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Abstract

In the last few years, Wireless Sensor Networks (WSNs) have been extensively
used as a pervasive sensing module of Ambient Intelligence (AmI) systems in sev-
eral application fields, thanks to their versatility and ability to monitor diverse
environmental quantities. Although wireless sensor nodes are able to perform on-
board computations and to share the sensed data, they are limited by the scarcity
of energy resources which heavily influences the network lifetime; moreover, the
design phase of a WSN requires testing the application scalability prior to actual
deployment. In this regard, this dissertation focuses on data prediction to ad-
dress such crucial tasks as prolonging the network lifetime and testing the WSN
scalability. Nevertheless, the matter is particularly challenging as the real world
measurements are influenced by unpredictable events that affect the sensor read-
ings. To this aim, fault detection techniques help to identify corrupt measurements
and to discard them before they are actually transmitted within the network, so
they may be profitably used to improve the precision of the prediction models.

This dissertation describes the design of two software modules which address
fault detection and data prediction and may be combined in a single software sys-
tem for WSNs. The fault detection submodule classifies the sensed measurements
as “corrupt” or “regular” by means of Bayesian Inference. The prediction sub-
module builds models for the monitored quantities and is also able to generalize
them to unknown environments populated by virtual sensor nodes so it allows to
test the scalability of the application for networks of different sizes. Prediction
also allows sensor nodes to reduce their energy consumption as much as possible
by fine tuning their sampling rate based on the accuracy of the predictors.

Experimental results show the capabilities of the proposed system to detect
faults and to build reliable prediction models for some of the most common physical
quantities for WSNs, namely light exposure, temperature and humidity.
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Chapter 1

Introduction

The research field on Wireless Sensor Networks (WSNs) has been very active in
the last few years and currently deals with a lot of issues related to the resource-
constrained nature of their building blocks, i.e. the wireless sensor nodes.

The aim of this chapter is to introduce the reader to the concept of WSN and
the fields it is commonly applied. Later, the most common issues the research has
focused in this years will be presented as well as why they are important when de-
signing a WSN. Finally, the chapter presents the logical architecture of the software
system object of this dissertation, that focuses on some specific and challenging
aspects of the WSNs and a high-level description of its inner components.

1.1 Motivations and Goals
The recent advances in electronics have triggered the use of cheap and small sens-
ing devices, the so-called sensor nodes, able to sense many physical quantities
as temperature, humidity, magnetic fields, pressure, light exposure, movements,
mechanical stress levels and so on, and to perform small on-board computations.

Wireless Sensor Networks (WSNs) are made up of many sensor nodes, and
are potentially able to provide computational capabilities comparable to the tra-
ditional wired networks. Thanks to their ability to sense the surrounding envi-
ronment, perform distributed computations and wirelessly communicate the mea-
surements to mass storage devices, they were massively used in many fields of
the ICT like military, medical, ambient intelligence (AmI), security and so on;
moreover, the presence of consolidated and standardized communication protocols
as IEEE 802.15.4 [1], Wireless HART [2] and Zigbee [3] and a reprogrammable
and lightweight operating system as TinyOS [4] made it possible to think to the
WSNs as a standard de facto for all that ICT applications requiring a sensing
infrastructure to monitor the external enviroment [5, 6].
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Despite their advantages, WSNs present some issues that need to be careful
addressed at design time before the actual deployment of the network. The works
[7, 8, 9] have identified the following as the most important design factors that
affect the performance of a WSN:

• Fault Tolerance: the network must be able to sustain its functionalities in
presence of node failures and possibly to identify which failures have oc-
curred.

• Energy consumption: sensor nodes are typically equipped with limited power
supplies (1.5V batteries) that may not be replaced easily. Network lifetime
may dramatically worsen if the issue is not carefully considered during the
design phase.

• Computational constraints: the Central Processing Unit (CPU) of a sensor
node has very limited computational resources. Distributed computation
should be massively used to exploit as best as possible the computational
capabilities of the WSN.

• Scalability: the performance of the application running over the WSN may
drop as the size of the network increases and the issue should be clearly
checked prior the deployment phase.

• Deployment costs: it is mainly affected by the nature of the environment
over the network will be used.

In the last decade the approach used for assessing the performance of the WSN
considered the development of a full functional prototype, and to actually deploy
it into the environment. This is for instance the solution adopted for iDorm [10], a
prototype for a student dormitory that allows the simulation of different everyday
life activities. However, this approach is no more viable due to its inner deployment
costs that may be prohibitive in complex environments, such as entire buildings;
moreover, it does not allow to test application scalability, nor to evaluate the
application behavior across different configurations.

An alternative approach consisted in simulating the whole control loop, from
the physical to the application layer of the sensor nodes. The Intelligent Home [11],
for instance, is a simulated testbed intended as a support for the development of
multi-agent systems scattered over a WSN. The drawback of such an approach
is that the whole application logic is in general not easily reproducible, and in
particular it is difficult to capture the runtime overall behavior of the system.
Nevertheless, early detection of design errors, and a fine tuning of critical factors,
such as the position and number of sensor nodes in the various areas of the test
site, may avoid subsequent, presumably expensive, re-deployment.
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Currently several simulation frameworks exist for WSNs which provide con-
trolled, and reproducible environments for tests, but they are not guaranteed to
deliver fully reliable results, especially when the application logic is heavily sensi-
tive to the actual sensor readings. In order to minimize the difficulties in porting
simulated sensor networks to actually deployed systems, it may be advisable to use
“real code” simulation tools, that run identical code in simulation and deployment,
and this was the innovation proposed by TOSSIM [12], the TinyOS simulator.

The current state of the art solutions mix the benefits provided by a full-
functional prototype to those of a network simulator. In particular, hybrid sim-
ulators have been profitably proposed as a way to generate reliable, and easily
scalable applications by the interaction of virtual sensor nodes with real ones. The
real nodes are used to anchor the network to the reality and to capture the dy-
namics of the environment they will be deployed; on the other hand, the use of
simulated nodes allows to limit the deployment to just a minimal set of real nodes,
which may serve as realistic data model generators to steer the behavior of their
virtual counterpart and allow to evaluate some issues like fault tolerance, network
lifetime, scalability and so on.

Although the current implementations of hybrid simulators are able to reliably
represent many aspects of a sensor network, e.g. physics of transmissions, timed
execution of the real code and so on, they are are not able to provide meaningful
data for a given physical quantity and this fact limits the ability for the designers to
evaluate the performance of the WSN. In order to implement an effective hybrid
simulator, it may be advisable to develop models that allow to represent and
predict data; as shown in the following chapters, such an ability allows to test the
behavior of the WSN prior to its deployment as well as to virtually extend the
coverage of the network after the deployment. Moreover predicting data may be
used as a way to prolong the network lifetime in that sensor nodes will be required
to sense the environment less frequently thus saving the energy for other tasks.

This intuition is motivated by the work of [7] that states that the main sources
of energy consumption in wireless sensor nodes are the sensing, processing, and
communication components; also the work [13] has shown that the transceiver
represents the major drain, especially if compared to the CPU, which is the less
energy-hungry component of the sensor node. The conclusion made by the au-
thors is that energy efficiency may be achieved by exploiting the inherent spatial
and temporal redundancy in data. In particular, many physical quantities as tem-
perature, humidity, light exposure, pressure and so on, typically exhibit smooth
variations, and change slowly over time [14] so predictive models may be used to
generate realistic measurements from the environment and to reduce the need of
sensing for the sensor nodes.

The problem of generating reliable prediction models is also related, to some
extent, to the fault tolerance issues. Faults constitute a serious threat for the
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application running over the WSN as they directly affect the Quality of Service
(QoS) of the sensor network and cannot be neglected in the design phase. The
faults occurring over a WSN influence different levels, namely the Network, Node,
and Sensor one [15]. Network faults include loss of connectivity, routing loops,
congestion and affect the timing of the messages exchaged among the node. Node
faults are malfunctions of the main components of the sensor node, i.e. radio,
CPU, battery and memory that lead to unexpected resettings, meaningless values
of sensed data and poor quality of transmissions. Sensor faults only affect the
quality of the data and are tipically caused by the ageing of the sensor or by the
surrounding environment.

In the case of the traditional networks remote monitoring techniques may be
a valid solution to discover faults and isolate malfunctioning nodes; however sen-
sor nodes may be deployed in hostile environments, and may be potentially un-
reacheable by humans, making the approach not viable for the WSNs. Fault
tolerance and fault detection represent a challenge for the WSN researcher and
requires the adoption of sophisticated artificial intelligence techniques [16, 17, 18]
that need to be added to the capabilities of the network. Building reliable pre-
diction models only requires to focus on the sensor level faults which occur when
gathered data does not provide a reliable representation of the monitored physical
phenomenon; in this case, transmission and processing of these data clearly con-
stitute a waste of energy and time and the overall ability of predicting data gets
worse. On the contrary, an early detection of sensor faults reduces the amount of
data processed by the higher-level applications other than providing high quality
data to represent the related phenomenon.

This dissertation addresses some aspects of the fault tolerance (using fault
detection), energy consumption and scalability (using prediction models) and pro-
poses interesting solutions that help WSN designers to mitigate their related nega-
tive effects. The core of the dissertation consists into two software modules, namely
Adaptive Fault Detection (AFD) and Sensory Data Prediction (SDP), that may be
combined in a single software system FDDP (Fault Detection and Data Prediction)
addressing fault detection and data prediction as shown in Figure 1.1.

The AFD module accepts as input the raw data sensed by the network nodes,
exploits the inherent spatial and temporal relationships among readings to detect
faults and produces as output the filtered data. Sensor nodes running the module
may collaborate or not with their neighboring nodes to discover the erroneous data
they sensed: if a node opts for cooperation, it is informed about the measurements
in its proximity, thus widening the scope of the monitored phenomena; intuitively,
such behavior should increase the chances of correct classification of the sensed
measurements. On the contrary sensor nodes may choose to not send/receive
readings from their neighborhood and relying only on the temporal relationships
of their own sensed data to perform classification; for instance, such behavior
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Figure 1.1: Components diagram of FDDP.

may occur when the nodes need to limit their computational resources, or when
they discover that communications are not working properly (e.g. in the case
of bandwidth saturation). Since sensor networks applications may require to be
very reactive to the changes of the environment, also the module is made adaptive
with respect to its inner response time and changes the topology of the network
according to some user constraints. The detection problem is solved by making use
of Bayesian Networks inference whose complexity is spread over the wireless sensor
nodes. The distributed architecture makes the system highly reactive to changes in
the monitored phenomena and allows to reduce the computational effort required
to the single node. The Bayesian network structure is also adapted at runtime
to reflect the choice of cooperating or not performed by sensor nodes; the more
complex the structure, the higher the classification accuracy of the WSN; the
simpler the structure, the lower the response time.

The SDP module accepts as input the filtered data and produces as output
a set of prediction models that can be used both in the design or the running
phase of the WSN for the purposes we mentioned above. The module exploits
the temporal and spatial redundancy of the measured physical quantities and is
designed to avoid as much as possible the need of communications and sensing for
the sensor nodes, relaying the task of building prediction models to a central base
station. Whenever the model appears to be reliable with respect to the sensed
data, then the sampling rate of sensor nodes is lowered accordingly. The module
also is able to generalize the prediction models built for a specific site and to port
them to other target sites: this capability allows the WSN to increase its coverage
without decreasing the precision of the prediction models and to avoid the need
for the designer to actually deploy the real nodes over the target sites.
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The validity of the system was assessed in many experiments which have shown
that the prediction models effectively lower the number of required sensory readings
as well as the amount of required transmissions without negatively affecting the
reliability of the data; moreover, the effectiveness of the system to generalize the
generated prediction models and to port them to other unknown sites was checked
in a real scenario. Finally, the capabilities of the fault detection module were
assessed in presence of a substantial amount of corrupt data and the results have
shown its ability to identify faults by keeping as low as possible the required
computational effort.

1.2 Contributions
The main contributions of the work presented in this dissertation are:

• The design of a novel method for detecting sensor faults that exploits the
inherent temporal and spatial redundancy of the monitored physical phe-
nomena. The algorithm works either in a centralized or distributed fashion
and has an acceptable time and message complexity that makes it suitable
for Wireless Sensor Networks.

• The implementation of the AFD module for detecting faulty data that is
flexible to the needs of sensor nodes. Sensor nodes can choose how much
time should be committed to the detection task; the more the time required
by the algorithm the more is the accuracy of the detection. On the other
hand, lowering the response time allows the network to be more reactive to
the environment’s changes. The algorithm is able to find the best trade-off
between response time and detection accuracy also in the presence of external
constraints imposed by the users.

• The design of mathematical models for representing and predicting the trend
of the phenomena observed by a Wireless Sensor Network that allow to check
the scalability of the network as well as to increase its coverage by adding
virtual sensor nodes.

• The design and development of a novel scheme for finely tuning the sampling
rate of sensor nodes based on the accuracy of the predicted data. This scheme
allows to lower the energy consumption as the number of samples needed to
reliably represent the monitored physical quantity is reduced if compared to
a fixed sampling rate approach.

• The implementation of SDP, a software module that may be used jointly
to the existing network simulators to check the scalability of the WSN and
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to simulate networks where real and virtual nodes coexist, by the means of
prediction models. It also offers support for reducing the energy consumption
of the real sensor nodes using predicted data instead of the sensed one.

• The assessment of the results produced by the combination of AFD and SDP
(i.e the FDDP system) for different scenarios where real and simulated data
coexist.

1.3 Dissertation Outline
The remainder of the dissertation is arranged as follows: Chapter 2 describes the
characteristics of the real data gathered by sensor nodes and reviews the current
state of the art of fault detection methods and how data prediction may be used
to lower energy consumption and to check the scalability of WSN applications.

Chapter 3 presents the implementation of AFD, the fault detection module
which makes use of the inherent spatio-temporal correlations to recognize and
filter out erroneous data.

Chapter 4 presents a general mathematical model for representing and pre-
dicting the physical quantities sensed by sensor nodes as well as a scheme that
finely tunes the sampling rate of the nodes based on the goodness of the predicted
data. Finally, the chapter proposes the implementation of the SDP module, able
to simultaneously address scalability and minimization of the energy consumption.

Chapter 5 presents the experimental results achieved by using the software
modules with real and simulated data. The aim of the chapter is to show that
the prediction software module is able to port the prediction models generated for
a reference site to target sites where few actual sensor nodes are deployed. The
chapter also evaluates the performance of the fault detection module and how it
allows to keep limited the prediction error in presence of a substantial amount of
faults.

1.4 Publications
Parts of the work in this thesis have been published in several referred conference
proceedings and journals:

• Alessandra De Paola, Giuseppe Lo Re, Fabrizio Milazzo and Marco Or-
tolani. Adaptable data models for scalable Ambient Intelligence scenarios.
International Conference On Information Networking 2011 (ICOIN 2011),
Kuala-Lumpur, Malaysia, 2011
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• Alessandra De Paola, Giuseppe Lo Re, Fabrizio Milazzo and Marco Ortolani.
Predictive models for energy saving in Wireless Sensor Networks. IEEE
International Conference Symposium on a World of Wireless, Mobile and
Multimedia Networks 2011 (WoWMoM 2011), Lucca, Italy, 2011.

• Giuseppe Lo Re, Fabrizio Milazzo and Marco Ortolani. Secure random num-
ber generation in wireless sensor networks. 4th International Conference on
Security of information and Networks 2011 (SIN 2011), Sydney, Australia,
2011.

• Giuseppe Lo Re, Fabrizio Milazzo and Marco Ortolani. A distributed Bayesian
approach to fault detection in sensor networks. IEEE Global Communica-
tions Conference 2012 (GLOBECOM 2012), Anaheim, California, 2012.

• Alessandra De Paola, Giuseppe Lo Re, Fabrizio Milazzo and Marco Ortolani.
QoS-Aware Fault Detection in Wireless Sensor Networks. International Jour-
nal of Distributed Sensor Networks, Volume 2013.



Chapter 2

Related Works

The purpose of this chapter is to review the current state of the art approaches
dealing with the detection of faults and data prediction in wireless sensor networks.

First of all, it will be defined the concept of data fault and revised the main
causes of corruption in WSNs as well as some common solutions to the issue. Later,
the benefits of building prediction models in WSNs will be considered, and in par-
ticular why and how they may be used to help the WSN designer/users to address
scalability and to reduce energy consumption. Finally, some implementations of
prediction models in WSNs will be described highlighting their related pros and
cons.

2.1 Addressing fault detection
The detection of data faults is a widely studied topic in WSN research but its
correct definition slightly differs from that generally adopted in other fields. Ac-
cording to the classical point of view in statistics and data mining, a data fault
corresponds to a data pattern not complying with a well defined normal behavior
[19]. This definition however does not apply to WSNs, because in such context
the network is unaware of the ground truth, thus the data fault definition can
be modified as a “data pattern not conforming to the expected behavior of the
monitored quantity”.

The WSN literature extends such a definition, by providing a complete taxon-
omy of data faults occurring in wireless sensor nodes as well as their root causes.
The main causes that force a sensor node to produce a corrupt measurement could
be characterized according to the system-centric view of a fault as done in [20]:

• calibration faults: the ADC converter has a specific input-output curve that,
due to sensor age, changes over time. As a result the sensed readings show
a derivative of the phenomen different from the actual one;
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• connection/hardware faults: example of such fault is a short circuit caused
by a spill over the mainboard;

• low battery: this typically causes noisy and stuck-at (a constant value) read-
ings.

The authors of the same work also propose a failure model for classifying data
faults into three different categories that will be used as reference in the dissertation
(Figure 2.1):

• stuck-at: a serie of values with zero variations (a);

• outlier : a measurement that significantly deviates from other sensor readings
(b);

• noise: a series of data with a variance greater than expected (c).

Figure 2.1: The main types of data faults in WSNs.

The current literature has developed many approaches to detect data faults
classifying them with respect to the architectural and methodological viewpoint
[15].

The architectural viewpoint distinguishes between centralized and distributed
approaches. The work [21] considers a centralized multi-sensor fusion system that
analyzes the impact of n sensors on the consistency of a non linear system of n+ 1
equations. The system is solved n times in a leave-one-out fashion by discarding
the information gathered by one sensor at a time; the sensors that mainly affect
the stability of the found solutions are chosen as the most discrepant ones and
labeled as faulty. Also the work [22] implements a centralized technique that finds
the subset φ of the network sensors maximizing the likelihood p(D|φ, ε) of having a
dataset of readings D given φ and a background knowledge ε. The main drawback
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of such approaches is related to the NP-Hard computational complexity so the
classification rates are limited by the resources at the base station.

The work [23] implements a distributed technique where each node is labeled as
corrupt or not based on a consensus decision obtained by comparing its readings
with the neighboring ones. If a node is recognized to be faulty it may discard
its readings before transmitting them to the base station thus saving energy for
the non-faulty readings; the work [24] is based on a similar process where the
network is clusterized and the nodes of each cluster label the faulty nodes using
consensus. The classification accuracy of such approaches is usually lower than
the centralized ones; nevertheless, the fault detection occurs earlier with respect
to centralized approaches, since it is not necessary to wait for the complete data
transmission toward the base station.

As regards the methodological point of view, it is possible to distinguish be-
tween Threshold based and Classification based approaches.

The approaches of the former class use thresholds to perform fault detection. As
an example, in the work [25] the network is initially clustered and for each cluster,
based on the readings gathered, a certain number of statistics are computed; in a
subsequent phase, the gateway node computes the so-called Inter-Cluster-Distance
(ICD), the average AV G(ICD) and the standard deviation STD(ICD), for all
of the underlying clusters. Finally, any cluster is labeled as faulty if its ICD is
out of the range AV G(ICD) ± STD(ICD). Such approaches are generally not
very expensive in terms of computational and time resources, but the classification
accuracy is highly dependent on the chosen threshold values, thus the performance
are quite unpredictable unless an extensive empirical tuning is performed in order
to find the optimal threshold values.

The latter class avoids the use of thresholds, thus no human intervention is
required to correctly tune the classifier. In particular Bayesian Networks and
Neural Networks approaches belong to this category; in both cases, during an
off-line learning phase, a model is automatically learnt from raw data, while an
on-line algorithm exploits the learnt model in order to perform fault detection.
The work [26] classifies the faults using Markov Chains (Bayesian Networks): in
a first step the likelihood L of the last d readings r(t) from time t − d + 1 to t is
computed; then a new reading r(t + 1) is classified as faulty if the new likelihood
L′ is less than a lower bound L computed during the learning phase. In the work
[27] a Neural Network, based on Radial Basis Functions (RBF), is trained only
using normal patterns of readings. When a new reading is supplied to the Neural
Network, its output (ranging from 0 to 1) expresses the certainty that the reading is
non-faulty; for a given set of N readings, the n istances with the minimum degree
of certainty are labeled as faulty. The main drawback of such methods is their
computational and time complexity but their classification accuracy is predictable
and computable after the learning phase.
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The software module implementing fault detection discussed in this disserta-
tion, i.e. Adaptive Fault Detection (AFD), may be run either in a centralized or
distributed fashion (the choice is left to the WSN designer) and uses a classification
method based on Bayesian Networks. The centralized implementation does not
pose attention to energy consumption or response time issues as the computation
is done at the base station; its main benefit is a very high detection rate that is
desirable in all those WSN applications not needing real-time computations. The
distributed implementation has a lower detection rate but, at the same time, needs
a lower response time and exploits cooperation among sensor nodes to spread the
complexity of the classification problem over the whole network. As a consequence,
in scenarios where the focus is on the response time, it is convenient to adopt such
an approach to allow sensor nodes to be more reactive and to minimize the effort
required by the detection algorithm, even if the classification accuracy may be low-
ered with respect to the centralized approach. On the contrary, in noisy scenarios,
or when achieving a high classification accuracy is very important, sensor nodes
relay on the computation done at the base station that will require a high response
time but will be very precise in terms of detection accuracy.

An interesting feature of the distributed implementation of AFD is related to
the possibility for the WSN designer to impose explicit constraints either over the
response time or the classification accuracy; if no constraints are set, the algorithm
will try simultaneously to maximize detection accuracy while minimizing the re-
sponse time. The fault detection algorithm was formulated as a multi-objective
optimization problem and, in particular the Pareto Optimization [28] technique
was chosen in order to deal with different and typically contrasting objective func-
tions.

Pareto optimization is versatile and currently used for a lot of applications in
the field of WSN. The authors of [29] define a set of metrics for evaluating the
network performance (at design time) with respect to reliability, lifetime and cov-
erage; the experimental evaluation shows that the set of all possible solutions can
be easily clustered and one of the identified cluster is Pareto optimal with respect
to the considered qualitative dimensions. The authors of [30] propose the adop-
tion of Pareto optimization to drive the clustering of network nodes minimizing
the number of subcarriers allocated for each cluster and maximizing the system
thoughput. The algorithm proposed in [31] has the goal of supporting WSN de-
signer to find the optimal node placement; it is based on a multi-objective genetic
algorithm, exploiting Pareto optimization, and it aims to find a trade-off between
the transmission coverage and the number of deployed nodes. Finally, the authors
of [32] cope with a multi-objective problem in an heterogeneous sensor network,
and in that case the goal is to find the trade-off between the number of active sen-
sor nodes that monitor a certain physical quantity and the overall network energy
consumption.
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2.2 Addressing Data Prediction
The correlation properties of the quantities monitored by a WSN make it possible
to predict data at different time scales and with different degrees of precision.
The analysis of the current state of the art in WSNs led us to conclude that
data prediction can be effectively used to address many of the design issues cited
in Chapter 1 and in particular to reduce energy consumption and to test/improve
scalability of the applications running over the network. The following two sections
will explain why data prediction is useful in the context of energy consumption and
scalability; also a brief review on the practical implementations of data prediction
in WSNs will be provided.

2.2.1 Data prediction for reducing energy consumption
The work [7] has identified the sensing, processing, and communication compo-
nents as the main sources of energy consumption for a sensor node; the study [13]
moreover has demonstrated that the most part of the energy is drained by the ra-
dio transceiver while the CPU is the less energy-hungry component and the results
are shown in Table 2.1 and Table 2.2. The former table shows the drain of current
for the devices running over a Mica2 sensor node: a great amount of current is
drained by the radio component irrespective of its two working status (receiving,
transmitting). The CPU also drains a comparable value of current when it is in
the active status; nevertheless, for the rest of the time it works at four different
sleep levels that gain very few current if compared to the radio component.

Table 2.2 provides an empirical proof that the energy consumption (milli-
Joules) due to the radio is predominant for all that WSN applications needing
communication. The table shows the data for seven NesC applications: the first
and second application do not require communication so their energy consumption
is due only to the CPU component. The remaining applications require communi-
cations and, as highlighted by the data, the energy consumption due to the radio
is at least three times greater than that of the CPU.

Based on this information, in order to minimize the energy consumption, it may
be advisable an approach to the design of WSN applications that trades commu-
nications for the computation. Many approaches in literature exploited this idea
and as described in [33], they may be classified into three main categories: duty
cycling, mobility-based, and data-driven based. Duty cycling approaches specifi-
cally target the optimization of the networking subsystem, mainly focusing on the
implementation of efficient algorithms for controlling the sleep/wakeup schedule
of the radio transceiver; such approaches are very effective for reducing the overall
energy consumption but are not typically concerned with the data sensed by nodes.
The second category is represented by mobility-based approaches, which allow for



2. Related Works 14

Table 2.1: Drain of current for the components of a Mica2 sensor node.

Device Component/State Current

CPU

Active 7.6mA
Idle 3.3mA

Power Down 116µA
Power Save 124µA
Standby 237µA

Led Each one 2.2mA
Sensor Board Overall 0.7mA

Radio

Core 60µA
Bias 1.38 mA
Rx 9.6 mA

Tx (-18dBm) 8.8 mA
Tx (-13dBm) 9.8 mA
Tx (-10dBm) 10.4 mA
Tx (-6dBm) 11.3 mA
Tx (-2dBm) 15.6 mA
Tx (0dBm) 17 mA
Tx (3dBm) 20.2 mA
Tx (4dBm) 22.5 mA
Tx (5dBm) 26.9 mA

Table 2.2: Energy consumption for seven different applications for WSN.

Application Consumption in mJ
CPU Radio Leds Sensor board

active idle rx tx
Blink 0.37 601.6 0 0 196.2 -

CntToLeds 0.77 601.5 0 0 590.6 -
CntToLedsAndRfm 93 560.7 1651 130 589.6 -

CntToRfm 92.7 560.8 1651 130 0 -
RfmToLeds 82.9 565.2 1727 0.6 589.0 -
SenseToLeds 1.85 601 0 0 0 126
SenseToRfm 4.39 560.3 1651 130 0 126
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the implementation of higher-level techniques, such as load balancing, data muling,
or energy harvesting that however impose strict requirements on the needed hard-
ware and are difficult to be implemented given the resource-constrained nature of
the nodes. Finally, data-driven approaches are more tightly bound to the intrinsic
nature of sensed data and often rely on the predictability of the physical quantities
monitored, which are thus reliably represented through mathematical models. The
main idea is to share a parametric mathematical model between sensor nodes and
the base station from which drawing readings instead of sensing the external en-
vironment thus removing the need for the nodes to communicate their readings to
the base station; whenever the shared models are no longer up-to-date, the model
is recomputed by means of fresh readings and its parameters retransmitted back
to the base station.

The SDP software module has been developed based on a data-driven approach
but, differently from the other solutions proposed in the literature, it completely
shifts the computation of the prediction models toward the base station. The
sampling period of the sensor nodes is set based on the accuracy of the models
while the base station draws samples from them instead of waiting for the fresh
readings; the overall number of communications will be lowered resulting in an
improvement for the network lifetime.

2.2.2 Data prediction for improving scalability
The main problem related to the design of a WSN is the unavailability of models
for analyzing its behavior before the actual deployment. As discussed in Chapter 1
the issue may be addressed by adopting a totally “real” approach where, during a
pre-deployment stage, the performance of a full functional prototype are evaluated
to study the effectiveness of the WSN in the monitoring field: such solution is no
more adopted as it involves high costs and does not allow to test scalability nor to
test the behavior of the WSN for different environmental configurations. On the
contrary a totally “virtual” approach would rise different issues, especially when
the application behavior is heavily dependent on the actual sensor readings. In the
last few years, the convergency toward solutions that fuse the benefits of the real
(reliability of the results) and virtual (low costs for the deployment) approaches
has produced the concept of the hybrid simulation.

According to [34] a hybrid simulator must be able, at least, to provide the
following three features:

• Fidelity: The real world is represented through using mathematical models
that simulate the layers of the WSN.

• Scalability: The simulator runs code emulation over the network nodes and
it can be used to gather information about throughput, response time and
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other QoS metrics in order to evaluate the scalability of the application for
different network sizes.

• Heterogeneity: The simulator allows to mix sensor nodes with different hard-
ware capabilities in terms of computational, energy and memory resources.

Currently, many network simulators matching the above requirements have
been profitably used to ease the work of the WSN designer. The NS2 simulator [35]
is a general purpose network simulator that implements several protocols (from the
physical to the network layer) developed in C++. New features can be easily added
given its modularity; in particular, models specifically designed for the WSNs may
be included to improve the realism of simulations. The main drawback is the
lack of support for native sensor code emulation, and in particular it lacks of the
possibility to emulate NesC programs (the programming language of sensor nodes).
OMNET++ [36] is a modular discrete event simulator implemented also in C++
that provides a GUI for virtual deployment of sensor nodes on the monitoring
field. Finally, TOSSIM [12] is a simulator specifically developed for WSNs: its
main advantage is the support for TinyOS code emulation and for different types
of sensor node hardware; also a very precise radio model is provided. As a possible
drawback, it is not able to provide an accurate model for simulating the network
energy consumption.

Although the current state of the art simulators are able to produce accurate
models for the radio channels as well as for the node’s system, they do not provide
mathematical models for realistically simulating the environmental phenomena
surrounding the network. As a consequence, the ability of the designers for testing
the scalability of the WSN application is very limited. In this regard, the SDP
software module allows simulated sensor nodes to generate reliable readings based
on the information provided by few actual nodes and can be used for two main
purposes:

• Checking the application scalability before the deployment of the WSN by
combining it with a hybrid simulator;

• Improving the application scalability after the deployment, by simulating
larger networks with many virtual nodes that coexist with the real ones.

2.2.3 Existing solutions for data prediction in WSNs
The solutions proposed to solve data prediction in WSNs typically implement a
probabilistic or a statistical approach [33].

Probabilistic approaches estimate a probability distribution function (PDF)
based on the readings gathered for the observed phenomenon and then draw pre-
dictions using some predetermined sampling method. As an example, the work [37]
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is based on Kalman Filters [38] with a user-specified accuracy, has a low computa-
tional cost but it is not suitable for non-linear physical phenomena. The authors
of the work [39] propose to represent the missing or future sensory data r(t) as a
set of probabilistic distributions centered over an average valueM(t) and bounded
by a pair of values (L(t), U(t)); the great advantage of this work is that can signifi-
cantly reduce the communication burden in the sensor network as the base station
draws samples from the PDF rather than waiting for the actual readings from the
network.

Statistical approaches exploit the correlation properties of the physical mea-
surements to forecast data. The authors of [40] propose a method that combines
the information gathered by close nodes in order to build predictive models for re-
ducing transmissions over the network. In their system, nearby nodes are grouped
into clusters, and it is assumed that the cluster head acts as a representative for
all nodes within its group. The intrinsic spatial correlation of data allows some of
the nodes to go into a sleep state, while the cluster head keeps on sensing; the role
of representative is routinely taken up by all nodes within the group. During its
turn, each cluster head also computes a predictive model for data, which will be
shared within its cluster, and used instead of actual sensing as long as it is deemed
reliable. Such technique results in an overall reduction of the required transmis-
sions. In [41], an autoregressive model is built using sensor readings. Initially,
readings are collected until a buffer is filled; successively, each node computes a
model for the sensed data and transmits only the model parameters back to the
base station, thus effectively implementing a compression of data. The model is
constantly checked for reliability against new readings; if a sufficiently large num-
ber of readings is recognized to fall behind a tolerance threshold within a given
time window, the model is invalidated and recomputed by filling the buffer with
fresh readings. However, if the readings are recognized as outliers, they are simply
discarded, and the model will still be valid. The authors of [42] suggest to avoid
the exchange of models through the network, by computing two separate predic-
tors on the source and the sink node. Synchronization of such models is obtained
by a minimal information exchange, consisting in the set of readings not satisfying
a user-defined threshold, that signals the unreliability of the model computed at
the source.

The SDP module implements a statistical approach as it is more suitable to ex-
ploit spatio-temporal relationships among the measurements. Sensor nodes are not
required to build a local prediction model by delegating the whole computational
burden to the base station (BS). They are just required to sense the environmen-
tal phenomena with a sampling rate depending on the reliability of the predictor
and to communicate the readings to the BS. As a result the overall number of
transmissions is reduced as well as the necessary computations; reliability of the
computed model is checked whenever new data are received by the BS, which sets
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the sampling rate of the source nodes accordingly (by decreasing it, if the model
is reliable, and increasing it, otherwise). SDP also provides a practical solution to
the problem of testing/improving the network scalability and this is obtained by
means of prediction models that may be used either in the pre-deployment phase
(testing) as well as after the deployment phase (improving).



Chapter 3

Adaptive Fault Detection

This chapter presents the software module Adaptive Fault Detection (AFD) devel-
oped to detect faults in the data gathered by the WSN nodes making use of the
Bayesian Inference.

AFD implements the failure model depicted in Section 2.1 and shown in Figure
2.1. It exploits the idea that data is usually highly correlated in the space and
time dimensions: stuck-at fault may be considered as a temporal anomaly and is
usually detected by means of temporal series of data gathered by a single node;
the noise or outlier faults instead mandatorily requires the comparison of a single
sensory measurement with the data gathered by other nodes and they could be
thought as spatial anomalies.

The module may be run either in a centralized or distributed fashion. In the
case the centralized implementation is chosen (as an example clustered WSNs with
the cluster head acting as the base station), sensor nodes are only required to send
sensory readings to the base station that collects and labels them as corrupt or not.
The only objective of the algorithm will be maximizing the correct classification
rate.

If the algorithm is run using a distributed implementation, then the additional
goal of minimizing the response time is taken into consideration as the overlayWSN
application may pose strict real-time requirements. Sensor nodes are left free to
choose if cooperate or not with their surrounding nodes. When the cooperation
is chosen, the algorithm shows high classification rate and a high response time.
Sensor nodes may also reduce the amount of cooperation, thus decreasing the
response time but also decreasing the classification rate.

Chapter 5 will show that AFD achieves good classification performance if net-
work nodes behave cooperatively (i.e. when they do exchange information on their
measurements) and also achieves acceptable classification performance when sen-
sor nodes behave non-cooperatively. The two constrasting goals of minimizing
the response time and maximizing classification rate are fused through using the
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so-called Pareto Optimization.

3.1 Mathematical model to discover data faults
This section describes the mathematical model and the algorithm developed for
detecting faults in the data sensed by WSN nodes. For simplicity’s sake the pre-
sentation will refer to a distributed implementation as the centralized one may
be thought as a particular case where all the sensor nodes collaborate with each
other.

Let us assume that a number of nodes deployed within the sensor field obtains
readings about environmental quantities, such as temperature, humidity, or light
exposure, and need to check if such readings are corrupt or not. Sensor nodes may
try to classify their readings without communicating with each other by only using
local knowledge (such as past readings, predictive models and so on); however they
could also exchange sensed measurements in order to obtain additional valuable
information about the physical quantity, thus increasing the probability that their
own measurements are correctly classified.

The sensor field is assumed to cover a relatively narrow area so that the mea-
surements sensed by different sensor nodes are likely to be correlated; in other
terms, the variations due to the nature of the sensed physical quantity are rela-
tively small with respect to nearby nodes.

The algorithm proposed here, for detecting corrupt sensory readings, exploits a
Bayesian network distributed over sensor nodes. In such inference overlay network,
the belief about the correctness of sensory readings flows thanks to communica-
tions among nodes. The use of a large Bayesian network allows to obtain a high
classification accuracy, but, at the same time, it might cause a high response time;
for such reason, the algorithm uses Bayesian networks with dynamic structure,
in order to be able to adapt them according to the characteristics of the specific
WSN deployment field. This adaptivity is obtained by allowing each sensor node
to choose the set of neighbor nodes to cooperate with, and possibly also to choose
to not cooperate at all. In the latter case, the sensor node tries to detect its
own corrupt sensory readings by exploiting only temporal correlation among local
measurements. On the contrary, if a node chooses to cooperate with its neigh-
borhood, shared information is used as additional evidence, so that each node can
also exploit spatial correlation to classify its own readings. These independent and
dynamic decisions drive fault detection toward the configuration that represents
the best trade-off among all possibly contrasting application goals, such as high
classification accuracy and low response time. The distributed Adaptive Fault
Detection algorithm (AFD) is composed by two main building blocks: a fault
detection algorithm, based on Bayesian networks, and a QoS-aware optimization
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Figure 3.1: Block diagram of AFD algorithm.

algorithm, periodically affecting the structure of the Bayesian networks. It is worth
noting that both the fault detection and the QoS-aware optimization are locally
performed in every sensor node. Figure 3.1 shows the interaction between these
two logical blocks, within a single sensor node. The fault detection block takes as
input the sensory reading to be classified and the set of neighbor nodes to coop-
erate with. Such block, beside classifying the latest sensory reading, produces a
set of QoS indices, namely the classification accuracy and the response time. Such
indices are then used by the QoS-aware optimization block to modify the coop-
erating node list for the next step. Figure 3.2 shows the dynamic arrangement
of the overlay communication graph in a simple running example. Let us suppose
that at time t = 0 the overlay cooperation network includes all the sensor nodes
in a single group, thus producing a very high classification accuracy. When the
first optimization occurs (t = T ), node 2 detects that there is some margin for
reducing response time, thus it chooses to disconnect from node 1 and it conse-
quently modifies its cooperating node list CN(2) = {4, 5}. After T more steps,

Figure 3.2: Example of the evolution of the communication graph at different time
instants.
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a new optimization occurs: because the classification accuracy is still sufficiently
high, the node 2 chooses to disconnect also from node 4, thus its cooperating node
list becomes CN(2) = {5}. The AFD algorithm performs analogously to an on-
line clustering, since the update of the cooperating node lists modifies the overlay
cooperation network. In order to ensure the convergence of the fault detection,
it will be assumed for the rest of the paper that the underlying communication
network is arranged as a tree so that every operation on the cooperating node list
results in a set of tree arranged clusters.

3.1.1 Fault Detection
Fault detection is solved using distributed inference over the Bayesian network built
on top of the cooperation network. The distributed inference algorithm takes as
input a set of readings gathered by sensor nodes, and provides the classification of
readings into corrupt or not. A first convergecast phase builds an initial estimate
of the belief about reading classification, and a further broadcast phase refines
such belief by adding information gathered over the rest of the network.

Bayesian networks are represented by a directed acyclic graph made up of ran-
dom variables xi, connected by directed links representing causal relations among
variables. This model allows to take into account the probabilistic dependency
between hidden random variables and observable random variables. The directed
acyclic graph structure allows a simple computing of the likelihood function for
the considered hidden variables. If pa(xi) denotes the set of parent variables for
the random variable xi, then the joint probability of the Bayesian network is:

p(x1, ..., xn) =
∏
i

p(xi|pa(xi)). (3.1)

In the implementation of AFD, each sensor node implements a small Bayesian
network composed by one hidden variable c representing the (estimated) class
of the current sensory reading and a set of observable variables representing the
evidence probabilistically deriving from the true value of c. Observable variables
can therefore considered as features related to the spatio-temporal correlations
among readings.

Fault detection finds the combination of values for the hidden variable of each
node, that maximizes its a posteriori probability, given the evidence. The Maxi-
mum a posteriori (MAP) approach is highly suitable to be implemented in WSNs,
since it avoids the use of fixed thresholds and it is not too computationally expen-
sive for sensor nodes.

Let L = (l1, ..., ln) be the set of local observed variables, representing only the
temporal correlation among the current and the past readings of a single node. If
a node does not cooperate with its neighborhood, it can only exploit this evidence,
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and the structure of its Bayesian network becomes a Naive Bayes classifier [43],
as shown in Figure 3.3(a).

(a) (b)

Figure 3.3: The Naive Bayes classifier, for a single node, including only local
observed variables (a), and two Naive Bayes classifiers linked by shared observed
variables (b).

Beside the local observed variables, the evidence variables include a set of shared
observed variables, representing the spatial correlations among readings. If i and
j are two cooperating nodes, then they share a set of variables Si,j that connect
their two Naive Bayes classifiers by adding causal links from their hidden variables.
The set of variables shared between two nodes i e j is a vectorial function of their
last readings. Figure 3.3(b) shows two sensor nodes that linked their Naive Bayes
classifiers through the use of shared variables; for the sake of simplicity, local and
shared variables are grouped into the arrays of variables L and S.

There is a mapping between the current communication graph and the whole
Bayesian network. The Bayesian network can be obtained from the communica-

Figure 3.4: Evolution of the Bayesian network for a a simple network composed
by five sensor nodes.
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tion graph by replacing each sensor node with a Naive Bayes structure and each
communication link (i, j) with a shared variable Si,j and by adding two causal links
from hidden variables ci and cj to the shared observable variable Si,j. Figure 3.4
shows how the whole Bayesian network evolves in the previously considered run-
ning example. Dark shadowed ovals represent Naive Bayes classifiers implemented
by each node, while light shadowed ovals represent cooperating clusters. It is pos-
sible notice that every pair of nodes belonging to the same cluster, is connected
through the shared variables set. The definition of the adopted fault detection
method is completed by specifying the hidden and observed variables and how the
MAP problem is solved.

Definition 1. The hidden variable c takes values in the set C = {outlier, noise,
stuck-at, correct}.

According to the taxonomy proposed in [44]: a outlier fault is a reading
whose value is out of range for the monitored physical quantity; a noise fault is a
burst of readings whose variance is higher than the environmental one, and finally
a stuck-at fault is a burst of readings that shows almost zero variations or, in
other terms, that has a variance lower than the environmental one.

Definition 2. Local observed variables are represented by a vectorial function
of the last K readings of a single node and it is defined as L = {l1, l2, l3} =
{inner-gradient, repetitions, variance}:

l1 = rt − rt−1,

l2 =
t−K+1∑
k=t

I[|rk − rk−1| < θ],

l3 =
t∑

k=t−K+1

(rk)2

K
−

 t∑
k=t−K+1

rk
K

2

, (3.2)

where: rt is the reading at time t; l1 is the first derivative of rt; l2 is the number of
consecutive readings, in a window of lenght K, that falls within a specific range θ
and I[·] is the indicator function (which is equal to 1 if the argument is true and
0 otherwise); l3 is the variance of the last K readings.

Although the above set is not exhaustive and other features could be added
to improve the classification accuracy, they was found sufficient to recognize the
temporal correlations existing among readings.

Definition 3. Shared observed variables are represented by Si,j = {si,j} =
= {outer-gradient}:
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si,j = rit − r
j
t . (3.3)

The shared variables set Si,j is, in principle, a vectorial function of the last K
readings of sensor nodes i and j, but in practice it is a single function because it
is sufficient to recognize spatial correlations; si,j is simply the difference between
the last reading sensed at node i and node j.
Definition 4. The Maximium a Posteriori problem finds the solution array c∗ =
(c∗1, ..., c∗n) that maximizes the joint probability of the Bayesian network:

p(c1, ...., cn|L1, .., Ln, S1,2, ..., Sn−1,n) =
∏

i
j∈CN(i)

p(Li|ci)p(Si,j|ci, cj)p(ci), (3.4)

where (i, j) are pairs of cooperating nodes, and CN(i) is the cooperating node
list of node i. The above equation is obtained by applying Equation 3.1 to the
particular form of Bayesian network induced by AFD algorithm; it represents
the joint probability of (c1, c2, ..., cn) of a single cluster of nodes and with slight
variations could be extended for the whole WSN.

In order to solve this problem, the well-known “max-product” inference al-
gorithm [45] was adapted to Bayesian networks. The code of the algorithm is
provided at Section 3.3 and includes two main phases: (i) a convergecast phase,
estimating the probability distribution over all possible classes for each sensed
reading, and (ii) a broadcast phase, determining the final class labeling. Since the
communication network is arranged as a tree, it is assumed that any sensor node
is aware of being a leaf, a root or an intermediate node. In order to take into
account the latency of the algorithm, it is also included a variable that keeps track
of the number of hops (between any node and the root of the cluster) required for
computing the class label.

The convergecast phase starts whenever fresh readings are to be classified.
Each sensor node of the cluster computes the local features Li as in Equation 3.2
and the local belief Λ(ci) as:

Λ(ci) = p(ci)p(Li|ci). (3.5)

Such quantity represents the belief about the class of the sensory reading at node
i, only considering local evidence. Successively, sensor nodes exchange their own
readings with their direct neighbors, so they can compute also shared features as
in Equation 3.3.

Each node i, with the exception of root node, sends a message to its parent j
containing the parent’s reading belief computed as follows:

Φ(cj)i→j = max
ci

φ(ci, cj). (3.6)
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The matrix φ(ci, cj) represents the joint belief about the classes of the readings of
nodes i and j; such quantity takes into account local belief, shared features, and
belief messages received from the i’s children:

φ(ci, cj) = p(Si,j|ci, cj)Λ(ci)
∏

z∈CN(i)/j
Φ(ci)z→i, (3.7)

where the productory is replaced by 1 if i has no children.
Root node r terminates the convergecast phase and computes its optimal class

assignment as:

c∗r = argmax
cr

Λ(cr)
∏

z∈CN(r)
Φ(cr)z→r. (3.8)

Then, the root node starts the broadcast phase, where optimal classes c∗ are
propagated over the tree. Every non-root node i receives the label c∗j from its
parent j and computes its own optimal class as:

c∗i = argmax
ci

φ(ci, c∗j), (3.9)

and then propagates such quantity to its children. This phase ends at leaf nodes
and produces the solution of the MAP problem.

The performance of the AFD fault detection algorithm can be evaluated through
the probability of correct classification picorr, computed as:

picorr = φ(c∗i , c∗j). (3.10)

3.1.2 Learning parameters
The learning procedure, needs to learn the conditional probability tables, namely
p(Li|ci) and p(Si,j|ci, cj), and the class priors p(ci), and consists in computing the
joint probability for the whole Bayesian network.

Such Bayesian network model comprises two types of variables: hidden (ci,
with no parents), and observed (Li, with one parent, and Si,j, with two parents).
By recalling the Equation 3.4 for the joint probability of the Bayesian network, it
is possible to note that the parameters to be learned are the prior probabilities of
the class label assignments and the conditional probabilities for local and shared
features.

The computation of the conditionals is simplified by exploiting the indepen-
dence properties of Bayesian networks as follows:

p(Li|ci) =
∏
k

p(Lki |ci)

p(Si,j|ci, cj) =
∏
k

p(Ski,j|ci, cj) (3.11)
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The AFD module assumes the use of supervised learning with a training set
made by a fixed amount of observed features with the respective actual label as-
signments. The computation of conditional probabilities p(Lki |ci), p(Ski,j|ci, cj), and
prior probabilities p(ci) is therefore carried out by using the frequentist approach.

3.1.3 QoS-aware Optimization
The fault detection algorithm is performed starting from a given structure of the
communication network, defined in terms of clusters. The classification accuracy
and the response time highly depend on the size of network clusters. In order to find
the optimal cluster structure, sensor nodes are required to determine which neigh-
bor nodes to cooperate with, on the basis of QoS indices associated with different
configurations. The main goal is to find the network configuration representing
the best trade-off among several application-driven QoS goals and constraints.

This QoS-aware optimization is performed through Pareto optimization, that
allows to consider multiple objective functions, possibly contrasting and with non-
comparable units of measurement.

The sensor network can be seen as a complex system where each agent interacts
with the environment by taking decisions d ∈ D at each time step of its lifetime.
Before taking any decision, an agent can evaluate its goodness by means of a set
of QoS metrics md = (q1, ..., qn). In order to allow an agent to choose the better
decision to be taken, it is required to define an order relation over the space of
md; in particular, the Pareto dominance order relation was adopted. Let md1 and
md2 be the quality metrics arrays respectively for the decisions d1 and d2, then
md1 Pareto dominates md2 (md1 � md2) if each component k of md1 is lower than
the corresponding component of md2 . Such definition, in a minimization problem,
corresponds to the following equation:

md1 � md2 ⇔ {∀k = 0, . . . , n => md1(k) 6 md2(k)} . (3.12)

A Pareto optimal decision is defined as a decision that is not dominated by any
other decision:

d∗ = {di ∈ D : ∀dj ∈ D, dj 6= di ⇒ mdi
� mdj

}. (3.13)

The set of Pareto optimal solutions constitutes the Pareto optimal front.
In addition to multiple objective functions, a real application may be char-

acterized by a set of constraints about QoS requirements. They can be taken
into account by representing them as points in the QoS metric space, namely
v = (v1, ..., vn). A decision d is said to be admissible if and only if its quality met-
ric array md � v. This further check allows to eliminate possible Pareto optimal
solutions that break at least one QoS constraint.
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Each sensor node i has to periodically choose the subset of neighbor nodes
to cooperate with. If N(i) is its neighborhood set, then the output of the Pareto
optimization is the decision d∗ that drives the cooperating node list, CN(i) ⊆ N(i),
to the combination corresponding to the optimal value of the metrics array md∗

that also satisfies the constraints array v.
The following of this section specify all the components of the QoS-aware op-

timization.

Definition 5. The decision d for node i is defined as a pair of values (action, id),
where action ∈ {connect, disconnect, do-nothing}, and id ∈ N(i).

Each decision of the node i corresponds to a single atomic action affecting
its cooperating node list, CN(i). In particular i can choose to connect to or
disconnect from one of its neighbors, or either to do nothing; this latter decision is
taken when the current cooperating node list is Pareto optimal, and thus CN(i)
is left unchanged.

Definition 6. The QoS metrics vector corresponding to a decision d is defined as
md = (qerr, qlat):

qerr(t) =

∑
j∈CN(i)

t∑
t̃=t−T+1

pjerr(t̃)

|CN(i)| · T ;

qlat(t) =


max
j∈CN(i)

{latj(t) + 2} if |CN(i)| > 0

0 otherwise.
(3.14)

Such metrics are used for predicting the goodness of each possible decision d. The
first metric, qerr, represents the average classification error of the nodes belonging
to the chosen configuration of CN(i) over a time window of length T ; clearly, in
order to compute such value, any node j of the cluster has to store the values of
pjerr for its last T readings.

In order to define the second metric, it is necessary to consider that the response
time of the inference algorithm is proportional to the number of hops between i and
the furthest node in its cluster; in the worst case i is a leaf of the tree representing
the cluster topology, so the response time for node i will be at most equal to the
maximum value of the response time (latj(t)) for nodes in CN(i), plus the time
needed by the two messages used for broadcast and convergecast on the link (i, j).

Definition 7. The constraints array is defined as v = (verr, vlat).
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Figure 3.5: Example of a two dimensional Pareto optimization.

The satisfiability of a decision is verified by checking that the corresponding
metrics vector is not dominated by the constraints, that is (qerr, qlat) � (verr, vlat).
Such constraints are used as imposed upper bound for the values of the QoS metrics
and they should be manually chosen by the application programmer.

In summary, node i evaluates the impact of changing its cooperating node list
by forecasting the values of the future QoS metrics for the decisions of connect-
ing or disconnetting from each node j ∈ CN(i). Resulting solutions are filtered
by cutting-off all those that are not admissible with respect to the specified con-
straints. The filtered solutions are ordered making use of definition 3.12 and the
optimal front is found. If several solutions belong to the Pareto optimal front,
a random decision among them is selected. Finally, it is also worth noting that
it is possible that no admissible solutions are found after filtering; this occurs
whenever the Pareto optimal front is placed beyond the constraints polyhedron.
To cope with this situation, the constraints are relaxed by making all QoS met-
rics unbounded and then letting the QoS-aware optimization algorithm choose the
Pareto optimal solution that is considered as the “less unsatisfatory” one.

Figure 3.5 shows, in the running example, the Pareto optimization performed
by the sensor node 2 at time 2T for the classification error and the response
time. Node 2 can choose among four different decisions, on the basis of its current
cooperating list (CN(2) = {4, 5}); among such decisions, d1 is the Pareto optimal
one because its QoS metrics are lower than those of other decisions. It is also
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worth noting that decisions are grouped into Pareto fronts; d2 and d4 belong to
the same Pareto front, so they are Pareto equivalent.

In conclusion, AFD algorithm is composed by two main blocks: a fault detec-
tion block activated for each sensory reading, and a Pareto optimization modifying
the communication graph over which the fault detection is performed, occurring
only every T time steps.

Fault detection, described in section 3.1.1, takes as input the last sensory read-
ing and produces as outputs the most probable class label, the corresponding
probability of error and the number of communication hops. In order to achieve
its goal, the fault detection block evaluates the set of local observable variables Li;
moreover, if CN(i) 6= φ, node i exchanges its last reading within its cooperating
neighborhood, and it receives their readings, so that all pairs of connected nodes
are able to compute the shared observable variables Si,j. Finally i runs the max-
product to compute its optimal class label assignment and the probability of error
pierr.

Outputs of the fault detection block are used to evaluate the current QoS
metricsm, then sent to the Pareto optimization block, in order to compare the “do-
nothing” decision with the other ones. Further inputs of the Pareto optimization
are the current cooperating node list CN , used for evaluating the possible actions
of connecting/disconnecting, and the array of constraints v used for cutting-off
non-admissible decisions. Pareto optimization eventually produces as output the
cooperating node list CN(i) optimizing the QoS metrics; this list will be used for
the next T time steps for performing fault detection.

3.2 Theoretical assessment
The aim of this section is to prove that the algorithm scales well with the size of
the network. The mathematical notation contained in Table 3.1 will be used in
the following.

Definition 8. The fault-detection algorithm has memory complexity:

O(kfZ|C|2) (3.15)

Proof. The learning task stores a conditional probability table for every feature
(local and shared) and a prior table for the class label. Let us suppose any node
has at most kl local features and at most ks shared features; additionally let
kf = max(kl, ks). Also suppose each feature is discretized into Z different values.

The required memory for such tables is bounded by: kfZ|C| for local features,
kfZ|C|2 for shared features and |C| for priors; by summing up the above terms, it
can be easily seen that the overall required memory is O(kfZ|C|2).
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Definition 9. The fault-detection algorithm has time complexity:

O(|C|2(2kf + |N(i)|)) (3.16)

Proof. Phase one involves a simple message exchange among neighbor nodes, and
does not involve any computation.

Phase two is a convergecast-broadcast procedure. The convergecast message
computation involves mono-dimensional maximizations (equation 3.6). To perform

Table 3.1: Legend of the notation adopted.

Name Description Name Description

N Number of network nodes ci Hidden variable of node i in
X

d A decision C Set of possible values for the
hidden variables ci

Qd Quality array for decision d D Set of the possible decisions
qerr Heuristic for predicting the clas-

sification error
qlat Heuristic for predicting the

latency of the algorithm
CN(i) Neighborhood set of node i in

the cooperation network
lat The latency experienced by

the node in the last run of the
algorithm

N(i) Neighborhood set of node i in
the communication network

v Array of constraints

Li Set of local observed variables of
node i

vlat Constraint on the latency of
the algorithm

li,j The j-th local observed vari-
ables of node i

verr Constraint on the classifica-
tion error

kl Number of local variables |Li| ks Number of shared variables
|Si,j|

kf The maximum between kl and
ks

M Number of objective func-
tions to be optimized

Si,j Set of shared observed variables
of node i and j

T Number of steps before a new
optimization occurs

si,j,k The k-th shared observed vari-
ables of node i and j

perr Probability of classification
error
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such operation the algorithm computes all the entries of the matrix φ(ci, cj) that
are |C|2.

The computation of a single value of φ(ci, cj) is a multiplication among 1 +
2kf + (|N(i)| − 1) terms (see equation 3.7), that amounts to 2kf + |N(i)| total
multiplications. Time complexity for such round thus is |C|2(2kf + |N(i)|).

During broadcast phase, the optimal class label assignment (see equation 3.9)
is computed by a table lookup on φ(ci, cj), that requires |C| operations. The time
complexity for such round thus is simply |C|.

By summing all terms for broadcast and convergecast phases, the whole time
complexity per sensor node results: O(|C|2(2kf + |N(i)|)), where all the irrelevant
terms were discarded.
Definition 10. The QoS-aware optimization algorithm has memory complexity:

O(M |N(i)|) (3.17)

Proof. The QoS-aware optimization algorithm stores the array of QoS metrics for
all the admissible decisions. Each single node is able to choose among the following
actions: (i) connect, or (ii) disconnect a node, (iii) do nothing; the total number
of possible actions is equal to the size of the neighborhood in the communication
network incremented by one. The worst case complexity is therefore given by 1 +
|N(i)|. Such a value is multiplied forM as it is the number of metrics corresponding
to a single decision. The complexity is O(M |N(i)|).
Definition 11. The QoS-aware optimization algorithm has time complexity:

O(M(|N(i)|+ 1)2) (3.18)

Proof. The QoS-aware optimization algorithm orders the feasible solutions by
means of the NSGA-II algorithm [46], whose complexity (in terms of number of
comparisons) is O(M |D|2), where M is the number of objective functions (two in
our case) and |D|2 is the number of decisions to be analyzed. Since D = |N(i)+1|
then the time complexity is O(M(|N(i)|+ 1)2) per sensor node.

3.3 Implementation of AFD
The algorithm that performs fault detection may be run either in a distributed
or centralized fashion. The centralized version is depicted in Algorithm 1 and
does not take into account the response time, as the algorithm is supposed to
be implemented at the base station. Moreover it assumes that the only goal
is to maximize the classification accuracy so the cooperating node list of each
sensor node is matched to the neighborhood set, i.e. CN(i) = N(i); in other
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terms, the Bayesian network is a connected and tree-arranged graph where the
Max-Product algorithm is run to compute the best class labels assignments of the
sensed readings.

Algorithm 1 AFD Algorithm (Centralized version)

Input Parameters:
1: I . list of node identifiers
2: G . connected and loop-free graph of the network nodes
3: R . last K sensed readings for each network node

Output Parameters:
4: C∗ . array of optimal class labels
5: Perr . array of error probabilities

Convergecast:
6: Compute local features Li using Equation 3.2 for each i using R
7: Compute shared features Si,j using Equation 3.3 for each (i, j) using R
8: Run Max-Product(I,G, L1, L2, ...S1,2, ....)→ (C∗, Perr)

Output:
9: return C∗, Perr

The following set of algorithms implements the distributed version of the fault
detection. Algorithm 2 may be seen as the main process of the whole distributed
algorithm that accepts as input t,m, R, CN and v that are respectively the current
time, the quality metrics for the current configuration of the cooperating node list,
the last sensed K readings, the current cooperating node list and the array of
the constraints for the objective functions. It provides as output c∗, perr, lat and
CNnew that represent respectively the most probable class for the last reading, its
probability of error, the response time experienced and the updated cooperating
node list (if changes occurred). Its code is splitted-up into two calls, i.e. one to the
fault-detection algorithm and the other one to the Pareto optimization algorithm.
It is worth noting that Pareto optimization only occur at regular time intervals
of T steps, and this is to ensure stability of the cooperation or in other terms to
avoid the network oscillates between several local minima too quickly.

The algorithm 3 implements the QoS-aware optimization and accepts as input
Md that is the array of QoS metrics for all the admissible decisions and provides
as output d∗ as the optimal decision. The algorithm generates the Pareto front by
comparing the QoS metrics of the admissible solutions and retaining only those
that are non-dominated by others. Then if many solutions belong to the Pareto
optimal front, one at random is chosen and given as output of the algorithm.

The fault detection task, depicted in Algorithm 4, accepts as input i, CN and
R that are respectively the node identifier, the current cooperating node list, and
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Algorithm 2 AFD Algorithm (distributed version)

Input Parameters:
1: t . the current time
2: m . the current quality metrics
3: R . the last K readings
4: CN . the current cooperating node list
5: v . the array of constraints

Output Parameters:
6: c∗ . the most probable class for the last reading
7: perr . the probability of error
8: lat . the response time
9: CNnew . the next cooperating node list

Fault detection:
10: Run Fault detection (CN,R) → c∗, perr, lat

Pareto optimization:
11: if t is multiple of T then
12: for all d ∈ D do
13: Compute QoS metrics md using Equation 3.14
14: Accept d only if md � v
15: end for
16: if no admissible solutions found then
17: Accept all d as admissible
18: end if
19: Run QoS-aware Optimization(md1 ,md2 , ...,mdn) → d∗

20: Update CN according to the decision d∗
21: end if

Output:
22: return c∗, perr, lat, CN

the last K sensed readings. It provides as output c∗, perr and lat that represent
respectively the class label assigned to the last sensed reading, the probability of
error for the assigned class label and the latency experienced by the algorithm
for computing the class label. The algorithm is divided into two main phases:
convergecast and broadcast. The mathematical steps are described at Section
3.1.1.
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Algorithm 3 QoS-aware Optimization Algorithm

Input Parameters:
1: Md . The array of QoS metrics for all admissible decisions

Output Parameters:
2: d∗ . The Pareto Optimal decision

Pareto Optimal Front Generation:
3: for all i ∈Md do
4: mark i as pareto optimal
5: for all j ∈Md, j 6= i do
6: if Md(j) ≺Md(i) then
7: mark Md(i) as non-optimal
8: end if
9: end for

10: if i is marked as optimal then
11: add i to Pareto Optimal front
12: end if
13: end for

Pareto Optimal decision:
14: if Many solutions belongs to Pareto Optimal front then
15: set d∗ to a random i of the Pareto Optimal front
16: else
17: set d∗ as the unique i of the Pareto Optimal front
18: end if

Output:
19: return d∗
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Algorithm 4 Fault Detection Algorithm

Input Parameters:
1: i . A node id
2: CN . The cooperation network
3: R . the last K sensed readings

Output Parameters:
4: c∗ . the optimal class label
5: perr . the probability of error for the chosen label
6: lat . the latency (# of hops) experienced for computing c∗

Convergecast:
7: Compute local features using Equation 3.2 and local belief using Equation 3.5
8: for all j ∈ CN do
9: Send the last reading last(R) to j

10: end for
11: for all j ∈ CN do
12: Receive the last reading of j
13: Compute shared features using Equation 3.3
14: end for
15: if i is a leaf node then
16: Compute the parent’s reading belief Φ(cj) using Equation 3.6
17: else
18: Receive Φ(ci) from children in CN
19: Compute Φ(cj) using Equation 3.6
20: end if
21: if i is not a root node then
22: Send Φ(cj) to parent j
23: else
24: Compute optimal class label c∗ using Equation 3.8
25: end if

Broadcast:
26: if i is the root node then
27: for all j ∈ CN do
28: Send c∗ as optimal class label
29: Send 0 as latency lat
30: end for
31: else
32: Receive the optimal class label c∗ and latency lat from parent node
33: Compute optimal class label c∗ using Equation 3.9
34: Compute pcorr using Equation 3.10 and perr = 1− pcorr
35: end if
36: if i is not a leaf then
37: for all j ∈ CN do
38: Send c∗ as optimal class label and lat+ 2 as latency
39: end for
40: end if

Output:
41: return c∗, perr, lat



Chapter 4

Sensory data prediction

The goal of this chapter is to present Sensory Data Prediction (SDP), a software
module that simulates virtual portions of the WSN, whose behavior is strictly
related to the actual trend of the physical quantities; the software module thus
is able to manage a hybrid simulated WSN where a limited set of real nodes is
augmented with a larger set of simulated ones. The development of such software
module is aimed to ease testing of scale-sensitive WSN applications by allowing
for virtual deployment of a large amount of sensor nodes with the freedom to
choose the shape and size for the setting, providing a simple way to test the
application behavior in qualitatively different environments. The adherence to
reality is granted by the inclusion of real nodes, whose sensed data are used to
generate predictive models for the actual physical quantities; flexibility is also
taken into account by adapting the obtained models to simulate the behavior of
virtual nodes.

A preliminary discussion will focus on the mathematical details of the models
developed to predict data both in space and time and how to generalize them to
unknown environments; later, it will be described the high-level implementation
of the SDP module together with the related pseudocode diagrams.

4.1 Mathematical Model to predict data
The proposed mathematical models allow to simulate the behavior of environmen-
tal physical quantities with respect to both the spatial and temporal dimensions.
First of all, this allows to generate sensory readings in places where no devices are
actually deployed, enabling the simulation of environmental scenarios wider than
those actually at researchers’ disposal. Moreover, it is necessary for the adopted
models to be tunable, so that they can be instantiated according to real past
sensory readings, and adjusted with respect to on-line incoming ones. They also
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need to be sufficiently generic so that they can be applied to a different monitored
area than the one for which they have been built. As regards the energy saving
aspects, the possibility of predicting data along the temporal dimension allows to
reduce sensing and communications providing the basis for prolonging the network
lifetime.

Although the overall hybrid simulation mechanism is generic and valid regard-
less of the specific physical quantity, the particular mathematical model, learning
algorithm and mechanism to port a model from a monitored area to another, need
to be selected, also taking into account the typical observed trends. More specifi-
cally, some criteria have to be met for our approach to produce reliable models:

• for each point in space, sensed data are temporally correlated so that it is
possible to predict future values with sufficient precision;

• for each time instant, sensed data are spatially correlated, i.e. sensory read-
ings in a given point can be estimated from the readings of close sensors;

• for each monitoring area, the temporal and spatial trend of the considered
physical quantity can be derived from those of a similar, close monitored
areas.

The scenarios described in this dissertation mainly consider physical quantities
as temperature, relative humidity, and light exposure, as they represents typical
environmental features considered by WSN applications. In most indoor and out-
door environments, those quantities typically present a periodic pattern, with a
similar trend for all sensor nodes deployed throughout the monitored area; intu-
itively, this is a good hint that it may be feasible to learn mathematical models
able to describe and predict them, and such models may also be reused and applied
to other environments with similar physical characteristics as the one considered
as reference. Clearly, each physical quantity requires individual modeling, i.e. dif-
ferent models will be independently derived for temperature, humidity, and light
respectively; in the following, the function representing the spatial-temporal trend
of a certain physical quantity will be indicated by F (x, y, t).

The model must be formulated so as to capture information about the physical
location of the sensors as well as potential temporal correlations over several mea-
surements. This can be highlighted by explicitly considering a different function
fxi,yi

(t) per each node i, which represents the predictive model for the measure-
ments of node i with validity of 24h.

The goal is to extract a global model providing measurements for each point in
a reference site in order to “feed” the virtual sensor nodes with realistic values; the
function F (x, y, t) must be inferred in order to include all the information provided
by the fxi,yi

(t) functions. Also F (x, y, t) must be able to generalize the behavior
of the phenomenon to points where no sensor nodes are actually placed.
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Basically, the idea is to compute F (x, y, t) through using a simple interpolation
of the values predicted by the local fxi,yi

(t) functions. The method chosen for
interpolation provides the following properties:

1. F (x, y, t) is smooth, i.e. it is continuous and belongs to the class C∞;

2. the interpolated values fall within the same range as the values predicted at
each point in time.

The first property reflects the fact that the monitored physical quantities do not
naturally present discontinuities in the environments. Even though light exposure
may occasionally contradict this assumption in localized points (spots), this is
usually not particularly relevant to WSN applications; moreover, strict modeling
of this phenomenon would prevent from formulating a general approach valid for
all the considered physical quantities at the same time.

The second property aims to ensure that F (x, y, t) does not present outlier val-
ues devoid of any physical interpretation; in particular, the property ensures that
no unrealistic values are generated in points where no sensors are placed. Highly
noisy readings from one sensor, however, might heavily influence the global shape
of F (x, y, t), so it will be assumed without loss of generality, that measurements are
not affected by environmental noise. The problem of filtering out noisy readings
before prediction is object of the AFD module, described in Chapter 3.

Because of these considerations, it was used a normalized linear combination of
the fxi,yi

(t) functions as a spatial interpolator, as shown by the following equation:

F (x, y, t) =

N∑
i=1

wifxi,yi
(t)

N∑
i=1

wi

, (4.1)

where the summation is computed over a set of N deployed sensors, wi = e−di , and
di =

√
(x− xi)2 + (y − yi)2, so that each value given by this model is computed

by taking into account all the deployed sensors, but with higher importance given
to the ones closer to the considered point.

The next step consists in determining how to adapt the environmental models
built for one known site (reference site) to different areas presenting similar char-
acteristics (target sites), as may be the case for different rooms in the same office
building. As stated in the previous chapters, such an ability would make it pos-
sible to test the scalability of the WSN application for network of different sizes;
the WSN designer only needs to deploy some real sensor nodes over the testing
environment and then adding the virtual nodes to extend the size of such hybrid
network.
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A naïve solution may consists in superimposing the model computed for the
reference site to other different and target sites; anyway this approach does not
work, because of the differences in shape, size, light exposure and so on between
the reference and the target areas. Given two different monitoring sites, one taken
as reference and the other as target site, the knowledge of the pattern of the
physical quantities in the reference site however supplies meaningful hints on the
correct trend of the same quantities in the target site, provided that the models
are properly transferred.

The only assumption needed to port a model from the reference to the target
site, is that the considered physical phenomena present some underlying similarity
that is preserved across the space and the time; in particular, the same pattern
for temperature, humidity or light may be observed in different areas, despite the
differences in the specific measured values.

The problem is formulated as the search of the set of geometrical parameters,
that characterize the corresponding transformation, defined as follows:

• intrinsic parameters, which control the shape of the model functions fxi,yi
(t)

for the reference site and allows to predict data along the temporal dimension;

• extrinsic parameters, which control how the model computed for the refer-
ence site may be mapped onto a different target site, and basically summarize
all the required geometrical transformations (translations, rotation, stretch-
ing, and so on) on the models. They allow to predict data along the spatial
dimension.

4.1.1 The Intrinsic Parameters
The intrinsic parameters model the shape of the environmental functions repre-
senting the observed physical quantities within the area of the reference site.

A generic function, modeling the readings of sensor i may be approximated by
a series of M Gaussian functions depending on the previous sensors readings:

fxi,yi
(t) =

M−1∑
j=1

wjN (t|µj, σ2
j ), (4.2)

where the spatial coordinates of sensor i are not explicitly indicated. The intrinsic
parameters of the model are computed by means of square error minimization [47]
and use the readings collected in the previous time interval as training set.

The approach also takes into account the natural periodicity of environmental
phenomena, so the model for a given sensor learnt for a time interval ∆told will be
used also as predictor for time interval ∆tnew after proper scaling and translation:

fnewxi,yi
(α, θ, t) = α

[
f oldxi,yi

(t)− θ
]

+ θ. (4.3)
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Parameters α and θ can be computed for a new time interval ∆tnew by con-
sidering a new observation set Snew, and a model f old(t) for a past time interval
∆told, through least squares optimization:

argmin
α,θ

∑
t∈∆tnew

[fnewxi,yi
(α, θ, t)− Snew(t)]2. (4.4)

Having computed the intrinsic parameters of the models of the sensor, it is
possible to implement a predictor for each of them; such predictor should not
modify the overall shape of the underlying environmental function, although at
the same time it should adapt to transient climatic changes (e.g. a rainy day when
the average light exposure is lower than usual, or a sudden drop in temperature).

The presence of such predictors makes it possible to lower the network’s en-
ergy consumption as the real measurements are replaced by simulated ones and
sensor nodes are not required to communicate them toward the base station. The
base station adaptively controls the sampling rate of any sensor node by decreas-
ing it when the absolute difference between predicted and actual measurement is
lower than a given threshold, and increasing it otherwise. Such behavior makes
the sampling process faster when the estimated model is not sufficiently reliable;
intuitively, the fact that the model becomes less reliable may be due to the pres-
ence of sudden bursts of high-frequency data (noise, or sudden variations) which
should trigger a greater accuracy for the model itself. On the other hand, sensor
nodes are allowed to save energy (relative to sensing, and network transmissions)
because the sampling period is reduced when the model fits well with the actual
data.

4.1.2 The Extrinsic Parameters
Models computed for the reference site must be extended to be ported to envi-
ronments with slightly different characteristics. For each of the environmental
functions relative to the considered phenomenon, we assume that the value in at
least one specific spatial point p = (x, y, t) is known; the aim is to compute the
transformation that maps the coordinate space of the reference site into a new co-
ordinate space for the target site; each point p = (x, y, t)′ would then be mapped
onto P = (X, Y, T )′. Such mapping may be formally defined as P = MSMφp,
where MS depends on the scaling parameters sx and sy relative to the spatial
dimensions of the reference and target sites, while Mφ depends on the parameter
φ controlling the spatial rotation (useful, for instance when considering different
light exposure between the reference and the target sites).

The overall transformation matrix may thus be written as:

M = MSMφ, (4.5)
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and the new environmental function for the target site will thus be given by:

F tar(P) = β(t) · F ref (p) = β(t) · F ref (M−1P), (4.6)
where the β(t) weight (generally time-dependent) stretches the transformed

function to better fit the target environment, and needs to be estimated as will be
explained in the following.

In order to estimate optimal settings for the extrinsic parameters it is possi-
ble to use a simple, empirical approach, or an automated method based on the
measurement of a small set of sensory data from the target environment. For the
rotation and scaling parameters the former method was preferred, as support from
the human operator seemed reasonable; the required effort is minimal and basically
consists only in computing the size and orientation of the target environment, in
order to produce the mapping function.

The parameter β(t) is computed by exploiting a few sensory readings obtained
by placing a minimal set of sensor nodes to be used as probes in the target environ-
ment. The weight β(t) is a proportionality factor that fits measurements predicted
for the reference environment (Equation 4.1) into the probe measurements sensed
in corresponding points of the target environment, and basically acts as a time-
dependent stretching factor.

The β(t) stretching factor is estimated incrementally. Starting from the mea-
sured value SXi,Yi

(t) for sensor i in location (Xi, Yi) at time t in the target envi-
ronment, and, knowing the mapping matrix M, the system infers the prediction
for the corresponding point sxi,yi

(t) in the reference site. Assuming that the actual
measurement in the target site differs from the one estimated through this map-
ping by a stretching factor β(t), the estimation of β(t) at various time instants is
computed by minimizing the following error function with respect to β:

E(β) =
∑

P∈Tr

{SXi,Yi
(t)− βsxi,yi

(t)}2 (4.7)

where the summation runs over all the probe points P = (Xi, Yi, t)′ in the
target region Tr.

4.2 Implementation of SDP
The implementation of SDP assumes that the sensor network is organized accord-
ing to a cluster-based topology, as depicted in Figure 4.1, where leaf nodes forward
sensed data towards their representative cluster head, which in turn computes a
model for the considered physical quantity, and sets the sampling rate for each of
its children nodes in order to keep the model reliable over time and to minimize
the energy consumption due to redundant transmissions.
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Figure 4.1: Example of a star topology cluster, highlighting the nature of the
communications between the cluster head and each of the nodes running SDP.

The role of cluster head is assigned to a powerful wireless sensor node, the so-
called micro-server (e.g. a Stargate node), which is typically equipped with larger
amounts of memory, and offers more computational power. Given the character-
istics of the considered quantities, it is expected that some kind of periodicity is
loosely present in data, so the underlying assumption is that the overall “shape”
of the trend representing each physical quantity is preserved over time.

The software module has been realized to extend the capabilities provided by
the current state-of-the-art WSN simulators that lacks of the capability to repre-
sent the environmental phenomena through mathematical models. For the pur-
poses of the dissertation SDP was integrated and tested on top of the TOSSIM
WSN simulator [12]. The choice of TOSSIM as the underlying framework brings
several practical advantages. For instance, no modification is required to existing
NesC code, as SDP acts as a transparent software with respect to other applica-
tions; more importantly the very same code may be executed both on virtual and
on real sensor nodes, which helps during the design and pre-deployment phase to
ensure scalability of the WSN.

Figure 4.2 presents a high-level structure of the resulting hybrid simulated
WSN [48]. Some of the virtual nodes are logically coupled to real ones; such hybrid
(shadow) nodes represent the projection of real ones into the simulation and may be
regarded as wrappers whose main purpose is to act as interfaces toward their real
counterparts, while appearing identical to other virtual nodes from the simulator
point of view. The main function of shadow nodes is to collect sensed data from
the real world, and to re-route communication from virtual nodes to actual ones.
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The interaction between shadow and real nodes is physically implemented at the
base station where the simulation framework is running.

Figure 4.2: Example of a hybrid simulated WSN.

The use of TOSSIM solves some issues related to the coexistence of virtual and
real nodes in a hybrid simulation: for instance, it is important that the simulation
execution time reliably mirrors real execution time, especially in order to preserve
causality; some kind of coordination must also be ensured between virtual and
real nodes. To the best of our knowledge, TOSSIM provides acceptable perfor-
mances in terms of soft real time constraints, and probabilistic end-to-end delay
guarantees thus allowing SDP to be implemented independently from such low
levels issues. In the context of the WSN applications, the soft real time constraint
is totally acceptable with respect to simulation reliability. Sensing rates in the
order of milliseconds or greater are generally totally acceptable for the kind of
physical quantities involved in WSNs, and they cannot interfere with the realism
of a simulation run.

The energy conservation feature, according to the taxonomy proposed by [33]
and represented in Figure 4.3 is implemented by following a data-driven approach
exploiting adaptive sampling and data prediction through a statistical approach.

The skeleton of SDP may be seen as the combination of three different al-
gorithms that in sequence: (i) estimate the intrinsic parameters and recompute
the sampling period of the sensor nodes, (ii) compute the environmental function
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Figure 4.3: Categorization of data-driven approaches. Shadowed ellipses highlight
the methods exploited in SDP.

F ref (x, y, t) and finally (iii) generalize the computed model by means of the ex-
trinsic parameters. For convenience of the reader all the parameters used in the
algorithms were arranged in Table 4.1.

Table 4.1: Intrinsic and extrinsic parameters.

Parameter Description

In
tr
in
si
c wj, µj, σ2

j Parameters of jth Gaussian of the mixture.
α, θ Reshape parameters: allow to deform the previously

fitted model in a new fitted model given the new mea-
surements

sx, sy Scaling parameters: allow to resize the reference site
into target site dimensions

E
xt
ri
ns
ic φ Rotation parameter: it takes into account different

light exposition between reference and target site
β(t) Scaling parameter: allows to deform the reference site

fitted model in the target site fitted model
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4.2.1 Estimating the intrinsic parameters
The process needed for computing the intrinsic parameters and, based on them,
the resulting environmental function from which drawing predictions is summa-
rized in Figure 4.4. It shows a schematic description for the construction of the
interpolated environmental functions; models learnt from past measurements (Fit-
ted Models) and current measurements (Sensor Measures) are used to construct a
predictor of the various environmental functions. The Spatial Interpolator merges
the different predictor functions through Equation 4.1 and builds the environmen-
tal model F (x, y, t) for each of the phenomena monitored.

Figure 4.4: Generation of the environmental function for the reference environ-
ment.

The entire model F (x, y, t) is therefore computed and updated on the cluster
head through an iterative algorithm that accepts as input a fitting model f old(t)
for the observed set in a past time interval ∆told, and computes the new model
fnew(t) in an on-line fashion. The raw samples gathered from the sensor nodes are
iteratively processed at the cluster head to refine the estimated values of α and θ.

The iterative algorithm for estimating the intrinsic parameters starts by ini-
tializing all the necessary variables:

θ ← 0, α← 1, T ← 1, R← ∅,

where T is the factor controlling the sampling rate, and R is the set of the current
sensory readings. The pseudocode for iteratively computing the intrinsic parame-
ters for the current time interval is shown in Algorithm 5, where the threshold τ
represents the maximum tolerable prediction error, and it must be specific to any
given physical quantity.

The core of the algorithm (referred to a single sensor node) consists of a read-
prediction loop where, at each step, the value of the prediction at time t is com-
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puted by the cluster head according to Equation 4.3 using the current values of α
and θ.

Meanwhile, each sensor node i in the same cluster keeps collecting samples
z(t) of the environmental quantities at its current rate, and sends them toward
the cluster head, where they are appended to the set R of the current sensory
readings, causing the deletion of the oldest ones.

The accuracy of the prediction model for the specific sensor node is tested by
comparing the latest measurement with the corresponding prediction. If the abso-
lute difference is lower than a pre-defined threshold, the sampling rate is increased
by doubling the controlling factor (T ← 2 · T ); otherwise, the model needs to be
adapted to potentially fast variations in the monitored physical phenomenon, so
the sampling rate is reset and (T ← 1).

Regardless of the threshold, whenever a sensory reading is received by the
cluster head, the transformation parameters, α and θ are updated via a gradient
descent algorithm starting from the latest estimates, according to Equation 4.4.

The algorithm 6 reports the steps needed for computing the environmental
function F (x, y, t), based on the estimates of the intrinsic parameters of the nodes
of the cluster, as shown in Equations 4.1, 4.2, 4.3 and 4.4.
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Algorithm 5 Incremental estimate of intrinsic parameters.

Parameters initialization:

1: f oldx,y (t)←
M−1∑
j=0

wjN (t|µj, σ2
j ) . ∆told Gaussian fitting

2: Sr ← ∅, St ← ∅ . daily set of readings and relative time instant
3: read_time← t0 . beginning of readings
4: α← 1, θ ← 0 . compression and translation
5: τ ← τ ?, T ← 1 . prediction threshold and sensing rate

Read-Prediction cicle:
6: loop
7: while read_time > current_time not operate end while
8: Sr ← Sr ∪ {z(t)} . update readings set
9: St ← St ∪ {t} . update time set

10: ẑ(t)← α[f oldx,y (t)− θ] + θ . prediction at time t
11: if |ẑ(t)− z(t)| < τ then T ← 2 ∗ T else T ← 1
12: end if
13: Sp ← ∅ . initialize prediction set
14: for all t ∈ St do . compute prediction set
15: Sp ← Sp ∪ α[f oldx,y (ti)− θ] + θ
16: end for
17: ED(α′, θ′) =

∑
z∈Sr,ẑ∈Sp

{zi − ẑi}2 . square error of predictions

18: (α, θ)← argmin
α′,θ′

ED . gradient descent algorithm

19: read_time← read_time+ T . next reading time

20: end loop

Algorithm 6 Computation of the environmental function F (x, y, t).
Input Parameters:

1: xi, yi . XY coordinates of sensor i
2: x, y, t . A 3-D point
3:

Computation of F (x, y, t):
4: for all i ∈ [1..N ] do . for all nodes in the cluster
5: di =

√
(x− xi)2 + (y − yi)2 . distance from node i

6: wi = e−di . mixture weight for node i
7: end for

8: F (x, y, t) =
N∑
i=1

wifxi,yi
(t)/

N∑
i=1

wi
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4.2.2 Estimating the extrinsic parameters
The algorithm for estimating the extrinsic parameters allows to compute a model
that may be ported from the reference site to one or more target sites. The basic
assumption is that the target sites has at least one real node that links the real
nodes to simulated ones.

Figure 4.5 summarizes the required steps for porting the model from a reference
site to a single target site: first of all, a list of the spatial coordinates (Xi, Yi) for all
the real nodes lying in the target site is generated. The following step involves the
computation of the transformation matrix M that maps the space points (Xi, Yi)
to (xi, yi) from the target site to the reference site, as explained in Equation 4.5.

Subsequently, the value of the function F ref (xi, yi, t) is computed for each of
the mapped points in the reference site. Finally, the procedure described by the
Equation 4.7 computes the value of the scaling factor β that fits, as best as possible,
the reference site function F ref (xi, yi, t) to the values F tar(Xi, Yi, T ) sensed in the
target region.

Figure 4.5: Porting of the environmental function to the target environment.

The algorithm 7 formalizes the method devised for porting the model from a
reference site to one or more target sites.

It accepts as input J , the number of target sites to which porting the model
generated in the reference site, Ij the number of real nodes in the j-th target site,
MSj

and Mphi,j the scaling and rotation matrix that map the reference site to the
j-th target site, and finally Pi,j and Si,j that represent respectively the XY location
and the readings sensed by node i in the target site j.

The core of the algorithm is a loop that ranges over all the target sites and
computes in sequence: the mapping matrix M , its inverse Minv, the points pi,j
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corresponding to the points Pi,j mapped onto the reference site and the readings
inferred in the reference site si,j(t). Finally the value of βj is computed for each
of the target sites as explained in Equation 4.7.

Once the value of the function F tar(X, Y, T ) is computed it may be used to
simulate as many virtual nodes as needed by the WSN designer or user.

Algorithm 7 Estimate of the beta stretching factors

Input parameters:
1: J . The number of target sites
2: Ij . The number of nodes in the j-th target site
3: MS,j . The j-th scaling matrix
4: Mφ,j . The j-th rotation matrix
5: Pi,j . XY location of the i-th sensor in the j-th target site
6: Si,j(t) . The readings sensed by node i in the target site j at time t

Estimation of the beta stretching factors:
7: loop
8: for all j ∈ [1..J ] do . Loop on the target sites
9: M = MS,jMφ,j . Reference to target matrix

10: Minv = M−1 . Target to reference matrix
11: for all i ∈ [1..Ij] do
12: pi,j = MinvPi,j . The mapped points in the reference site
13: si,j(t) = F ref (pi,j, t)) . Inferred readings in the reference site
14: end for
15: βj = argmin

β
E(β) =

∑
i∈[1..Ij ]

[Si,j(t)− βsi,j(t)]2

16: end for
17: end loop

Output parameters:
18: βj . The scaling factors for all the target sites



Chapter 5

Experimental assessment

The purpose of this Chapter is to evaluate the performance of FDDP whose build-
ing blocks (AFD and SDP) have been described in Chapters 3 and 4. The former
set of experiments is conducted in absence of data faults and aims at evaluating
the capabilities of FDDP to predict data for the light exposure, the temperature
and the humidity and to port the environmental functions generated for a reference
site to another target site. A brief discussion about the energy saving obtained by
using the adaptive sampling provides interesting results and proves the suitability
of such an approach to WSNs.

The latter set of experiments considers a more realistic scenario where many
sensor nodes gather temperature readings and the data are corrupt by faults. The
performances of the FDDP system are thus evaluated with respect to the detection
and prediction perspectives.

5.1 Assessment of FDDP in absence of faults
This set of experiments uses real data collected by Mica2-dot sensor nodes con-
tained in the public database available from [49]. The working environment is the
Intel Berkeley Research Lab (its size is about 30 × 40m2) containing 54 sensor
nodes able to sense three typical physical quantities for sensor networks, namely
the temperature, relative humidity, and light exposure.

The measured values range from 17◦C to 25◦C for the temperature, from 20%
to 90% for the relative humidity, and from 0 to 1800 Lux for the light exposure; the
observations were carried out over a time period spanning several days, between
February, 28 2004 and April, 5 2004; the sampling rate of each node was set to
31s.

The time interval of the experiments spans for nine days from February-29-
2004 to March-8-2004; data were manually pre-processed in order to get rid of
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Figure 5.1: Deployment of the clusters for assessing the performance of the pre-
diction module in absence of data faults.

(a) (b)

(c)

Figure 5.2: Mean absolute error for the quantities predicted in cluster #1.
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Table 5.1: Mean Absolute Error (%)

Area Temperature Light Humidity
1 1.1655 1.3488 0.7961
2 1.2774 1.3560 0.7841
3 0.8318 0.6638 0.5042
4 1.3511 1.6086 0.7658
5 1.1695 1.0098 0.6317

Table 5.2: Variance of the Absolute Error (%2)

Area Temperature Light Humidity
1 0.4523 1.5805 0.2814
2 0.4762 1.1046 0.2273
3 0.3420 0.2408 0.1134
4 0.3441 2.2556 0.1784
5 0.3698 0.5470 0.1255

Table 5.3: Maximum Absolute Error (%)

Area Temperature Light Humidity
1 2.7521 6.4209 3.0874
2 2.9180 4.4249 1.8914
3 2.0053 1.9667 1.6625
4 2.5279 6.4697 1.6638
5 2.4300 2.7350 1.4039

incomplete or clearly erroneous measurements.
The performance of FDDP are assessed in absence of faults and the AFD

module is excluded from the evaluation. Different clusters of nearby nodes whose
measurements are correlated both in the space and the time dimensions are consid-
ered; in particular, an accurate study reported in [50] identified five areas, where
the measured quantities show high spatial correlation, and the same layout is used
for the experiments discussed in this Section. SDP is thus run in the hypothetical
scenario where each area is managed by a cluster head directly connected to each
of the original nodes as summarized in Figure 5.1.

The performance metrics (mean, variance and maximum absolute prediction
error) were normalized with respect to the previously mentioned ranges in order to
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obtain uniform comparison of the results obtained for different physical quantities.
Each of the cluster heads depicted in Figure 5.1 is assumed to run the Algorithm

5 for estimating the intrinsic parameters of the managed nodes; the threshold used
to invalidate the model depending on the tolerable prediction error is set to 5%,
and the periodicity of each physical quantity is assumed to be 24 hours.

The reliability of the produced predictive models has been assessed by com-
puting the mean absolute error for each area and for each physical quantity; in
particular Figure 5.2 plots the the mean absolute prediction error for the test area
#1 for temperature, humidity, and light, respectively; other areas show analogous
trends.

The values of the mean absolute error for all areas are reported in Table 5.1,
while Table 5.2 reports the related variance and Table 5.3 maximum values. It is
worth noting that the mean prediction error is very low in all cases (about 1%);
in addition the largest variance is observed for light in area 4, but it is still not
very high (2.25%); moreover, peaks of error only occur occasionally and remain
localized to very few time instants, with the maximum amounting to ∼6% for light
in areas 1 and 4.

5.1.1 Energy saving assessment
The number of samples needed by the algorithm for estimating the intrinsic pa-
rameters rescales the sampling period of the sensor nodes based on the accuracy
of the current predictor. A good indicator that allows to evaluate its performance
in terms of energy saving, is the number of the overall required sensing and trans-
missions across all nodes compared to the original set of raw data.

In order to avoid large prediction errors the sampling rates are upper-bounded
to 8 minutes, whereas the basic sampling rate is slightly over 30 seconds; this
results into a sampling frequency ranging from a minimum value of 2, 1 · 10−3Hz
up to a maximum of 33, 3 · 10−3Hz.

Figure 5.3 plots the mean sampling frequency for area 1, for all of the consid-
ered quantities, and Table 5.4 and Table 5.5 show mean and variance of sampling
frequency for each area, respectively.

The largest values for the sampling rate (i.e. 4.31 · 10−3Hz) occur for light,
due to the intrinsic nature of such physical quantity, which exhibits lower auto-
correlation than temperature and humidity. Nevertheless, such value represents a
significant improvement as compared to the basic sampling rate of 33, 3 · 10−3Hz,
meaning that, on average, only ∼12% samples are needed with respect to the
maximum frequency. Temperature and humidity sampling rates are quite close to
the minimum sampling rate of 2.1 · 10−3Hz, thanks to the higher autocorrelation
characteristic of these quantities.



5. Experimental assessment 55

In order to quantify the impact of the proposed approach in terms of energy
saving, we compared the number of necessary transmissions with respect to the
basic approach where each node plainly forwards its samples to the collecting
station at the basic, fixed sampling rate.

Table 5.6 shows the percentage of measurements actually needed by our algo-
rithm in order to produce models that are deemed reliable, with respect to the
thresholds defined for the prediction error.

We note that the number of samples needed in the worst case amounts to
8.5% for temperature, 6.8% for relative humidity and 12% for light, which is the
environmental quantities with higher variance. Energy saving on transmission and
sensing is thus greater than 88% in all cases.

(a) (b)

(c)

Figure 5.3: Mean sampling frequency for the nodes of area #1.
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Table 5.4: Mean Sampling Rate (Hz · 10−3)

Area Temperature Light Humidity
1 2.8120 3.3790 2.3340
2 2.9020 3.5690 2.3450
3 2.4870 2.4760 2.2910
4 2.8650 4.3120 2.2990
5 2.7100 3.1110 2.2660

Table 5.5: Variance of the Sampling Rate (Hz2 · 10−6)

Area Temperature Light Humidity
1 1.0220 2.4120 0.0580
2 1.2170 2.8990 0.0570
3 0.1990 0.2050 0.0210
4 0.5040 9.1260 0.0380
5 0.3900 1.6400 0.0280

Table 5.6: Fraction of Samples Used (%)

Area Temperature Light Humidity
1 8.1602 9.8903 6.7943
2 8.5154 10.2800 6.7686
3 7.2849 7.2331 6.5291
4 8.2898 12.7218 6.6528
5 7.9044 9.2566 6.6027

5.1.2 Modeling and porting assessment
The Algorithms 6 and 7 respectively build the environmental functions of the
monitored quantity for the reference and target site. This set of experiments aims
at assessing the precision of the inferred prediction models for two sub-areas of
the Berkeley Intel Laboratory, and in particular for the sensor nodes deployed in
Figure 5.4.

Based on the groups of sensor nodes highlighted in the figure, “Site 1” is the
reference site and “Site 2” is the target site; experimental results shows that sensory
readings can be reliably simulated for the reference site and that the ported models
are reliable for the target site.
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Figure 5.4: Deployment of the reference and target site for evaluating the porting
capabilities of FDDP.

(a) (b)

(c)

Figure 5.5: Mean Prediction error and variance of the error for the nodes of the
reference site.

The target site has few actually deployed nodes; in particular, “Site 2” contains
nodes 11, 12 and 13, but only node 11 is considered for training, whereas nodes 12,
and 13 are used for testing the precision of the ported models; hence, by using the
readings from node 11 as probes, the models from “Site 1” can be adapted to the
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new environment, following the method described in Section 4.1.2 for computing
the extrinsic parameters.

Figure 5.5 shows the mean absolute error and the variance of the error for the
nodes of the reference site. In particular all available nodes in Site 1 (nodes 1, 2,
3, 4 ) were used to perform some tests in a leave-one-out fashion, i.e. the models
are built using data from N -1 nodes while the prediction error is computed on

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Absolute prediction error for node 12 and 13 when porting models
from the reference to the target site.
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the readings from the Nth node. The tests were thus conducted using 3 nodes
for training and 1 for testing; experiments run from February-28-2004 to March-5-
2004 and the first day is used for training. The absolute error (averaged across all
runs of leave-one-out) is 0.0238 for temperature, 0.0178 for humidity, and 0.0285
for light.

Figure 5.6 shows the prediction errors for all the considered quantities, for both
the testing nodes of the target site. The errors are still quite acceptable for all
the three quantities, thus proving that models computed on “Site 1” and adapted
to “Site 2” by using probes from just one node provide reliable estimates in the
two considered test points. It is also worth noting that while errors relative to
temperature and humidity measurements are below 25%, and 10% respectively,
errors for light measurements are considerably higher; this is due to intrinsically
lower correlation for Light, which makes it harder to port the model from one site
to another.

5.2 Assessment of FDDP in presence of faults
This set of experiments evaluates both the detection and the prediction algorithms
when the data are affected by fault.

The WSN was arranged as tree characterized by depth 16 and branch factor
3, and composed by 100 sensor nodes gathering temperature measurements every
30 seconds for two days.

The readings coming from ten Mica2Dot were recorded in a basic dataset and
used as real generators; in a later stage, the dataset was modified by adding nine
different Gaussian noise signals N (0, σ2

E), with σ2
E = 0.02, to the original sensory

signal, thus producing a dataset of 100 among real and virtual sensor nodes. Data
faults have been simulated by corrupting the obtained dataset, according to fault
definitions proposed in [44]:

• Outlier: r̃(t) = g × r(t)

• Noise: r̃(t) = r(t) +N (0, σ2
N)

• Stuck-at: r̃(t0 + i) = r(t0) +N (0, σ2
θ), i ∈ {1, .., k},

where g = 1.5 is a gain constant, σ2
N = 3 and σ2

θ = 10−9 are Gaussian noises,
t0 is a random time instant where a constant fault starts and K = 10 is its
duration. Different scenario dynamics have been simulated by generating three
different corrupt datasets where the amount of data faults corresponds respectively
to 20%, 30% and 40% of total number of readings. In each dataset, different classes
of faults were mixed in equal parts. For each dataset, the first day of readings
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was used as training set to learn conditional probability tables for the Bayesian
network, while the second day was used as the test set.

5.2.1 Fault detection assessment
The performance of AFD (Algorithm 2), with different QoS constraints over the
response time and the classification accuracy, were compared against two bench-
marks corresponding to the max-product inference algorithm over two different
static network topologies.

(a) (b)

(c) (d)

Figure 5.7: Response time for three different amount of corruption and four net-
work topologies.
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(a) (b)

(c) (d)

Figure 5.8: Classification rate for three different amount of corruption and four
network topologies.

The first benchmark corresponds to a fully connected network, i.e. a single
cluster where 100% of nodes cooperate: the average response time is proportional
to the number of hops required by the algorithm that are fixed to 28 hop; the
classification accuracy also achieves its upper bound.

The second benchmark corresponds to a network where none of the nodes
cooperate, i.e. the number of clusters is equal to the number of nodes; in this
benchmark the average response time is equal to 0 and the classification accuracy
drops to its lower bound. We want to show that the adaptive behavior of AFD
makes it able to meet the imposed constraints, while paying a small cost in terms of
the possibly unconstrained metric; at the same time, although the static topologies
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achieve better performance with respect to one QoS requirement, they dramatically
worsen the other one. We adopted two different set of QoS constraints, namely:

v1 = (verr = 0.06, vlat = unconstrained),
v2 = (verr = unconstrained, vlat = 2). (5.1)

Sensor nodes run the Pareto optimization every T = 100 readings.
Performances are evaluated by using the two considered QoS metrics, namely

the classification accuracy (a value between 0 and 1) and the response time (mea-
sured in numbers of hops), averaged over time windows of size T and over all the
networks nodes.

Figures 5.7 and 5.8 compare the performances of the four considered config-
urations in three different scenarios. As expected, the “100% cooperating node”
configuration always achieves the best classification accuracy and the worst re-
sponse time in every scenario, while the “0% cooperating node” configuration is
the best for response time and the worst for the classification accuracy.

Analyzing the performance of AFD with a constraint over the classification
accuracy (v1), it is possible to note that such metric approaches the constraint
for every scenario, paying an increasing cost in response time as the corruption
percentage increases. Moreover, while the classification accuracy is quite close
to the “100% benchmark”, in comparison, its response time obtains a significant
reduction.

Analogously, AFD with a constraint over the response time (v2) always meets
such requirement by paying a small decrease in the classification accuracy as the
corruption percentage increases. Moreover, at the cost of a small increase of re-
sponse time with respect to the “0% benchmark”, the classification accuracy is
remarkably higher.

Experimental results demonstrate that AFD is able to adapt its behavior to
different scenarios, i.e. to different percentages of corruption in sensory data.
This adaptability corresponds to tuning the unconstrained QoS metrics in order
to satisfy the constrained ones. Figure 5.9 shows this property by comparing
the performance of AFD, respectively with constraints v1 and v2, for the three
considered scenarios. In particular, Figure 5.9 (a) shows how AFD behaves when
a constraint over the classification accuracy is imposed; as shown, it rapidly adapts
the network communication graph, thus increasing the response time for higher
percentage of corruption. Analogously, Figure 5.9 (b) shows that, as the amount
of corrupt samples increases, AFD with a constraint over the response time is able
to tune the classification accuracy by decreasing it after few time steps.

Such results show that AFD is able to find the correct trade-off among the QoS
metrics, satisfying the imposed constraints and taking implicitly into account also
the dynamics of the real deployment scenario.
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(a) (b)

Figure 5.9: A comparison among the average classification accuracy and response
times for different constraints.

Finally, experimental results allow also to evaluate qualitatively the relation-
ship between response time and classification accuracy in three different scenarios,
as shown in Figure 5.10. The plots shown were obtained by averaging values
obtained in the four settings described in previous experiments.

Trends are quite similar for all the three scenarios: the minimum value of the
classification accuracy is clearly achieved for singleton clusters; on the contrary, a
fully connected network gets the maximum of the classification accuracy.

A small increase of the allowed response time, for small cluster size, corresponds
to great increase of the classification accuracy. This behavior is more visible when
the corruption amounts to 20%; in this scenario a response time proportional to 5

Figure 5.10: Average response time and accuracy for the three considered scenarios.
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hops corresponds to a classification accuracy very close to its maximum value.
The three plots tend to asymptotically reach their maximum value as the re-

sponse time increases. Such evidence allows to deduce that farther nodes have
a small influence on the choice of the correct class label; this behavior is strictly
related to the characteristic of the monitored physical quantity (e.g. the tempera-
ture), and simply means that spatial correlation decreases as the distance between
nodes increases.

5.2.2 Prediction and energy saving assessment
The performance of SDP are now reevaluated in a context where data are affected
by errors but after the action of the AFD module.

The mean absolute prediction error is measured in percentage and normalized
within the range of temperature 18◦C to 35◦C, while the sampling rates are ex-
pressed in percentage of the total amount of samples of the starter dataset (30
seconds sampling rates temperature data). All the results are averaged over the
100 sensor nodes and over the four network topologies mentioned previously.

Figure 5.11 highlights that the mean absolute error is quite limited (under 5%)
thanks to the filtering effect provided by AFD. The error in the three considered
scenarios is comparable to the results obtained in absence of faults for the previous
experiments (see Table 5.4). It is quite interesting noting that the best performance
are achieved in the scenario where the corruption amounts to 40%: basically,
whenever a node recognizes that the gathered reading is corrupt, its sampling
rate is reset to its maximum and the node is forced to keep on sensing until it
produces meaningful readings. As a result, the related predictor would exhibit a
high precision at the cost of an increased sampling rate.

Figure 5.11: Mean prediction error for the three simulated scenarios.
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Figure 5.12: Mean sampling rates for the three simulated scenarios.

Figure 5.12 shows the sampling rates for the scenarios considered. As expected
the highest sampling rate is required in the case of 40% of total corruption and
amounts to 0.011 Hertz on average; however, such a value is still quite far from to
the maximum sampling rate of 0.0333 Hertz (30 seconds) and corresponds about
to a 67% of energy saving. The 20% scenario required instead a sampling rate of
0.006 Hertz on average and saved about the 87% of energy with respect to the
maximum sampling rate.



Conclusions

This dissertation described FDDP, a system which builds reliable prediction mod-
els for the data generated by a WSN. The developed system was able to predict
common physical phenomena namely the temperature, the humidity and the light
exposure by means of the SDP software module. Experimental results demon-
strated the ability of FDDP to make reliable prediction for the real network nodes
as well as to generalize the models to unknown environments. The use of prediction
models allowed to reduce the energy consumption of sensor nodes by adaptively
tuning their sampling rate. Whenever the difference between the measurements
and the prediction was within a specific treshold the sampling rate of the node
was lowered. This allowed to reduce sensing and communication toward the base
station that resulted in an overall reduction of the energy consumption of sensor
nodes.

When the data are affected by faults, the prediction models may deviate sub-
stantially from the reality and this issue was addressed by the AFD module. It
implements a cooperative distributed algorithm and uses a Bayesian networks to
detect corrupt measurements within the WSN. Theoretical results have shown
that unlike other works in literature, the algorithm scales well in time, message
and memory complexity. A large set of experiments using data gathered from a
real scenario demonstrated the benefits provided by the AFD module for filter-
ing out corrupt readings; in particular, this allowed FDDP to produce prediction
models with high precision properties also when the amount of corrupt data was
very high, only at the cost of a little increase in the sampling rate of the network
nodes.
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