how concepts within a domain are interre-

lated; it is the knowledge of “knowing why”.

Some researchers consider structural knowledge as part of the declarative one [96], but the exis-

tence or nature of structural knowledge is not undermined by this assumption [94].

Structural knowledge is di ferent from structured knowledge. Structured knowledge typically

refers to a description through entities and relationships: the focus is on how knowledge itself is or-

ganized. On the other hand, structural knowledge deals with the type of knowledge to be acquired,

rather than the way it is organized: the emphasis is on the organization and structure of the objects of

the analysis.

Formal languages are the best tool to represent, organize and process structural knowledge, be-

cause they provide a representation focused on the description of the relations between their elements.

A formal language is a set ( nite or in nite) of sentences, each nite in length and made up of a nite

set of elements [97].

*In this context, concept refers to a class of equivalence that can be described through a nite set of assertions;
moreover, an e fective procedure to classify it must exist [95].
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This de nition, as Chomsky suggests [97], can be easily adapted to natural languages, but also

sentences drawn by a formalized mathematical system can be considered as a language. In the context

of this thesis, under some restrictions, it is claimed that the sensory data collected during an observa-

tion of an event can be considered as produced by an hidden language, that acts as model of the event

itself.

In a recent work [98], some researchers discovered that the understanding of a connected speech

gives rise to the concurrent tracking of di ferent timescales, in order to identify abstract linguistic struc-

tures at di ferent hierarchical levels. Di ferent neural processing timescales suggest a grammar-based

internal construction of the linguistic structure. Thus, it is a clear clue that grammar-based representa-

tions are e fective and e cient methods to represent and handle complexity in knowledge extraction

process.

4.1.1 Formal language representation

Two di ferent descriptions can be associated to a language: generative and recognition-based.

According to this description, a language corresponds to the set of strings generated by a

grammar. A grammar is a formal system able to transform an input through a set of prede ned

rules. The di ferent abilities of the adopted set of transformation rules induce a hierarchy of

generative grammars [99]. Generative description is appealing to humans, because it is intu-

itive and compact, but their straightforward implementation is ine cient.

In this description, a language is considered as the set of strings

accepted by an automaton. An automaton is a formal system that accepts a sentence as input

and determines if the sentence belongs to a language. Recognition-based descriptions are ap-

pealing to machines, because automata are formal, compact, low-level machines that can be

implemented easily and e ciently, but hardly understandable for a user.

This dual description of a language is a key factor in the scenario of sensory data analysis; indeed,
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there are twomajor issues with this kind of data: the di culty to visualize it and the di culty to think

about targets of knowledge extraction in terms of raw data.

The rst problem is common to every application related to the analysis of great quantity of data.

Nowadays, big data is very common, due to the great number of cheap devices able to provide a steady

stream of measures; of en, this requires an organization of data in a high-dimensional space, inducing

several issues caused by the curse of dimensionality. So, data needs to be observed from the right point

of view, picking only its signi cant attributes.

In the past, this process was carried out by an expert of the application domain, who selected the

most relevant attributes and validated the models drawn by data analysis, according to his knowledge

and expertise. This approach is not feasible anymore for big data, because it is impossible to check

all the choices of attributes. Moreover, in sensory data scenario, at the beginning of the analysis there

are no clues about what the best candidate features are. Thus, an e cient tool able to suggest a set of

possible data representations in a humanunderstandable form is essential for an e fective data analysis.

The second problem is strictly tied with the rst. Models obtained by traditionalMachine Learn-

ing algorithm are described by the set of their parameter values, that are hardly correlated with the

original representation of data. Human validation ofmodels is therefore infeasible, especially between

models that performs equally well on test data. Moreover, this kind of models does not provide any

new insight in data, while of en this is the true aim of the analysis. On the other hand, traditional ap-

proaches are very e cient to cope with the computational burden implied by big data analysis, while

traditional symbolic approaches cannot be employed because of their high computational costs.

Therefore, an approach that provides the e ciency of automata and the representation power of

grammars can be the key to overtake the hurdles in the analysis of great quantity of sensory data.

4.1.2 Grammars

A generative grammar is a quadruple [100], [101]:
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where:

• is a set of terminal symbols called alphabet; strings of the language are made up of these

symbols;

• is a set of so-called nonterminals, variabl or syntactic variabl ; is disjointed from ;

• is the start symbol, i.e., the nonterminal representing the language being de ned.

• is a nite set of productions or rul , that is an ordered set of pairs of strings. Each production

takes the form:

with and . is called head of the production,

while body. This means that string of elements can be replaced by, or rewritten as, string

of elements .

Increasing restrictive conditions on productions de ne a hierarchy of grammars [99], [101]:

are also called unrestricted rewriting systems, because their productions are not re-

stricted by any limiting condition. The automaton that accepts the language of these grammars

is the TM.

does not contain any production whose application reduces the length of the

resulting string. Productions of these grammars have the form:

with and .
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Grammars of this type are a subset of the type- grammars. Automata that accept language of

these grammars are called Linear Bounded Automata.

allow only rules whose heads are limited to one nonterminal and bodies can not

take on the empty string ( ) as value. Productions have this form:

with and . These grammars are a subset of type-1

grammars. Automata that recognize the language of these type-2 grammars are called Push

Down Automata.

have productions with the form:

or

with and . These grammars are a subset of type-2

grammars. Moreover, they produce the so-called regular languag , that can be recognized by

Finite Automata.

The language generated by a grammar is the set of strings that can be obtained from the

start symbol , applying productions:

where is the re exive and transitive closure of the production rules .

It isworthnoticing that a grammar canproduce only a language, while a language canbe generated

by several grammars.
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4.1.3 Automata

For the aims of this thesis, it is su cient to describe Finite State Automata (FSAs), because they have

enough expressive power to handle regular languages, that are used in the current approach. Never-

theless, the results obtained could be adapted to more powerful languages.

A FSA is a limited version of the TM; it is an abstract machine that can be in only one state,

drawn by a nite set, at a time. The transition from one state to another one is triggered according to

a functionwhose inputs are the current state and the input of the FSA; this function is called transition

function.

There are twomain types of FSAs: theDeterministic Finite Automata (DFAs) and theNondeter-

ministic Finite Automata (NFAs).

is a system:

,

where:

is a set of symbols called alphabet;

is a nite set of stat ;

is the start state or initial state;

is the transition function whose inputs are and a symbol of and

returns a subset of as output.

e are sets of state called respectively accepting and rejecting states.

is a system very similar to the previous one:

,
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where the only di ference with the previous de nitions regards the transition function . In

this case, it returns only one state of .

NFA and DFA are equivalent: a DFA can be always transformed into a NFA, preserving the lan-

guage recognized and viceversa. NFAs are more compact with respect to DFAs; it can be shown that,

in the worst case, states are needed by a DFA equivalent to a NFA with states.

Similarly to grammars, aDFArecognizes only one language, but a language is recognizedby several

DFAs. Among all the DFAs that recognize a regular language, theminimal canonical automaton has

a particular importance. It is unique for each language (but for a renaming of the states) and has a

central role in the process of grammatical inference, because all this process can be turned in a search

for the minimal canonical automaton.

4.1.4 Inferring a language

This section analyzes the inference of a language from a set of its samples, focusing on regular lan-

guages.

As stated in [90], inferring, or better identifying a language is the main concern of GI, that is the

process of searching for a hidden grammar by little information available, of en only a set of strings.

GI is contained in the wider framework of ALT, a mathematical framework to study machine

learning problems and algorithms [102]. ALT is based on the concept of learning in the limit: in-

creasing the number of samples, the learning algorithm should identify the correct hypothesis on every

possible data sequence consistent with the problem space. This idea is a non-probabilistic equivalent

of statistical consistency, where the learner can fail on data sequences whose probability measure is .

Central objects of ALT are TMs, thus grammatical inference through DFAs can be declined in

this framework. Language learnability models are one of the most relevant concepts in ALT.

A language learnability model has three main components:

1. a definition of learnability: it states what learning a language means;

2. amethod of information presentation: how the learner is instructed during the learning process;
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3. a naming relation, which assigns names to languages: the “learner” identi es a language by

stating one of its names.

In this context, learnability corresponds to the identi cation in the limit principle.

A presentation is a function X, whereX is some set. The set of all possible presentations

for a class of languages is indicatedbyPres . Apresentation canbe considered as an enumeration

of the elements in some set X; this set can be a set of strings drawn from , but, in a broader sense,

it is a sequence of information of some type that guides the identi cation of the target language.

A presentation mode describes what valid presentations are and the way in which the setX is cre-

ated. Moreover, presentations indicate languages of ; in otherwords, a function canbe de ned from

Pres to : Pres . There are two main modes of presentation for a language :

• from text: a sequence of strings belonging to the language is provided; every

string of appears at least once in the sequence. This presentation is known also as positive

presentation.

• from informant: the learner is supplied with strings marked as positve (belonging to the lan-

guage ) or negative (not in ). This kind of presentation is known as complete.

where indicates the complement of with respect to .

Grammars are the chosen representation for the languages, thus thenaming function is a surjective

function with the grammar set as domain and the set of languages as codomain: .

Using the previous de nitions, a learning algorithm can be de ned as [90]:
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A learning algorithmA is a function whose inputs are the rst elements of a pre-

sentation and whose output is a grammar:

A Pres

4.1.5 Identification in the limit

Amore formal de nition of the identi cation in the limit is the following [91]:

Let:

• Pres be a presentation of the languag in ;

• be the set of the first strings from .

The class of languag learnable by algorithm A if:

Pres A

Theorem 2 states that a learner can identify a language in the limit if, af er a number of presented

strings, its hypothes no longer chang . Applying Theorem 2, it can be shown that every TM can be

identi ed in the limit by another Turing-complete Machine by enumeration.

With a slight abuse of notation, a presentation of a grammar can be de ned as Pres

Pres . Moreover, taking advantage of De nition 1, the learnability in the case of GI can be

expressed as follows [90]:

The class of is identi able in the limit from Pres if there exists a learning algo-

rithmA such that:

Pres A and A A

It is worth noting that De nition 2 implies that a grammar equivalent to the target grammar is

learned. Moreover, the learning algorithmA does not change its output anymore from a given point
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on. In some context, a behaviorally correct identification is enough; in this identi cation, the learner

can change the grammar with an equivalent one; in this case the condition A

A can be discarded.

4.1.6 Identification and regular languages

Gold showed in [91] that a class of super-finite languag † cannot be identi ed froma text presentation.

The class of regular languages is super- nite, thus regular languages can not be inferred only from

positive examples; in other words, a set of strings belonging to the target language is not su cient to

learn it.

Some limitations about learningwith apresentation froman informant also exist, asGoldpointed

out [91]:

The whole class of recursive languag can not be identified in the limit from a complete

presentation.

However, in the same work, Gold showed that:

The class of primitive recursive languag can be identified in the limit by a complete

presentation.

This class of languages contains also the regular language class, therefore a regular language can be

identi ed in the limit from a complete presentation of examples.

4.1.7 Inference as a search

Given a complete presentation , the minimum canonical automaton consistent with

exists and is unique, as showed in [100]. Thus, the inference problem can be turned into a search

for this automaton; but Gold showed that nding the minimum consistent automaton with a set of

†A super- nite language class is a class that contains all nite languages and at least one in nite language.
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samples is a NP-hard problem. Therefore, some heuristics are needed to carry out this search in an

e cient way.

The search space can be sketched through the following basic elements:

• Initial node: an “acceptable” DFA;

• Successor function: pairwise state merging;

• Target: minimum automaton that is consistent with the samples .

0

1a

2
b

3
a

4b

5b

6a

7a

8a

9b

Figure 4.1: with

In [103], Dupont describes this search space as a boolean lattice. The initial node of this space is

the so-called Prefix Tree Acceptor (PTA), a tree automaton accepting only the positive examples .

A PTA is shown in Figure 4.1.

Figure 4.2: Example of pairwisemerging operation: from automaton , the three automata of the second line are

obtained.
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The merging operation is a partition of the set of states of the original automaton. Formally,

if is the original automaton and is a partition of the set of its

states, then the obtained automaton applying is called quotient automaton:

and its elements are de ned as follows:

•

•

•

•

and

where denotes the unique element, or block, of containing . The states of in the same

block of the partition are said to be merged together.

The set of successors of an automaton is generated by pairwise merging operations: two states

of the original automaton are merged, giving a new automaton with a number of states decreased by

one, as shown in Figure 4.2.

The pairwise merging operation is also known as derivation operation. Suppose that is the

set of all the possible partitions of the set of states of the automaton and let and two items

of . The partition is said to be directly derived from if:

\

for some between and the number of blocks in , with .

The derivation operation de nes a partial order relation on , whose transitive closure

will be indicated with . Thus, if , then, as extension, ≪ . By construction of

the quotient automaton, the property of language inclusion holds [103]:
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Figure 4.3: Example of boolean lattice.

(Property of language inclusion) Let the set of all partitions of the stat of an

automaton and , with . Then, the language identified by the quotient

automaton included in the language of :

if

Applying the merging operator has two possible consequences: in the rst case, only the number

of states is decreased and the recognized language is preserved; in the second case, the reduction in

the number of states is followed by a change in the language recognized by the resulting automaton;

indeed, the language accepted is more general, properly including the original one.

The set , along with the partial order relation, de nes the boolean lattice . The

nodes of this lattice are the quotient automata, obtained by applying merging operations included in

to the automaton . The deepest node in is the Universal Automaton (UA), that

accepts all the strings de ned over an alphabet , i.e., . An example of a boolean lattice
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is shown in Figure 4.3.

The inference of regular languages, provided apresentation froman informant, canbe turned into

the search for an automaton , given the additional hypothesis of structural

completeness of , that can be de nes as [103]:

A sample set is said to be structural complete with respect to an automaton , if :

1. every transition of is used by at least a string in ;

2. every state in is the nal state of at least a string in .

Under these conditions, the following theorem can be demonstrated [103]:

Let a structural complete sample with respect to the minimal automaton accepting

a regular language ; then belongs to .

Figure 4.4: Boolean lattice decomposition: admissible (in green), inadmissible (in red) and border-set (in blue) automata.

The de nition of minimal DFA consistent with the sample set can be expressed using the ele-

ments of boolean lattice, in terms of the so-called Border Set; but to de ne border set, antistring and

automaton at maximal depth are being de ned:
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The antistring of a lattice of automata is the set of automata whose elements are not

related with any other element of antistring by a relation.

An automaton is at maximal depth in a lattice if there is no automaton that can be

derived from it such that .

TheBorder Set is he set of automata of ofwhich

each element is at a maximum depth.

Thus, the border set establishes the limit of generalization in the search process under the control

of negative samples . So, the minimum DFA consistent with is the smallest automaton of the

border set, i.e., the deepest one. Moreover, the border set parts the lattice into two main subsets:

admissible automata , i.e., , and inadmissible ones , i.e, . Figure

4.4 shows a decomposition of lattice according to this classi cation.

Figure 4.5: Sketch of a search in the boolean lattice.

Theorem 6 guarantees that the target of the search belongs to the boolean lattice. Unfortunately,

this space is too large to be searched extensively. Indeed, the number of automata in the lattice gener-

80



ated by an initial with states is given by the Bell number:

with .

Therefore, some approaches have been proposed to carry out the search in the boolean lattice in

an e cient way, starting from the PTA towards the minimal automaton, as shown in Figure 4.5.

Evidence-Driven State Merging (EDSM) algorithm represents a state-of-the-art algorithm to per-

form a search in boolean lattice, and detailed description can be found in [93].

In Algorithm 2, the psuedo-code of EDSM, as presented in [90], is shown.

EDSM is employed as inference algorithm in the approach proposed by this thesis. EDSM is an

iterative algorithm in the blue-red framework, introduced to reduce the number of comparisons for

merging options, in order to choose the most promising one. Red nodes represent already identi ed

node, while blue nodes are the current options for merging.

At the beginning of the algorithm, the root node is marked as red, while its children as blue. At

each iteration, the algorithm tries to merge a blue node with a red one; if no merge is possible, its

colour is changed to red (the node is promoted); then, its uncoloured children are marked as blue.

Basically, the main steps of the algorithm can be sketched as follows:

1. Given a structural complete sample set , create andmark the root node as red and

its children as blue.

2. Compute a score for each couple of red and blue nodes.

3. If there exists a blue node that can not be merged with any red one, promote the blue node,

mark its uncoloured children as blue and go back to step 2.

4. If there is no blue node to promote, chose themerge with the highest score and go back to step

2.
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EDSM

1: PTA( )
2: Red { }
3: Blue { : and }

4: Blue
5: promotion false
6: bs
7: Blue
8: not promotion ;
9: atleastonemerge false;
10: Red
11: COUNT(MERGE( ), , );
12:
13: atleastonemerge true;
14:
15:
16:
17:
18:
19: not atleastonemerge
20: PROMOTE( )
21: promotion true;
22:
23:
24:
25: not promotion
26: Blue Blue { };
27: MERGE(
28:
29:

30:
31:
32:
33:
34:
35:
36:
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The functionCOUNT (at line 11 of Algorithm 2) returns the number of strings that would end in

the same state, if and weremerged; the function returns if themergemakes the automaton

inadmissible, i.e., an element of has been accepted or an element of has been rejected. The pair

with the highest score is chosen.

4.2 The language of paths

Amobility model is a concise and meaningful representation of past and future mobility behaviors.

Nowadays, location data is easy to collect, due to availability of a wide set of common devices,

such as smartphones or tablets, that can provide a great quantity of positioning data. The discovery

of meaningful information from this huge amount of data is an open issue.

Several works [104]–[106] revealed that human spatial trajectories are highly predictable; thus,

regular languages can be an adeguate tool to capture and compress regularities in an e fective repre-

sentation. This motivates for employing regular languages to describe users’ mobility patterns, iden-

tifying the “language of paths”. Moreover, regular languages are selected among all the other classes

of the Chomsky hierarchy, because the inductive process for this class of languages is very e cient.

In the following, an approach to infer and represent user mobility models via regular languages

is described. The rst step of this process is to translate paths into a symbolic representation and it is

accomplishedby geohash encoding. Then, geohash representationof paths is used in order tobuild up

a hierarchy of DFAs, representing a hierarchical mobility model that describes user habits at di ferent

scales.

This model has several interesting applications:

• Mobility pattern recognition: the model can recognize trajectories compatible with usual user

behavior.

• Future trajectory prediction: themodel can infer plausible trajectories based on structural prop-

erties and considerations.
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• Anomaly detection: the model can detect changes in user habits.

• Point of Interest (POI) extraction: the model can suggest interesting place, in a user-centric

fashion.

• Synthetic sampl : the model can generate realistic trajectories to simulate user behavior.

In next sections, a detailed description of this approach is provided, along with a test about its

recognition abilities.

4.2.1 Human mobility models

In the last years, the steady di fusion of positioning system have generated large volumes of mobil-

ity data, giving raise to the research eld of movement data analysis. The main aim of this new re-

search area is to nd tailored solutions to mine movement data and get signi cant insights in fre-

quent patterns travelled by users, in order to predict their future movements. Movement data anal-

ysis has adapted techniques borrowed from several data mining approaches, originally studied for

transactional-based systems.

Thus, a wide literature has been accumulated on the topic of mobility models and their applica-

tions; for example, the topic ofmobilitymodels is crucial in the analysis and simulation of opportunis-

tic networks, that are based on opportunistic contacts for peer-to-peer message forwarding [107].

Tourism is another application scenario for mobility models [108], because trajectory data con-

tains sequences of locations that are frequently visited, that are very valuable in the identi cation of

POIs.

Human mobility models have also an application in social sciences, because their analysis can ex-

plain and provide a better understanding of social phenomena. In [109], authors propose an analysis

of data gathered frommonitoring of users freelymoving in a university campus, aiming at getting new

insights of the life in the campus.

Vehicular ad-hoc Network (VANET) is a further application scenario for mobility models. The

prohibitive cost of deploying and implementing system for VANET pushes towards the creation of
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realistic simulators of vehicular movements, exploiting mobility models to get reliable results from

simulations [110].

Two main types of mobility models emerge from this literature [111]: synthetic and trace-based

models.

Synthetic models are of en aimed to the automatic generation of mobility traces, based on graph

models [112], or using vehicle pro les [110]. They o fer a straightforward mathematical framework to

experiment and test with mobility behavior. A survey of this type of models can be found in [111].

Trace-based models are created by real traces, and are therefore more accurate. Their main draw-

back is the need of a large amount of positioning data, collected during a su cient period of time, to

make them reliable [113].

Traces are obtained from characterization of urban spaces [114], or are collected by smart devices

[115].

Previous works have investigated mobility data mining to extract grammar models. The authors

of [116] use Probabilistic Context-Free Grammars (PCFG) to model network observations; they pro-

pose a new inference algorithm and a de nition for PCFGs, oriented toward mobility data. In [117],

FSAs were used to model mobility behaviors. Authors propose two approaches: in the rst, the al-

phabet is made up of the “status” of the user and the states of the automaton are the locations (e.g.,

at home, at work); in the second one, the role of locations and “status” are switched. Locations were

inferred through unsupervised learning algorithms,mining themost visited places; “status” categories

are extrapolated from temporal sequences of movements.

An approach based on grammar induction to analyze spatial trajectories was investigated in [118].

A grammar induction algorithm, calledmSEQUITUR, was proposed; it is able to obtain a grammar

rule set from a trajectory for motif generation. Moreover, the authors present the Trajectory Analys

and VIsualization System (STAVIS), a trajectory analytical system that derives trajectory signatures

and allows to extract relevant information from them, using a grammar inference algorithm.
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Figure 4.6: Areas corresponding to first bit of geohash

string.

Figure 4.7: Areas associated with the first two bits of a

geohash string.

4.2.2 A hierarchical encoding: Geohash

Geohash is an encoding system developed by Gustavo Niemeyer for geographical coordinates. It as-

signs a hash string to each (latitude, longitude) pair; originally, it was developed to provide a smart

and easy representation of URLs, but then it has been widely used to store spatial coordinates into

databases [119]. Geohash is based on a hierarchical spatial data structure that recursively subdivides

world into “buckets” of grid shape; unlike coordinate systems, it does not actually represents a point,

rather a bounding area in which the point is restricted.

The geohash algorithm partitions the space using a grid composed by 32 cells, arranged in 4 rows

and 8 columns; each cell can be recursively divided into 32 cells, providing a hierarchical structure that

corresponds to a recursive quadtree. Geohash representation marks each cell with an alphanumerical

character from its alphabet, made up of 32 symbols, i.e., {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, b, c, d, e, f, g, h, j,

k, m, n, p, q, r, s, t, u, v, w, x, y, z}. The alphabet symbols are associated to each cell adopting the

Z-order, allowing an easy computation of the next cell character by switching some bits.

In the geohash string, bit in even positions encode the longitude information, while those in odd

positions encode the latitude. For example, in the rst phase of the encoding, thewholeworld is parted

into two rectangle, according to the longitude, as showed in Figure 4.6.

The next bit is obtained through a longitudinal partition of the rectangles obtained by the previ-

ous step, as showed in Figure 4.7.

This process can be iterated until the desired spatial accuracy is obtained. The length of the binary
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string must be a multiple of 5 to allow its conversion to a sequence of symbols from geohash alpha-

bet. Indeed, each symbol is associated with a 5-bit code, thus, the binary string can be partitioned into

substring of 5 bits, that are replaced by corresponding symbols [120]. Table 4.1 shows the correspon-

dence between the binary string and its geohash

sqc2zgw counterpart. Clearly, every geohash string identi es a particular cell in the hierarchical repre-

sentation.

s q c 2 z g w
11000 10110 01011 00010 11111 01111 11100

Table 4.1: Geohash string and its binary representation

Therefore, the obtained representation is based on the principle of gradual degradation: the

longer the geohash string, the smaller the area. Table 4.2 shows the size of the area identi ed by a

geohash code with respect to its length. It is worth noting that extending a geohash string by a char-

acter decreases the area of the identi ed cell of a factor with respect to the original one.

Geohash length Covered Area

1 16.000.000
2 500.000
3 15.000
4 500
5 15
6 0.5
7 0.02

Table 4.2: Area covered by a cell with respect to the length of its geohash encoding string.

Inclusion property is a notable property of geohash encoding: it is always possible to add a character

to a geohash string, obtaining a new string that identi es a cell contained into the original one. For

example, the coordinates (38.120281, 13.357278) identify a point included inside the sqc2zg cell, but also

inside sqc2zgw or sqc2zgwk.
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Locality property is another property of geohash: strings with common pre x mark contiguous

cells. Thus, it is very simple to check if two cells are neighbors. The converse is not always true: two

cells could be next to each other even if they do not share a common pre x.

4.2.3 Mobility models as automata

In this thesis, it is claimed that mobility models can be successfully represented by languages, speci -

cally regular languages.

In the previous sections, the main elements needed for language inference have been outlined.

In this section, a description of mobility models as languages and of a method to infer them from

mobility data are provided.

In the proposed approach, data is provided asmovement tracks [108]:

(Movement track) Themovement track is the temporally ordered of spatial-temporal

position records captured by a positioning device during the whole lifespan of the user observation.

Each record contains a position and the instant of the capture. There are no two recordswith the same

instant value.

Movement tracks are the raw data collected from a positioning system monitoring user move-

ments. They have to be turned into trajectori [121] to be used, in order to lter out noise, and to

estimate other movement features, such as speed and direction. Paths are the true aim of the analysis:

(Path) A path is the portion of a trajectory between two relevant points in time or

space dimensions.

Paths reveal user behavior and highlight relevant places where the user spends most of his time.

Knowing these places is crucial in many applications, and they are fundamental in comparing habits

of several users or in recognizing anomalies or changes in their routines.

Paths have amultiscale nature: signi cant information can be extracted by observing data at dif-

ferent scales. For example, usual path of the user could be the route from home to the workplace,

88



Figure 4.8: From trajectories to a hierarchy of DFAs: given the DFA of the cell containing the sub-cell “u” (figure on the

left), a more detailedmodel can be built up inferring the DFA of the language “u” (figure on the right).

because it recurs almost every day; but it can be very di ferent in scale for di ferent users. Consider a

user whose workplace is in another city with respect to his home: his paths crosses a wide area, com-

pared to the same type of path in the case of workplace and home are in the same city; so, it compares

at di ferent scale of data in the two cases. Moreover, frequent paths of the same user can have di ferent

scales: a user can daily move across two cities to get to his workplace, but everyday he also moves, for

example, from his workplace to the place where he has lunch, that is probably close to his workplace.

Moreover, paths share the same recursive structure illustrated for human activities in the previous

chapters. Thus, a path can be decomposed into simpler paths, that are composed by even simpler

paths, and so on. Therefore, all the considerations about the analysis and representation of recursive

structures hold even in this scenario.

Trajectories are “geohashed”, turning each pair of coordinates into the correspondent geohash

string. So, trajectories are sequences of strings, whose alphabet is the set of the geohash symbols. En-

coded with this representation, trajectories can be analyzed at di ferent spatial scale: once the required

precision is xed, it su cient to recover the correspondent length of geohash string and truncate every

string of each trajectory at that length.

The usermobilitymodel is decomposed following his behavior related to every cell of geohash en-

coding: a regular language is learned for each cell of the geographical area crossed by user movements,

starting from the highest level of granularity. Then, a regular languages is inferred for each sector in

which each element of the grid can be decomposed, as showed in Figure 4.8. The process ends when
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the level of cells representing the required accuracy is reached.

Figure 4.9: Extractingmini trajectories from trajectories: the image on the left shows a trajectory in its geohash

encoding; each string (inside the orange rectangle) corresponds to a location. The image on the right shows how

subsequences with the same prefix (arranged in columns) originatemini trajectories: the fifth element of each strings is

concatenated to obtain amini trajectory (markedwith the red box).

Mini trajectori are a basic element of mobility models construction; they describe planar move-

ments that take place in each cell. Indeed, inside each cell, themobilitymodel is described by sequences

of contiguousmovements among sub-cells, producing a correspondent sequence of geohash symbols,

i.e., the sub-cell symbols. Mini trajectories can be obtained for each cell by considering all the contigu-

ous subsequences of strings inside each trajectory that share the pre x corresponding to the cell. For

each element of the subsequence, only the symbol of the sub-cell is considered, thus the subsequence

is turned into a string (see Figure 4.9); af er recovering all the strings related to the cell, the needed

information to infer a regular language is obtained.

Figure 4.10: Hierarchichal structure of DFAs: each transition can be substituted with the correspondent DFA,

obtaining an enhanced automaton.

The inference process provides a DFA that re ects the described structure. Once a DFA has been

learned for a particular cell of the geohash representation, the transition function represents user
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movements inside that cell: each transition stands for user moving to a particular sub-cell. The be-

havior of the user inside the sub-cell is described by the regular language corresponding to the symbol

of that cell. This representation allows a simple navigation between the di ferent spatial scales of the

model; indeed, to increase resolution and get a more detailed model, it is su cent a “hierarchical”

navigation through the pool of automata, substituting to each symbol the correspondent language,

i.e DFA, obtaining a more complex and detailed automaton (Figure 4.10); this is equivalent to con-

catenating a new symbol to the geohash string, and inspecting the movements of a new level of detail.

The new automaton, identi ed by the built pre x, encodes details about the movements in an area

increasingly smaller and detailed.

In the previous sections, it has been shown that a regular language can be inferred only with a

presentation from an informant; thus, to obtain the mobility models for a user, a set of examples of

his paths are not enough. The proposed approach considers the symmetric di ference between the

set of trajectories of other users and trajectories of current user as the negative sample set. This set

represents viable routes chosen by other users, which have not been traversed by the current user, so

it can be considered as negative sample for the language that represents mobility habits of the current

user.

Given the mini-trajectory sets of negative and positive route samples, the correspondent regular

language is inferred by the EDSM algorithm.

The whole inference process, from the set of trajectories to the nal pool of DFAs, is framed into

a system, made up of three independent modules:

• : it converts the ellipsoidal coordinate to geohash

strings. For every pre x of variable length from to , it stores a record in a database. For

each pre x (one for every cell crossed by at least a relevant number of trajectories), it computes

the set of mini-trajectories for all users. Thus, mini trajectories are searchable by user or cell.

• : it requests data to compute the mobility model of a user and executes

EDSM. At the end of the inference process, it returns the hierarchical pool of DFAs represent-
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ing the mobility model of the user.

• : it exploits some features of themodel, such as the ability to recog-

nize if a path belongs to a user, or to produce a numbers of synthetic paths generated through

a mobility model.

Each module was designed and implemented focusing mainly on e ciency and independence,

aiming at obtaing self-contained systems.

4.3 Experimental assessment of mobility model extraction

The proposed approach has been tested on the data provided by theGeolife dataset [122], collected at

Microsof Research Asia; the huge volume of data classi es it as big data source. It is a collection of

time-stamped points (latititude, longitude and altitude), monitoring spatial behaviors of users

for years, gathering spatial and temporal information about their movements. The majority of tra-

jectories are located in China, near Beijing; but there are also some trajectories from the USA and Eu-

rope. More than trajectories are contained the database, for a total amount of approximately

hours of tracked routes. Global Positioning System (GPS) logger and smartphones acted as

acquisition devices, providing a high density sampling rate ( seconds in time, and

meters in space) for more than % of the data. Di ferent kinds of movements were monitored, re-

lated to daily activities: going and coming back home from workplace, entertainment activities, such

as shopping or riding a bike or walking.

The assessment was conducted considering all the users in the dataset and all the trajectories. The

whole dataset was parted into training and test set, in order to assess the generalization ability of the

Inference Processor.

Two experiments were conducted to test the accuracy of the proposed approach, xing the ratio

between training and test set respectively at 80/20 and 60/40 for each user. The string length for

geohash encodingwas set to 7, corresponding to a precisionof 153m. Amobilitymodelwas inferred for
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the user from training data, and then its generalization ability was assessed in recognizing trajectories

from the test set.
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Figure 4.11: Accuracy at six different levels of granularity for four users (80% training, 20% test).
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Figure 4.12: Accuracy at six different levels of granularity for four users (60% training, 40% test).

Results for 4 representative users are reported in Figures 4.11, 4.12 and show that the proposed

approach provides a high rate of accuracy at all spatial scales, and its performances are not in uenced

by the resolution of the trajectories.

Figures 4.13, 4.14, 4.15 shows some examples of inferred DFAs; they demonstrate that mobility

models encoded through automata can be very simple to understand and capture the most relevant

characteristics of the data, despite its huge complexity.
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Figure 4.13: One of the DFA included in themobility model of user 6 (prefix lenght 2, 60% training, 40% test)
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Figure 4.14: One of the DFA included in themobility model of user 6 (prefix lenght 4, 60% training, 40% test)
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Figure 4.15: One of the DFA included in themobility model of user 6 (prefix lenght 6, 60% training, 40% test)
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In theory, theory and practice are the same. In practice,

they are not.

Albert Einstein

5
Conclusion

This thesis has described an approach to cope with the complexity of knowledge representation and

extraction in sensory data; this is a very challenging and complex task, due to the great amount of

available raw data and to its heterogeneity. Moreover, well-established approaches are not directly

suitable for this scenario, because knowledge discovery raises new challenges due to the huge complex-

ity hidden in data. One of the main issues is the di culty to introduce the right amount of a-priori

knowledge into the system; hence, algorithms can only be tuned through a set of parameters, barely

correlated with original data.

Hence it is claimed here that a structural approach to knowledge extraction and representation

is the key to enhance and improve the quality of the obtained models. Structural representations

can provide more human-understandable models, aiding the designer of the system in tuning and

improving the process of knowledge extraction, and obtaining more generalizable representations, as
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compared to classical approaches.

Three di ferent case studies, which implement this idea, havebeenpresented, eachone exploiting a

di ferent approach based on statistical learning, syntacticalmethods and formal languages respectively.

It has been shown that di ferent techniques can be successfully employed in order to recover the

structure hidden behind raw data, and that this kind of representation can be very e fective for man-

aging the issues related to sensory data.

Among all the implemented approaches, the third one, based on techniques belonging to Algo-

rithmic Learning Theory, has demonstrated a clear advantage with respect to the others, especially

evident when considering the produced models. Algorithms manipulating formal languages, by be-

ing intrinsically recursive, can give a more natural representation of multi-scale models, which are

more suitable for the analysis of sensory data, as they allow to ease the computational burden that

characterizes the huge volume of data involved.

Moreover, such tools as Grammatical Inference pave the way to the realization of a new class of

promising systems, able to alleviate the task of designing reliable and e cient automatic systems for

knowledge extraction.
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