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Abstract

The present work is the synthesis of the internship period carried out at STMicroelectronics
(Palermo) within APG Automotive Digital Solution Burn-In group.
In the last decade the electronics has progressively increased its presence and importance in
the automotive business. The average car embeds electronics for: safety, Advanced Driver-
Assistance Systems(ADAS), power management, train control system, infotainment and so on.
Safety and security are two fundamental prerequisites, so the electronics must comply with high
standard; this means automotive grade should ideally be free of defects. In this context the role
of testing becomes more and more important.
In order to prevent defective products from entering the market, these devices unlike consumer
electronics, must be tested during the various stages of production. For instance, a malfunction
in a vehicle’s air-bag activation system may have serious consequences for the passenger health.
In this thesis the versatility of the automotive microcontrollers (SPC58 family manufactured by
STMicroelectronics) is explored for the implementation of cost effective solutions for the testing
of automotive digital devices.
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Introduction

The automotive industry involves the design, development and manufacturing of vehicles.
An electronics device is certified automotive grade only if it satisfies certain quality manufactory
standards. Some of these are IATF 16949, AEC-Q100 and AEC-Q200. They guarantee the
reliability of the automotive devices even under extreme environmental conditions. Obviously,
since all these requirements have to be added to the production chain, the cost of an automotive
device is on average 30% higher than the consumer equivalent. For example, an automotive
microcontroller like the SPC58EC80E5 [1] is sold for about 20$, while the consumer device
STM32F446RE [21] is priced around 5$.
Before being placed on the market, all automotive devices must be tested in several steps: from
the production of silicon wafers up to the last functional tests like Burn-In. Usually the testing is
managed by expensive devices (based on LINUX, for instance) which are connected to multiple
Device Under Test (DUT).
In this thesis the traditional testing equipment is replaced with an automotive microcontroller.
An MCU - unlike a traditional CPU - include several peripherals within a single chip, indeed
these devices are designed to interact (control) with the surrounding environment. Microcon-
trollers are exploited in areas like: IoT, robotics, control systems, automotive and so on.
The low cost, versatility motivate the choice to propose testing solutions based on microcon-
trollers. From this perspective, an MCU becomes the supervisor and it’s able to manage the
testing of other integrated circuits. In particular, this thesis refers to a previous work [24], in
order to integrate it with additional features.
The first chapters introduce the reader to the topics discussed in the thesis. Chapter one provides
a general overview of microcontrollers and their context of use, referring to the automotive envi-
ronment: ABS, ASR, AIRBAG, ECU. This chapter highlights how these devices are different
from a traditional CPU, both in terms of the number of peripherals directly integrated into a sin-
gle chip, and in the significant difference of the computational resources. This last consideration
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underlines how profoundly different are the software design techniques; the proposed solutions
are consequently aimed to a careful and scrupulous use of MCU resources.
The third chapter introduces some of the testing methodologies included in the state of the art;
techniques like Burn-In, ATPG, and JTAG will be analyzed. The thesis refers to the previous,
proposing solutions that can be managed directly by a microcontroller. Eventually the next
chapter concludes the first part, it provides an overview of the hardware and software tools used.
The entire source code is written in ANSI C language, within the SPC5-Studio development
environment. This last is not a conventional tool: it includes APIs and other essential features
for writing applications that can be run by the SPC5 family microcontrollers (produced by STMi-
croelectronics). In addition the logic analyzer, a device that allows to capture digital waveforms,
is used together with the analysis software PulseView.
Once all the basic notions, necessary to understand the thesis work have been introduced, chapter
four deals with the description of the implementations. It is divided into two parts: the first one
discusses a mode of vectorial communication, based on the parallel control of a General Purpose
Input/Output (GPIO) port. In the second part instead proposes the integration of a Pseudorandom
Number Generator (PRNG) algorithm developed at the Politecnico di Torino, it is exploited to
generate stimulation patterns for testing. The chapter describes two operations: sending patterns
and checking the test result.
In conclusion the first of the last chapters introduces the Generic Timer Module (GTM): a pe-
ripheral designed by BOSCH (as an Intellectual Property) and integrated in some automotive
microcontrollers. The peripheral is used to control the vehicle’s mechanical systems, a practical
example is the engine carburation management. The chapter offers a basic device overview,
useful to understand the application described in the following. The purpose of the application
is to provide an additional communication interface to the microcontroller, similar to a Serial
Peripheral Interface (SPI) based on the GTM.
Finally in the conclusions the proposed solutions are discussed, analyzing their strengths and
weaknesses.
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Chapter 1

MicroController Unit (MCU)

This chapter is an overview of microcontrollers in order to introduce these devices and the
applications in which they are used. It’s important to underline that microcontrollers are different
from a traditional CPU and therefore the approach to software design executed by these devices
is totally different. CPUs and MCUs are not alternative devices, but are used in different contexts
in which one could not replace the other. The chapter starts with a general description of the
MCUs and the automotive environment: hardware features and applications in which is possible
to find them. After this brief presentation will be deepened all the topics that later will be the
subject of this thesis work.

1.1 MicroControllers Overview

An MCU [4] is a single device containing in addition to a traditional CPU a number of
peripherals, I/O devices, memories and analog components. The systems where is possible to
find a microcontroller are among the most varied: domotics, industrial machines, automotive,
control systems, robotics, medical devices, IoT, and so on. One of the major difference between
a general purpose CPU and an MCU is the number of peripherals integrated in it, this is why
a microcontroller is designed to interact with the physical world surrounding it, in which it is
embedded. For example an MCU inside a washing machine may need to communicate with the
device that regulates the flow of water. A general purpose CPU is definitely a more powerful
device in terms of computational resources, however in the context of the use of microcontroller
other features are required. Often these applications require high performance in terms of energy
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saving, with consumption also of the order of nanowatts. This can be achieved by setting the
devices at low working frequencies (order of kHz as well), but still sufficient for the purpose
of the application. In addition, in many real time systems a strict respect of time constraints is
mandatory, a common CPU also with much more computing power is not designed to ensure
this kind of constraints. The Table 1.1 shows some of the main differences between CPUs and
MCUs.

MCUs CPUs
Special purposes applications like Embedded
System: automotive, domotics, IoT, robotics,
medical devices.

General purpose applications like PC, laptop,
smartphones.

Real Time Operating System (RTOS), bare-
metal, FORTH interpreter.

General purpose OS like Windows, Linux,
macOS.

Low clock speed kHz order as well. High clock speed GHz order.
Low computational capacity. High computational capacity.
Low cost system. High cost system.
Low power consumption. High power consumption.
4 - 32 bit architectures. 32 - 64 bit architectures.
A lot of peripherals and memories embedded
into a single chip.

Only CPU. RAM, ROM and other peripher-
als are connected externally.

Table 1.1: Some differences between MCUs and CPUs.

A microcontroller is usually a cheap device, the cost for each unit may also not exceed 1$ as
well. The low cost and the versatility of use in multiple contexts have allowed a great success
on the market, in 2002 about the half of the global market of CPUs sold were MCUs [22]. As
stated above, microcontrollers interact with the surrounding physical environment, so they must
be able to respond to the stimuli provided by it. The concept of interrupt is critical, this latter are
raised to report that a certain event has occurred, for example a new data available from a sensor.
The interrupts are important in a context of energy saving because the MCU can remain inactive,
thus save energy until an interrupt is raised. Typically for an application a several number of
MCUs are needed, each of which deals with a part of the physical environment. An application
is basically a black box that receives external stimuli via sensors, while performs actions through
actuators.
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Figure 1.1: Inside an MCU. Image from [4]

As a part of an applications, the MCUs are then included within this chain, in fact they
are connected to sensors and actuators, the first to process external inputs, and the second to
perform actions on the environment. In order to do this, an MCU is rich of I/O peripherals
like: SPI, I2C, GPIO, Ethernet, USB, and so on. A versatile peripheral is surely the GPIO,
each pin is configurable by software as input, output or alternate function. The MCUs usually
included ADCs, which are devices able to convert an analog signal to a digital, this is necessary
because the environment is intrinsically analog but it is processed by the microcontrollers as
digital. Some MCUs integrate components to make special purpose calculations, for instance a
DSP processor for audio signal and image processing, speech recognition and so on. Not least
the timers can measure events or be used for generating PWM signal for the control of systems
such as engines.
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In summary as shown in the Figure 1.1 an MCU usually includes :

• CPU from 4 bit to 32 bit processors;

• RAM memories;

• Clock generators (quartz oscillator, RC circuit);

• Non-volatile memories: Flash, EEPROM, ROM, EPROM;

• PWM generators and timers;

• Several communication interfaces: UART, I2C, Ethernet, USB, SPI;

• ADC and DAC converters;

• JTAG for debugging.

For the software development on a microcontroller, it is typically used an environment (executed
on a development machine) capable of compiling the object code for the target MCU (cross-
compilation). Often this environments provides APIs called HAL, these software libraries allow
the user to configure and use the device and its peripherals in different ways. An example of
a development environment is SPC5-Studio, reference software for this thesis work described
in the third chapter. Nevertheless is also possible for the MCU to run language interpreters
based for instance on Python or FORTH. The choice always is closely related to the hardware
resources of the device, indeed it may have no problems running the simple FORTH interpreter,
while more complex Python-based environments may not be supported.
On some microcontrollers that have a sufficient computing capacity can be executed particular
OS called Real Time Operating System (RTOS). In short they are simple systems capable of
ensuring strict operational constraints. Eventually when an MCU does not run any operating
system the development is defined as bare-metal.
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1.1.1 Automotive Microcontrollers

In the automotive industry, integrated circuits such as microcontrollers are applied for vehicle
management. The MCUs can be found in different contexts: from the control of the carburetion
up to the management of the entertainment; more subsystems can communicate and cooperate
with each other (Figure 1.2).
Often inside a vehicle some MCUs are replicated, usually there is a secondary microcontroller
that verifies the operation of the primary one, so as to always ensure the critical functionality.
Moreover, certain multi-core devices have a shadow core: it replicates the operations of the
main core, for example with a delay clock cycle. Then, the verification of the correctness of
the performed operations is always possible. Among all the devices integrated in a vehicle the
fundamental one is definitely the ECU. Such system works in real time, continuously moni-
toring the sensors connected to it and responding to stimuli through its actuators, controlling:
cooling system, emission control, fuel injection, diagnostics, ignition system, and so on. A
correct setting of the ECUs ensuring maximum performance in terms of safety and consumption.
Another use case of automotive MCUs is certainly the handling of safety systems, among the
most popular: ABS, ASR, BAS. A practical example is the activation of the ABS system: the
sliding of the tires on the slippery asphalt can be detected by a microcontroller through a sensor,
and consequently the ABS system is activated by its actuators.

Figure 1.2: A series of microcontrollers inside a car. Image from [11]
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C H A P T E R 1 . M I C R O C O N T R O L L E R U N I T ( M C U )

With the spread of IoT and the growing development of autonomous or semi-autonomous
driving even more frequent use of MCUs is needed. Moreover these ICs manages passenger
comfort, air conditioning, navigation systems, infotainment and not least entertainment.
It’s important to note that more a vehicle becomes integrated and connected, more it is an attack
surface for hackers, hence is crucial to design reliable and robust systems also from this point of
view. The testing of these devices is crucial, they are designed to have the minimum number of
failures. Later in this thesis this topic will be widely discussed.

1.2 Serial Peripheral Interface (SPI)

The SPI [31] is a serial and synchronous bus interface used in the communication of inte-
grated circuits such as memories, MCUs and other digital devices. The transmission is controlled
by a master device that emits the clock signal, one or more slave devices are connected to the
master in different configurations. The bus is composed of four signals

• Master Input Slave Output (MISO);

• Master Output Slave Input (MOSI);

• Serial Clock (SCK);

• Slave Select (SS).

As previously mentioned, the communication is serial therefore the bits are sent one at a
time, and it is also synchronous because among the signals that make up the bus there is a clock
signal (emitted by the master) that scans the transmission. The communication can take place
simultaneously in both sending and receiving, then the bus is defined as full duplex. Both master
and slave devices are equipped with a shift register typically of eight or sixteen bits. At each
clock pulse the devices that communicate emit a bit from their shift register and replace it with
a bit emitted by the others. Specifically as shown in the example in Figure 1.3, a bit emitted
by the master in the MOSI line will replace the corresponding bit in the shift register of the
slave device, and at the same time the bit emitted by the slave in the MISO line will replace the
corresponding bit in the shift register of the master device.
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Figure 1.3: SPI transmission schema. Image from [38]

The two parameters CHPOL and CHPHA determine the polarity and the phase of the clock
respectively. The CHPOL value defines the logical level of the clock line when the transmission
is not active, while the CHPHA parameter specifies the sampling edge of the data line by the
receiver: rising or falling edge of the clock signal. With two parameters four different configura-
tions are available, but two of which are equivalent (CHPOL = 1 CHPHA = 1 and CHPOL = 0
CHPHA = 0).
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Figure 1.4: Example of an SPI transmission. Image from [15]

The Figure 1.4 shows a simple transmission between a master and a slave device, the data
exchanged are ASCII characters. Note that the SS line enables the device with which to commu-
nicate, in some contexts can also be omitted. It’s important to note that the SPI standard does
not define a limit transmission rate, however this dependent on the communicating devices.
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1.3 General Purpose Input/Output (GPIO)

A GPIO is a communication interface integrated in microcontrollers and others integrated
circuits to read or write digital signals (voltage values encode the logical value 0 or 1). Usually
the GPIOs are used to communicate with external devices such as sensors, memories and so on.
This interface can be set to input, output and even alternative functions (provided by internal
peripherals like SPI) by writing appropriately the configuration registers. The settings typically
include also the electrical characteristics of the peripherals such as pull-up or pull-down config-
urations. Often different devices operate at several voltage levels (typical values are 2V, 3.3V,
5V) and therefore it may be necessary to connect the GPIOs using appropriate level shifters to
ensure compatibility. Generally the GPIOs are grouped in ports and configurations are available
for a set of pins belonging to the same port. Finally this peripheral can raise interrupts or used
in Direct Memory Access (DMA) mode in order to minimize the overhead of the CPU.

Figure 1.5: An example of a GPIO port.
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1.4 Direct Memory Access (DMA)

The I/O management is a critical feature, an MCU interacts with the external environment
through the peripherals in different ways. Clearly the instructions executed to manage the I/O
consume processor time, hence there are several techniques to efficiently and independently
perform this task. The following are three common ways in which an MCU can handle read and
write from peripherals:

• Busy Wait;

• Interrupts;

• DMA.

The first technique involves a loop in which the CPU remains until the data from a peripheral is
available. Basically in this case the CPU remains locked and cannot executes other instructions,
so the waste of clock cycles is maximum. The second technique uses the interrupts, the CPU
executes other instructions, when the peripheral is ready it raises an interrupt and consequently
the CPU stops executing the code it was executing to jump to an interrupt routine that handles
the I/O operation. Even if the microcontroller can execute other instructions while waiting for
data from the peripheral, when interrupts become too frequent the resulting overhead could
degrade the performance of the application.
DMA [3] is an integrated device used to perform CPU-independent memory access operations,
this frees the CPU because the DMA controller is able to control the data bus independently. Just
an operation has to be executed by the CPU, the setting of the DMA registers to initialize the
I/O task. When the data transfer is completed the DMA controller raises an interrupt to report
the event.
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Figure 1.6: A schema of a DMA system configuration. Image from [35]

The DMA system (Figure 1.6) is configured via software by writing configuration registers
that usually are four:

1. Inside the first register (Source) is written the address of the device from where to read or
write the data;

2. The second register (Destination) contains an identifier for the I/O peripheral to use;

3. The third register (Count) stores the amount of data (in bytes or words) to be transferred;

4. The fourth register reports the completion of the I/O operation.
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It’s important to note that even if the DMA relieves the CPU from the I/O management the
data bus is still occupied, then the CPU may not be able to use the bus until the operation is
completed. Some transfer modes are the following [8]:

• Burst Transfer: the data bus is busy by the DMA controller until the data transfer is
completed;

• Cycle Stealing: the transfer is performed only when the peripheral is ready, therefore the
bus occupation by the DMA controller is not continuous, but can be interrupted if the
peripheral does not have new data;

• Transparent/Hidden: in this case the controller can just use the bus if the CPU is not
occupying it.

1.5 Real Time Operating System (RTOS)

An Operating System (OS) provides the basic functionalities to handle the hardware and
software resources of a computer system. Among the essential components of an OS for example
there are the Scheduler, which selects the running processes, or the File System which manages
the stored files. However a General Purpose OS like Linux or Microsoft Windows is not always
suitable for all contexts of use, usually when dealing with MCUs there is a need to have a class
of systems able to run in poor computational resources environments, and capable of ensuring
strict time constraints. A conventional OS can crash at any time, this may not be tolerated in
particular applications. As an example, a crash in the flight control system of an aircraft can lead
to catastrophic consequences.
An RTOS system is essentially a scheduler able to guarantee a deterministic execution time for
the instructions executed by a microcontroller. This type of systems does not include all the
components of a general purpose OS, this is why the devices on which they are executed don’t
have the necessary computational resources. Moreover many of these components are useless
in these contexts, the Table 1.2 summarizes the main differences between them.
FreeRTOS [36] is a Real Time Operating System (RTOS) available under MIT license and free
to download from the developer’s website. The system provides methods for creating threads
(also called tasks), mutex and semaphores for their communication. In addition it assigns a
running priority to each of the threads, this is the mechanism that allows the scheduler following
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a round-robin order to ensure time constraints. As mentioned above, to assure low memory
occupancy and running speed, the system does not integrate some of the advanced features
present in a normal OS, furthermore the tickless kernel mode can be activated for low-power
applications. Some add-ons are available, for example the FreeRTOS command line interface.
Further details are available in the reference manual. [33]

Real Time Operating System (RTOS) General Purpose Operating System (OS)
Deterministic time of execution. Random time of execution.

Low amount of computational resources needed. High amount of computational resources
needed.

Simple user interface like CLIs. Complex user interface like GUIs.
Connectivity is provided as add-ons. Full connectivity support.
Special purporse applications like robotics, au-
tomotive, flight control and so on.

General Purpose applications: laptop, smart-
phones, PC.

Static memory allocation. Dynamic memory allocation.
No Virtual Memory. Virtual Memory.

Table 1.2: Some differences between RTOS and General Purpose OS.

17



Chapter 2

Automotive Testing: State of the Art

The design, development and sale of motor vehicles are part of the automotive industry.
In this context electronic systems [10] handle vital functions for a vehicle: check the braking
system, air-bag activation, assisted braking and so on. The testing of these systems is a crucial
objective to prevent defective products from entering the market. The cost for testing a device
is considerable both in terms of time and money, therefore it’s important to develop efficient
and effective testing approaches. Today the industry is oriented on the concept of Design for
Testability (DFT): the ICs are designed to integrate already the circuitry necessary for testing.
The complexity of the devices and an increasing demand for lots from the market, make obsolete
and inefficient the manual techniques that were used in the past. The following will describe
some of the most known testing methodologies in the automotive field. The first part of the
chapter introduces DFT, while the second describes the JTAG standard, which basically provides
an universal access door to the device. Finally testing methodologies such as ATPG, Burn-In
and System Level Test (SLT) are presented. From now on the tested device will be referred to
as Device Under Test (DUT).

18
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2.1 Design for Testability

In VLSI systems the number of transistors and then logical ports that are integrated within
an Integrated circuit (IC) has grown enormously. The performance of these systems continue to
improve, but on the other hand the complexity has become such that manual tests are inefficient.
Design for Testability [39] is a set of techniques and guidelines useful to design devices in order
to make testing operations more efficient and less expensive. These techniques can be divided
into two categories:

• Ad hoc: metologies developed for a particular device and not always applicable in a
generic way;

• Structured: a set of general strategies applicable on devices that are designed to implement
them. Some of the most known are: JTAG, ATPG, BIST, Burn-In.

Testing a device means verifying that it does not present any defects that could lead to malfunc-
tions during its use. A fault model is able to provide a general metric for the error evaluation,
clearly these models do not include all possible defects. Nevertheless the alternative is to con-
sider a DUT from an electrical point of view: a set of resistors, capacitors, inductors and so
on [42]. Often this mode is impractical because already for a simple AND port the amount of
defects that is possible to model grows significantly.
The STUCK-AT model is one of the most known, it is based on the hypothesis that in the case
of fault the input or the output of a logic port is stuck at a fixed high or low logical level. Other
examples are the following:

• Cellular Fault Model;

• Hard Bridging Faults;

• Transistor Faults;

• Parametric Faults.

It’s important to underline that a model is just an abstract representation of the faults, for instance
in the case of the STUCK-AT the cause is not distinguished, the logical level of a line could be
blocked due to a short-circuit to mass or a voltage reference.
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The quality of a model is measured according to the amount of fault that it is able to detect:
the so-called fault coverage. However even a fault coverage of 100% does not guarantee the ab-
sence of defects, indeed the fault coverage is referred to the model which is always an imperfect
abstraction [26].

Figure 2.1: STUCK-AT model example. Image from [39]

The Figure 2.1 shows a simple example of the previous, the gate 2.1(a) is fault free while
the gate 2.1(b) is faulty. A possible test could be the stimulation with the input pattern
(A = 0, B = 1). As it’s clear the input A in 2.1(b) is "STUCK-AT-1", then the port is defective
since with this input pattern the output C should have the logical value 0 and not 1.
Generally a test model works if it’s possible to distinguish whether a machine is functioning or
not (Figure 2.2).

20



C H A P T E R 2 . AU T O M O T I V E T E S T I N G : S TAT E O F T H E A R T

Figure 2.2: Faulty and Good machine. Image from [39]

Controllability and Observability are the principles on which the Design for Testability is
based. The example in Figure 2.1 is also useful to clarify these two concepts. To check if the
input A is "STUCK-AT-1", the first of the two properties is required. Indeed the inputs A and B
are controlled to perform the simple test described above. Also the second property is necessary
because the output C must be "observable" to verify the test result. These two features are not
trivial, in fact in a complex system such as a sequential network may not be fully guaranteed.
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2.2 Joint Test Action Group (JTAG)

JTAG [14] is an industrial standard (IEEE 1149.1) developed by the Join Test Group, a
consortium of integrated circuit manufacturers. Devices implementing the standard are equipped
with additional circuitry that provides testing capabilities. Via JTAG a device is accessed in test
mode, then a DUT can be configured in all its parts, also some additional features (hidden in
user mode) are available. For example the device’s RAM and flash memories can be written or
read even while it is executing instructions, as well as all configuration registers. The standard
provides several signals, some are mandatory while others depending on the particular device and
the manufacturer. These last along with the precise sending sequence, are usually confidential to
avoid that a normal user has universal access to a device. The mandatory lines are the following:

1. Test Clock (TCK);

2. Test Mode Select (TMS);

3. Test Data In (TDI);

4. Test Data Out (TDO).

Before analysing each of the above, it’s necessary to introduce the JTAG Test Access Port (TAP).
The previous (Figure 2.3) is a state machine whose purpose is to manage the device in test mode,
it consists of a series of registers and multiplexers.
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Figure 2.3: JTAG TAP. Image from [32]

As shown in the Figure 2.3 the TAP is composed of sixteen different states, to move inside
the state machine is used the TMS signal, sampled on the rising edge of the TCK signal. Some
states are symmetrical and refer to different shift Registers: Instruction or Data Registers. These
will be analysed later in the course of the paragraph.

• Test-Logic-Reset: in this state the device executes normal instructions, all test modes are
disabled. In addition there is an optional fifth Test Reset (TRST) line that allows to reach
this state by keeping the TMS signal high for 5 cycles of the TCK signal [41];

• Run-Test/Idle: the machine performs the selected testing operations;
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• Select-DR-Scan , Select-IR-Scan: the initial state for accessing Data or Instruction regis-
ters;

• Capture-DR , Capture-IR: the first state allows the selected data register to shift data (input
or output), the operations are performed on the rising edge of the TCK signal. The second
state is used to load parallel inputs into the instruction register;

• Shift-DR , Shift-IR: in both states the same operation is performed on the selected data
register or on the instruction register: a bit coming from the TDI signal is shifted within
the register at each rising edge of the TCK signal, and consequently one is emitted on the
TDO line in correspondence to the falling edge of the same signal;

• Exit1-DR , Exit1-IR: these states end the shifting operation for the respective registers,
the next reachable states are PAUSE or UPDATE;

• Pause-DR , Pause-IR: both used to pause shifting operations in their registers;

• Exit2-DR , Exit2-IR: they end shifting and update the corresponding registers;

• Update-DR , Update-IR: the data contained in the selected data register or the instruction
register are loaded into a latched parallel output.

The instruction register contains the type of test to be performed or the address of the data
register to be accessed, the standard provides the following 3 mandatory instructions, however
some devices may include other:

• BYPASS: the TDI and TDO lines are connected through the BYPASS register (an one-bit
register), the instruction is useful to control several DUTs simultaneously;

• EXTEST: the effect of this instruction is to connect the Boundary Scan Register (BSR) to
the TDI and TDO signals, so is possible to read or set the state of the device pins;

• SAMPLE/PRELOAD: like the previous also this instruction allows to connect the TDI
and TDO signals to the BSR register. Nevertheless in this case the instruction takes a «
snapshot » of the device during normal operation. It’s also possible to preload test data
within the BSR register before executing the EXTEST instruction.
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Figure 2.4: Schematic Diagram of a JTAG enabled device. Image from [32]

IDCODE is another common instruction, the latter is useful to get feedback from a device, the
TDI and TDO signals are connected to the IDCODES data register (if any) in order to read the
device ID. The standard requires that the TAP necessarily includes two data Register: BSR and
BYPASS, however as in the previous case, one device may include others.

• Boundary Scan Register (BSR): as shown in the Figure 2.4 this register consists of Bound-
ary Scan Cells and it is connected to the device I/O pins to test their proper functionality;

• BYPASS: this one-bit register combines the TDO and TDI lines to easily manage multiple
connected devices;
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Figure 2.5: Daisy Chain connection. Image from [37]

Finally connecting multiple DUTs in cascade mode (daisy chain connection) it’s possible to
drive the TAPs of heterogeneous devices with the same set of signals. In this way as the Figure
2.5 shows, more devices can be tested at the same time. This feature becomes useful as only one
supervisor can manage more DUTs.
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2.3 Automatic Test Pattern Generation (ATPG)

ATPG is a testing strategy whose purpose is to stimulate a DUT with particular bit patterns
which model possible defects of a device. By analyzing the DUT’s response to stimulation, any
defects, together with various information on them can be identified.
A DUT is configured to run ATPG test through JTAG, it’s important to note that JTAG can
be considered as an universal access port to the DUT, while ATPG instead is a testing mode.
Usually an ATPG transmission includes at least four signals:

1. Scan In (SI): to send stimulation bit patterns to a DUT;

2. Scan Out (SO): line encoding device response to stimulation;

3. Scan Enable (SE): enable testing;

4. Serial Clock (SCK): provides the clock signal needed to scan operations.

During this test a device ends to be an IC and simply becomes a sequential network to be
stimulated by ATPG pattern and from which to observe the response.
As shown in the Figure 2.6, inside a DUT a sequence of so-called Scan Flip-Flop (SFF) makes
up a scan-chain. These flip-flops are connected to the combinational part of the IC composing
the sequential network that represents a device in ATPG mode. A scan-chain behaves like a shift-
register, within the latter the bits of an ATPG pattern are shifted. Moreover different scan-chains
test multiple areas of a DUT.

Figure 2.6: A scan-chain example. Image from [6]
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The method consists of two distinct phases:

1. Shifting phase: at each pulse of the SCK signal the SFF flip-flops are filled via SI line
with the bits of an ATPG pattern, since each flip-flop is connected to the combinational
network, the latter will evolve on the basis of the data stored in the flip-flops;

2. Shifting + capture phase: in this phase the evolution of the sequential network (SFF plus
combinational network) is stored in the flip-flops and then shifted out through the scan-out
line. Since the device’s response is shifted out on the scan-out line, it’s possible to analyze
it in order to verify the presence of faults in the device.

As briefly mentioned above, an ATPG pattern is a sequence of bits designed to make visible
any defects of a DUT after its stimulation. These patterns are usually generated by appropriate
software integrating algorithms that exploit mathematical models often based on heuristic tech-
niques: D, PODEM, FAN are among the most known algorithms [23].
Another possibility to generate ATPG patterns is based on pseudorandom numbers, using a
Pseudorandom Number Generator (PRNG) algorithm to build seemingly random but repeatable
(knowing the initial seed) bitstream. An example of this latter technique will be widely discussed
in this thesis.

2.4 Burn-In

Burn-In [26] is a testing methodology whose principle is to make evident extrinsic defects
of a device. This kind of faults are not caused by a bad design, but rather due to defects during
the production phase.
The test is based on the Bathtub curve (Figure 2.7), on the x-axis is depicted the lifetime of a de-
vice, while on the y-axis is shown the failure rate (which can be measured according to different
criteria) [12]. Inside the lifecycle of a device are distinguished three phases corresponding to
the areas of the Bathtub curve:

1. Infant mortality;

2. Constant failure;

3. Wear out.
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Figure 2.7: The Bathtub curve. Image from [40]

How the Figure 2.7 shows, the shape of the curve (the failure test rate) decreases at the beginning
(Infant mortality) and grows at the end of the life cycle (Wear out), while it remains approxi-
mately constant in the middle (Useful lifetime). It’s intuitive to motivate the previous behavior:
if a device is defective then the defects will lead to a failure already during the first period of use;
in the central part of the curve (Constant failure) instead the rate of failure is constant because
it’s more rare that a break occurs once the first period of operation is exceeded. Finally, the
increase in the third part of the graph is clearly due to the normal wear of the device, that over
time will naturally tend to break.
Burn-In test aims to age a DUT to verify that it exceeds the infant mortality phase, thus decreas-
ing the probability probability of having extrinsic defects. A device tested with this methodology
when placed on the market is already in the central part of its life cycle.
The aging is achieved by stressing the device with levels of voltage, current and temperature
that go beyond its normal operating range. The correspondence between Burn-In and aging time
is determined by a mathematical relationships [13] that usually are strictly dependent on the
voltage, current and temperature with which the DUT is stimulated.

29



C H A P T E R 2 . AU T O M O T I V E T E S T I N G : S TAT E O F T H E A R T

2.5 System Level Test (SLT)

Unlike previous methodologies, SLT involves a functional test of a device. The aim of the
last is to verify the functioning of a device in an environment that simulates its final context of
use. For example, if the DUT is an automotive microcontroller, by applying functional patterns
[7], interaction with other vehicle devices can be verified: reading from sensors or peripherals,
writing external flash memories, checking communication protocols, and so on.
The cost for this type of test is relatively low respect to a full pin test, but more expensive than
a simple Burn-In test, that usually stimulates a low number of pins. Moreover the SLT can be
easily updated by adding new functionalities [5]. A device before being placed on the market is
tested several times and in different ways: from the production of silicon wafers, up to functional
tests. Consequently, the test techniques described in this chapter can be performed in cascade.
The duration of SLT is in the order of minutes [5], to optimize costs (in terms of time and money)
it is possible to combine together different types of tests, for example the union of Burn-In and
SLT [2]. Clearly to accomplish the last task, it is necessary to modify the test boards used for
Burn-In, in order to integrate what is necessary for SLT.
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Chapter 3

Tools and Software Environments

The following is an introduction of the hardware and software tools used to accomplish
this thesis work. All listed information are freely available from the websites of the software
providers. The SPC5-Studio development environment [27] will be described initially, and then
the software PulseView [25]. Finally the target MCU [29] will be presented.

3.1 SPC5-Studio

SPC5-Studio is an Eclipse-based environment that allows to develop software applications
in a simple and intuitive way for the SPC5 32-bit microcontroller family produced by STMicro-
electronics. The software is free and downloadable directly from the website [27]. To start a
new software project is sufficient to select a target MCU, or a development board among the
many available (Figure 3.1). In addition, the environment integrates a series of ready-to-use
examples. The software provides graphical interfaces to configure the target device, eventually
the environment generates the folder hierarchy and the corresponding source code based on the
configurations chosen by the developer. The source code includes the HAL, a set of software
libraries that abstract the hardware level to provide the functions necessary for its use. All the
settings are stored in an xml file (configuration.xml) in order to facilitate the export to other en-
vironments. Another useful file is the makefile, by editing it, is possible to set some compilation
options and select the files to include in the compilation process. In addition SPC5-Studio is
able to manage both C and C++ source files simultaneously.
The bare metal development mode is not the only one, indeed the source code of the Real Time
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Operating System (RTOS) FreeRTOS can be included in a project. Another notable feature is
the compatibility with the MISRA C standard. The latter is a set of guidelines for the devel-
opment of software written in ANSI C whose purpose is to ensure greater security, reliability
and portability of the code. In automotive and other fields where it’s necessary to minimize any
errors resulting from incorrect writing of the software, this standard is widely required.

Figure 3.1: SPC5-Studio target device selector.

Some of the configurations that have been useful in the development of the applications
covered by this thesis are now described. The PinMap Editor (Figure 3.2) graphically handles
the setting of the GPIOs, according to the MCU target datasheet, it’s possible to set a GPIO
in input, output or as an alternative function (SPI, GTM, UART and so on) and specify some
electrical properties like pull-up or pull-down. In addition to the GPIOs, the environment gives
the ability to enable, disable or configure (interrupt configuration, DMA mode, callbacks setting
and so on) also the other peripherals. Through the corresponding window are managed the
SPI bus settings: transmission frequency, polarity and phase. In the following chapters the
Generic Timer Module (GTM) peripheral will be the subject of an in-depth analysis, SPC5-
Studio provides interfaces for interaction with this device as well. Even the clock tree can be set
by graphical user interface, moreover the software checks the inserted values, avoiding incorrect
configurations.
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Figure 3.2: SPC5 Studio PinMap editor.

Figure 3.3: SPC5-Studio enable/disable peripherals.

In closing SPC5-Studio also integrates a direct access to the software UDE STK debugger
[34]. The latter in STARTER KIT version is freely downloadable from the website. The debugger
installed on the development machine is connected to the target MCU through a JTAG/USB
dongle, the compiled object code is first flashed into the device’s memory, and then executed
and controlled step by step.
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3.2 PulseView

PulseView is a software capable of analyzing the waveforms captured by a logic analyzer.
In detail this device is connected to the signals to analyze and to a development machine where
PulseView is installed. The software presents a simple interface in which is possible to view the
logic analyzer input channels. From the main screen are selected the sampling frequency and
the number of samples to capture, obviously these parameters should be chosen in such a way
as to ensure the correct reconstruction of the signal, according to Shannon Sampling Theorem.
The capture of a line can be activated manually, or by specifying a trigger in order to start the
acquisition of samples at a specific moment. For example on the rising or falling edge of a clock
signal. The capture will start only after the selected trigger is detected, and will end when all
the samples are acquired. After the acquisition the captured waveform is displayed and then
it’s possible to analyze it with the tools provided by the application. These tools also include
a decoder, useful to intuitively view data transmitted using the most common communication
protocols. The Figure 3.4 is an example of capturing the SPI bus component signals, the trigger
is set on the rising edge of the SCK signal. Moreover, the decoder encodes the transmitted bits
in hexadecimal.

Figure 3.4: PulseView example capture SPI bus. Image from [25]
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3.3 Target MCU

The target microcontroller for this thesis work is the SPC58NE84C3 [29] produced by STMi-
croelectronics. This device belongs to the SPC58 family of 32-bit automotive microcontrollers,
it is mounted on the evaluation board [28] [30] (Figure 3.5). This last allows the developer to
interact with all the peripherals of the MCU, providing all the connectivity needed.
Below some of the main device features:

• 32-bit PowerPC Architecture multi-core (three main CPUs);

• 6576 KB flash memory;

• 768 KB SRAM;

• GTM-343 device;

• 10 deserial SPI interfaces;

• Two Ethernet controller 10/100 Mbps (IEEE 802.3-2008 standard compliant).

Figure 3.5: Development board. Image from [28]
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Chapter 4

Vectorial Mode and Pseudorandom

ATPG Pattern

The following paragraphs discuss two different software implementations, to be integrated
into complex test environments based on FreeRTOS. Obviously in accordance with the objective
of this thesis, particular attention will be paid to the resources of the supervisor MCU. The first
of these techniques, designed by Ing. Francesco Peri (STMicroelectronics), refers to parallel
control of a GPIO port in order to achieve a vector communication with a DUT. Each GPIO
encodes one of the lines needed for the testing activities, some of these are part of JTAG standard,
or signals required by an ATPG transmission. In the second part of the chapter, reference will be
made to a Pseudorandom Number Generator (PRNG) algorithm [9], used for generating ATPG
patterns (arrays) based on pseudorandom numbers. In the context of this section the arrays
generated by the algorithm will be referred as chunk.

4.1 Vector Transmission

A digital signal can be shaped as a sequence of binary values. For instance to generate the
clock signal in the Figure 4.1(a) using a simple GPIO pin, it’s sufficient to set in series the logical
level of the peripheral first to 1 (high) and then to 0 (low). Obviously a crucial parameter is the
value T, indeed the latter establishes how long the value of the GPIO is held high (or low). This
time interval is basically a delay that the CPU waits before setting the following logical level.
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Figure 4.1: Digital signals as a sequence of binary values.

Clearly the same argument can be applied for any digital waveform, the only difference is the
binary sequence used to encode it (the value of S in the Figures 4.1(a) and 4.1(b)). To generalize
as described to multiple signals, a succession of n-bit words (Figure 4.2) encodes n different
signals, and each of the i-th bit represents the binary value of a line in a certain instant. The
previous figure can be seen as a simple SPI transmission generated in GPIO mode, of course the
Figure 4.1(a) is the SCK line, while the Figure 4.1(b) the MOSI channel. In this case it would
be necessary to control in parallel (taking into account the value of T) two distinct GPIOs, on
the basis of as many sequences of binary values. The result is the same as that obtained with a
real SPI bus.
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Figure 4.2: Time evolution of JTAG signals encoded in an 8-bit word.

For a JTAG or ATPG transmission several lines are required, their number depends strictly
on the DUT to be tested. For example in the Figure 4.2 are depicted some of the lines included in
the JTAG standard. The remaining bits may be used for other signals such as the TRST (which
as described in paragraph 2.2 is not mandatory in the standard), or dependent on the particular
DUT.
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4.1.1 Arrays Architecture

Generally, the evolution of a signal can be stored in arrays whose size and type depend on
how many lines are required by the transmission. For instance if the bus consists of eight separate
signals, an array of char will suffice. Each of the element is thought in the way described in the
previous paragraph.

Figure 4.3: JTAG transmission of some stable signals.

Once the array is defined, it will be sufficient to scroll it along its length. The elements will
be used to drive in parallel a set of GPIO pin belonging to the same port. The latter problem in
the case of this work is immediately solved using the SPC5-Studio development environment.
The software described in 3.1 includes among all functions that belong to the HAL libraries,
the function pal_writepad. The previous receives as argument the GPIO port to drive and an
integer whose bits encode the logical level of the pins belonging to the port. However using
just one array, although an intuitive choice, is not the most efficient solution. The Figure 4.3
shows a set of signals that make up a JTAG transmission. Some lines including the TDO and
TMS, do not vary frequently, they keep their value (high or low) for some time. Hence from the
arrays point of view, a repetition of elements resulting in memory waste. The proposed solution
defines a kind of "data compression", instead of using just one array, two of the same size are
allocated: Masktorepeat and Timestorepeat. The former defines the waveform of the signals to
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be transmitted, while the second stores the number of times that the corresponding element of
the first array must be repeated. The following example clarifies the above:

MaskToRepeat = {0x11,0xA5,0xBA...} (4.1)

TimesToRepeat = {0x10,0x05,0x01...} (4.2)

MaskToRepeat[0] = 0x11 = (0001 0001)2 (4.3)

TimesToRepeat[0] = 0x10 = (16)10 (4.4)

Since the array 4.1 contains 8-bit integers (uint8_t), it describes the evolution of sixteen distinct
lines simultaneously. Starting from the first element (4.3), the binary values encoded are set in
the chosen GPIO port (using the pal_writepad function) the number of times specified by the
corresponding element of the second (4.4). The process continues until the array scrolling is
finished. An extreme case is a signal that remains constantly low, with this method it will be
enough just one 0, rather than a sequence.

4.1.2 Use Case: IDCODE Instruction

A simple use case of the above is the vector transmission of a JTAG instruction: IDCODE.
As described in paragraph 2.2 the command allows to read an unique identification code from a
device in test mode. The instruction is useful to understand if a DUT is properly configured, the
ID contained in the response can be seen as a feedback. Following the model described in the
previous paragraph, it’s necessary to allocate the two Masktorepeat and Timestorepeat arrays.
In addition to the command, the entire data sequence for test mode access is stored inside the
array. Nevertheless in order to maintain the confidentiality, it will not be possible to show any
real waveform, or give information about the nature of the arrays.

40



C H A P T E R 4 . V E C T O R I A L M O D E A N D P S E U D O R A N D O M AT P G PAT T E R N

Figure 4.4: TDO valid range IDCODE instruction.

The proposed example is useful to understand how to use vector communication for reading
a response from a device. The ID value is encoded in the TDO signal, so at a certain moment of
time the line will contain the result of the IDCODE instruction. However as shown in the Figure
4.4, the TDO is valid only in a certain time range, so the reading must be done at the exact
moment. The problem is easily solved by knowing the structure of the two arrays, indeed the
capture is performed just in correspondence of the elements that contain the IDCODE instruction.
The reading is done using another function provided by the development environment, in this
case the pal_readpad. This function returns the level of a GPIO pin (in this case the one
connected to the TDO line) passed as argument. Finally it’s sufficient to store each sampled bit
inside a receiving buffer. Once received the presumed ID and verified its correctness, the device
is considered as properly configured.

4.2 ATPG Pseudorandom Generator Algorithm

In the following is described the integration of a Pseudorandom Number Generator (PRNG)
algorithm, used for generating ATPG patterns, within a simple FreeRTOS environment. The
patterns are array of pseudorandom numbers, their size can be considerable (even higher than
available RAM), therefore the main memory occupation is a critical problem. One solution
is to store them in flash memory, it’s sufficient to declare the type as static. Nevertheless the
application performance could degrade since the flash is certainly slower. In the proposed
solution the memory saving comes from the possibility of generating an entire pattern one chunk
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at a time, thus storing in main memory just the current chunk. The PRNG algorithm described
below is able to generate arrays (chunks) of specified size, then is possible to build a complete
pattern by composing successive chunks.
As shown in the Figure 4.5 an ATPG test requires at least three lines: SI, SCK, SO, it consists
of two phases:

1. Sending stimulation pattern to DUT on SI line at each pulse of the SCK;

2. Result check by analysing the device response on SO line.

Figure 4.5: ATPG test connection schema.

Both previous are performed by the developed application, and will be described below. The
application consists of two different FreeRTOS tasks: the first one simply occupies the CPU in
order to emulate a real execution context; while the second handles the pattern transmission (1),
or the SO control (2). Each task has the same priority, so the FreeRTOS scheduler will divide the
processor resources equally. They are executed for a certain amount of time (slice), once expired
the scheduler performing a context switching, will assign the CPU to the next task. Therefore,
transmission or check operations can be interrupted at any time.
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4.2.1 The PRNG Algorithm

The algorithm is widely described in [9], in this thesis work it will be considered as a black-
box capable of generating array of pseudorandom numbers. Each element is a 16-bit integer
(uint16_t), and the array size can be specified. The source code is written in C++ language,
so as a preliminary operation it was necessary to integrate the algorithm within a complete
C project. As discussed in 3.1, the development environment (properly configured) is able to
perform a mixed compilation C and C++. Moreover each class method has been associated with
a wrapping function such as the following, in order to transform them into simple C functions.

extern "C" void Wrap_Function(Class object) { object.method(); }

Figure 4.6: Chunk Generation Time.

In short the algorithm is based on polynomial arithmetic, a 32-bit integer represents a polynomial.
The generation process starts from a seed so-called initial state, that is a device-dependent 32-bit
number. At each iteration the current state is updated by applying a series of shifting operations
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to achieve the next state. A pseudorandom number is obtained by considering the first 16 bits of
the current state, then performing a cast. It’s important to note that the PRNG has been modified
in order to return the current state, in this way it’s possible to generate an array sequentially. The
algorithm guarantees a period (the amount after which the pseudorandom series is repeated) at
least equal to the scan-chain length. Then there will be no repetitions, and each number of the
sequence will be different from the previous one. Finally the Figure 4.6 shows the linear trend
of the PRNG execution time, as the chunk size changes.
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4.2.2 Scan-Chain Transmission

The first operation to perform is the pattern transmission to the DUT, in this case pseudo-
random numbers. As explained in 2.3 two signals are required, SI and SCK, respectively data
(ATPG pattern) and clock line. Clearly choosing a simple SPI bus is possible to use the MOSI
line as SI and SCK as clock. Moreover the bus is configured to send 16-bit frames, exactly the
size of a number generated by the PRNG.
The send function included in the APIs provided by the development environment has the fol-
lowing prototype.

void spi_lld_send(SPIx, txBuffer, size)

The first parameter specifies the chosen SPI peripheral from those provided by the supervisor
MCU, the second and the third respectively the buffer to be sent, then a chunk of pseudorandom
numbers, and the number of elements that compose it. Recall that a scan-chain is a set of flip-
flops where the stimulation patterns are stored, in this context they will be considered synonyms.
Once set the chunk size, it’s possible to divide the entire scan-chain into a series of contiguous
piece. Obviously the division may not be exact, indeed if the chunk size is not a scan-chain
length divider, there will be one last incomplete chunk.
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Figure 4.7: Sending the scan-chain: flow of operations.
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Figure 4.8: Transmission delay.

The PRNG is initialized with the initial state, then the algorithm is executed and all the
generated chunks are sent to the DUT using the SPI bus. The process continues until all integer
chunk have been sent, if present the incomplete is generated and sent. The latter sending is not
included in the loop because the number of items to send is different. The flow of operations is
described by the diagram 4.7.
This first approach has an obvious limit: since all previous operations are executed by a FreeR-
TOS task, as soon as the time slice of the task expires, the process will be interrupted. As a
result, the transmission time increases and delays (Figure 4.8) may appear between the sending
of one frame and the next. Also not considering the interruption caused by the scheduler, the
sending operation is blocking (red boxes in the Figure 4.7). Hence before generating the next
chunk, the transmission of the current one must be completed.
The following solution takes advantage of Direct Memory Access (DMA) system, in this way
the send is no longer blocking, indeed the CPU can execute the PRNG to generate another chunk,
while the DMA controller handles the transmission. Moreover when the task is removed from
the processor by the scheduler, the sending continues since the operation is managed in DMA
mode. The instructions remain the same described in the Figure 4.7, the difference is just the
sending operation, and in addition the manual setting of the DMA controller. Each time the send
is called, DMA registers (source, destination, data size) are configured, then it’s essential to be
sure that the transmission has been completed before calling the function again. Otherwise the
overwriting of the registers will cause errors in the data.
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Figure 4.9: DMA control operations.

In the Figure 4.9 is depicted the control mechanism to ensure the respect of the previous
constraint. When the DMA controller ends a chunk transmission, it raises an interrupt. Then the
CPU is triggered and executes an interrupt routine that sets a status flag. In the meantime the
task continues to generate chunks, only if the flag is set another chunk is sent. This mechanism
assures that DMA registers are not overwritten, and although new chunks are available, they are
transmitted only when DMA is free.

4.2.3 Scan-Out Control

Once the ATPG pattern has been sent and stored in the scan-chain, the next step is to check
test results by analyzing the device’s response to stimulation, the latter is encoded in the SO
line. For this test it’s expected that the SO signal is identical to SI, so the result is correct only
if the two are the same waveform. Remember that a scan-chain is basically a shift-register, so
at each clock pulse of the SCK signal the DUT will emit a bit on the SO line, corresponding
to a bit of the ATPG pattern. Since as discussed in the previous paragraph, a stimulation is a
series of pseudorandom numbers built chunk by chunk, also in this case the operation will be
executed sequentially, generating again all the chunks. In view of this, the test control proceeds
as follows:
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1. Sixteen clock pulses are emitted on the SCK line, using SI of the SPI bus (MOSI) config-
ured to transmit 16-bit frames;

2. On the SO line the DUT sends the bits corresponding to a 16-bit integer, a psedudorandom
number of the stimulation pattern;

3. Previous operations are repeated until a sequence of numbers corresponding to the chunk
size is obtained;

4. The PRNG algorithm generates a chunk, and a function checks that coincides with the one
just received from the DUT. If the operation is successful, the process resumes from step
(1) until all the integer chunks are checked. Otherwise it’s interrupted returning an error.

Finally if an incomplete chunk is present, the instructions described from step (1) to (4) are
performed again. It’s important to recall that for the latter possible chunk, the operation must
be differentiated. Indeed, the call to the send function will be modified to transmit a buffer of
different size.
Also in this case the problem of blocking sending is repeated. Indeed the SPI transmission
occupies the CPU, and it is interrupted at each context switching from the scheduler. In addition,
the generation of new chunks cannot be performed until the current transmission has been
completed. Thus the same solution is proposed as in the previous case: DMA mode. The
advantage is even greater, since unlike the previous case, the tasks that the CPU may perform
while the DMA controller manages the transmission are two: chunk validation and PRNG
execution.
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4.2.4 Results

This section shows the application performances during the transmission of an ATPG pattern
generated according to the model described above. The paragraph will refer to both DMA and
not-DMA versions, in order to make clear the differences between the two modes of sending.
The pattern size (that is also the scan-chain length) is arbitrary and does not refer to any existing
device. However the number is not random, it was chosen looking for a compromise between
the duration of sending and the accuracy of the logic analyzer. The last is used to verify the
correctness of signals that make up the transmission.

Figure 4.10: How to measure the transmission time.

Obviously in a real case the patterns size is certainly greater, however for the purposes of
the experiment it is a significant value. The same arguments also apply to the choice of the SPI
bus sending frequency, in this case the rate of 2.5 Mhz has been selected. A value too large (by
virtue of Shannon’s Theorem) would require a sampling frequency and a number of samples
unsustainable by the logic analyzer and the development machine.
Before commenting on the results, it’s important to specify some details about the measurements:
to ensure greater accuracy, rather than using the library function osGetMicroSecond (that returns
the number of us since System Timer starts), it’s preferable to perform the measurements manu-
ally, as described in the Figure 4.10. Before to begin the transmission, a GPIO pin (TOGGLE
line in the figure) is set to high (1), while at the end the same pin is reset to low (1). Thus the
duration of sending can be obtained by measuring the time interval in which the TOGGLE line
has an high logical level.
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For the analysis the following parameters will be considered:

• Chunk size;

• Memory;

• RAM occupation;

• bss;

• Sending Time;

• Sending Time DMA.

The first four parameters contain information about the memory occupation of the chunks. Chunk
size specifies the number of elements that make up a chunk, then the array length. The next
one instead indicates the corresponding value in kilobyte, while the term bss refers to the main
memory size of the compiled object code. RAM occupation is the percentage of the target
microcontroller’s RAM occupied, considering it all available. Finally the last two parameters
respectively specify the transmission time using DMA and not.

Chunk size (n. elements) bss Memory (kB) RAM occupation (%)
128 39878 0.25 0,03%
256 40134 0.5 0,07%
512 40646 1 0,13%

1024 41662 2 0,26%
2048 43710 4 0,52%

Table 4.1: Memory occupation of the chunks.

Clearly as can be seen from the Table 4.1, memory occupation in terms of all the parameters
increases together with the size of the chunks. The values considered start from 0.25kB to 4kB
(typical values for this kind of application), the latter are chosen by referring to the RAM of
the target device, which in this case does not even reach 1MB. Furthermore as described above,
development is not bare-metal, some of memory is consumed by the operating system, thus the
memory cannot be occupied only for storing chunks.
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To better underline the advantage obtained with the proposed solution, consider that the
entire pattern would occupy a size of 9.77MB, much more than the 768kB available on the target
device. Indeed, trying to compile the code by setting the chunk size equal to that of the entire
pattern, the following compilation error would be obtained (Figure 4.11)

Figure 4.11: Compilation error: RAM overflowed.

Chunk size (n. elements) Sending Time (mm:ss:cc) Sending Time DMA (mm:ss:cc)
128 01:09:11 00:58:33
256 01:09:07 00:58:17
512 01:09:04 00:58:11

1024 01:09:05 00:58:11
2048 01:09:01 00:58:03

Table 4.2: Sending time: locking and DMA mode.

In conclusion, Table 4.2 shows the performance obtained by the application in terms of
transmission time. Whether using DMA or not, the chunk size does not affect the duration.
Instead the time difference between the two solutions is evident, in the case of DMA the perfor-
mance improves on average by 15%. This is intuitive since the CPU rather than managing the
transmission generates other chunks reducing delays and therefore the total time. Also during
the context switches executed by the FreeRTOS scheduler, the sending continues. Instead the
blocking version that does not use DMA shows worse performance, indeed no new chunk can
be generated along with the transmission, and in addition it is interrupted at each context switch.
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Chapter 5

Generic Timer Module (GTM)

In this chapter we will talk about the GTM peripheral. A detailed description is outside the
scope of the thesis, just some important details for the application developed and described in
the next chapter will be introduced. All contents below refer to the technical documentation
of BOSCH [18], NXP Semiconductors [20] and STMicroelectronics [16]. The Generic Timer
Module (GTM) is an IP module designed by BOSCH, and included in some automotive micro-
controllers in order to minimize the effort of the CPU in the related task execution. A working
example is the engine carburetion, an application in which real time constraints are required. The
peripheral is composed of several modules, there are more than one unit for each module, hence
more replicas of the same module. The latter can be combined to build complex applications:
use the TIM to capture input signals; generate PWM signals with TOM or ATOM; advanced
signal elaboration inside the MCS and so on. In the figure 5.1 is depicted the logical structure
of the GTM. The CPU interacts with the peripheral via Generic Bus Interface (AEI). The clock
of the GTM is configurable by setting the MCU clock tree.
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Figure 5.1: GTM logical structure overview: component modules. Image from [27]
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5.1 Advanced Routing Unit (ARU)

One of the most important features of the peripheral is provided by the ARU, it allows to
connect some of the modules. The ARU is basically a router that transfer data from a data
source to a data destination: for each module connected to the ARU there are several sources
and destinations. The data exchanged consists of a word of 53 bits, in the figure 5.2 is shown its
composition.

Figure 5.2: ARU data word. Image from [16]

Bits 0 to 23 and bits 24 to 47 contain the application data, for example the duty cycle and
the period of a PWM signal. The last ARU Conrol Bits (ACB) are used for control purpose, the
meaning of this bits is strictly dependent on the module that uses it. For instance in the ATOM
channels this bits can be used to set the shift direction of the data. With just the ARU is not
possible to connect more than two modules, in this case the BRC must be used to transmit the
same data word to more modules, and therefore build a broadcast transmission. As mentioned
above, there are several data destinations and data sources for each module connected to the
ARU. In the Figure 5.3 is depicted an example of this connections.
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Figure 5.3: Interconnection of data sources and destinations through the ARU. Image from [16]

Every data source or data destination have an unique address used to identify them. The
destination awaits data from the source, the reading is destructive and for this reason is not
possible to connect more destinations to the same source without the BRC.
The ARU routing mechanism is the following:

1. The destinations are sequentially interrogated by the ARU in round-robin order;

2. When a data is available from the source, and the destination requires it, the ARU transfers
it and communicate the delivery to both. Then, the source indicates this data as consumed.
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Figure 5.4: ARU blocking mechanism. Image from [16]

A connection between source and destination is “blocked”, as depicted in the Figure 5.4 if a
destination requests data from a source, it has to wait until the data are available. However the
module containing the data destination can perform other operations while waiting. Besides
the data source can send new data to the ARU, only if the old data is read (consumed) by the
destination. Since there are multiple modules that may require ARU services at the same time,
a mechanism to arbitrate them turns out to be necessary. The ARU performs a deterministic
round-robin scheduling with a fixed Round Trip Time (RTT) (specified by the version of the
GTM), so if the ARU is busy the time awaited from the last of two adjacent requests is always
equal to an RTT.
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5.2 Parameter Storage Module (PSM)

The FIFO sub-module is part of the PSM module, which also includes other two sub-modules:
FIFO to ARU Unit (F2A) and the AEI to FIFO Data Interface (AFD), respectively interfaces to
the ARU and the AEI bus, this latter is the bus used by the CPU to communicate with the GTM.

Figure 5.5: PSM module composition.

Basically the FIFO is a RAM storage, each unit is divided into eight channels. It’s possible
to configure start and end address of each channel, operation modes (normal or ring buffer) and
other controls such as read protections or fill level control. The sub-module is large 1K words,
and the word size is 29 bit. This number is not random, it is exactly the dimension of a part of an
ARU word (23 bit), plus the five control bits ACB. The two operation modes are now described:

1. In the normal operation mode the channel behaves like a common FIFO: the first word to
be read (and then destroyed) is the last inserted;

2. The ring buffer operation is useful when is required a continuous data stream trough the
ARU, the use of the F2A is mandatory in this case.

As mentioned above the FIFO sub-module is a single RAM, it’s mapped into the memory address
space of the CPU, and hence accessible from the AEI bus. In addition there are the other two
interfaces F2A and AFD, for this reason a priority mechanism to arbitrate this three interfaces
is provided by the PSM. The dimension of an ARU word is 53 bits but the FIFO memory word
is only 29 bit, so when using the F2A interface there are configurable several modes to handle
the data transfer: transmit the entire ARU word (53 bits), or just a sub-part of it (the first, or the
second 24 bits beyond the ACB). As an example in the Figure 5.6 an entire ARU word is sent:
the second part of the word (bits 24-47) is stored in the first location of the FIFO, while in the
following location is stored the first part. The ACB bits (48-52) are duplicated in both word.
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Figure 5.6: PSM, ARU example of data transmission. Image from [16]

5.3 Timer Input Module (TIM)

The TIM module is used to capture external signals, these last can be characterized in several
manners. As well as the most of the GTM modules also the TIM has a numbers of channels.
The signals to capture are connected to different channels of the module, each of the previous
includes an FLT sub-module to perform filtering operations on signals entering the channel. For
example the prefiltering is useful to detect and eliminate glithces that may appear within a signal.
A glitch is essentially a short and sudden pulsation that may appear during transmission, as all
forms of noise if not managed properly might corrupt the information content.
As mentioned above this module provides different measurement modes, however just the TIM
Bit Compression Mode (TBCM) mode will be described, because it is chosen for the develop-
ment of the application described in the next chapter. A channel in TBCM mode (available only
for the TIM channel 0) captures all input signals to the module at a certain moment of time,
determined by the choice of a trigger. Since the TIM is divided into m channels when the trigger
is detected (instant sampling) all m channels are sampled, the logical level of the connected lines
(0 if the signal is low, 1 if the signal is high) determines a word of m bit. The latter is stored in
the least significant part of the GPR1 register each time a trigger is detected. The CNTS register
specifies (by setting the bits appropriately to 1) the trigger that activates channel sampling: from
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bit 0 to m-1 the rising edge of the corresponding i-th channel, the next m bits instead select the
falling edge. Then for instance if the CNTS register contains the value 0x01, is chosen as trigger
the rising edge of signal connected to channel 0, that could be a clock line. When the register
contains multiple bits set to 1 the trigger is formed by the logical OR of all events.
Of course the module can also take advantage of the routing service offered by the ARU, so by
setting its configuration bit to 1 (ARU-BIT) the content of the GPR1 register (along with other
data) is sent to the specified module through the ARU. The Figure 5.7 summarizes all previous
information.

Figure 5.7: TIM Channel 0: TBCM mode.
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5.4 Multi Channel Sequencer (MCS)

The MCS is basically a general purpose CPU with an ISA based on PowerPC architecture.
The operating frequency is configurable by modifying the clock tree of the MCU. The module
has a proper RAM that is mapped into the memory address space of the CPU. In this memory
are stored data and instructions (generated by an integrated compiler in the development envi-
ronment) for the MCS, but it can used as well to communicate with the CPU, or with another
task (channel) of the same module. Just like the other modules of the GTM, also the MCS is
divided into channels, and each of them is considered a separate processor "task". This last has
its own instructions to execute, when more than one task is active they have to compete for the
module’s resources. Two scheduling modes are available for channels: Round-Robin scheduling
or Accelerated Scheduling Mode. A single channel includes several register, obviously there are
the Instruction Register and the Program Counter, in addition are available eight general purpose
24 bit registers, from R0 to R7. Just the trigger registers (STRG and CTRG) are shared between
the channels, the latter are used to coordinate them. Finally the ISA can be divided into four
categories:

• Data transfer instructions;

• ARU instructions;

• Arithmetic logic instructions;

• Control flow instructions;

The format of these instruction is "literal” or “double operand”, the first operates with a single
24 bits register and a literal of the same dimension, while the second includes two registers as
operands.
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5.5 Clock Management Unit (CMU)

Some of the modules that make up the GTM need clock sources to work. For example,
within the ATOM module clock signals determine the shifting speed in SOMS mode. The
CMU provides a clock source for all modules that require one. The module is divided into the
following three sub-modules, each of which handles clock signals in different modes:

• Configurable Clock Generation (CFGU);

• Fixed Clock Generation Unit (FXU);

• External Clock Generation Unit (EGU).

The CFGU generates eight different clock source, these are properly configurable to obtain
the target frequency. Unlike the previous, the FXU produces four non-configurable clocks
available only for the TOM and MON modules. It is defined “fixed” because is possible to set
for each of the four sources, one of these values as dividing factors: 20, 24, 28, 212, 216. For
this reason the clocks will have a fixed values. The last sub-module is used to produce clocks
not for internal modules, indeed these signals are mapped outside the peripheral, in this case just
tree output clocks lines are avaiable.

5.6 Aru-Connected Timer Output Module (ATOM)

To generate output signals the GTM provides two different modules: ATOM and TOM. The
advantage of the former over the latter is the possibility to obtain the data flow necessary to
characterise the outputs through the ARU. By connecting the ATOM to modules such as MCS
or PSM, complex signals can be generated automatically and independently, thus saving CPU
resources. The module is divided into channels, the type of output signals from each channel
depends on the way it is configured. Among the most useful operating modes surely there is
the Signal Output Mode PWM (SOMP), through the previous, a channel is able to emit PWM
signals, simply by writing in the appropriate configuration registers the required period and duty
cycle values. However, as in the case of the TIM module, only one operation mode will be
described, the Signal Output Mode Serial (SOMS), as the one chosen in this work. An ATOM
channel in SOMS mode behaves like a shift-register, at each pulse of the clock signal chosen as
a reference, the channel emits a bit by shifting the register that contains the data to be sent. The
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transmission rate (or shifting) depends on the reference signal, for each channel a clock source
must be specified among those available in the CMU module. In addition to speed, shifting
order and direction can also be configured. The number of bits to be transmitted is stored in
the CM0 register, while the CM1 register contains the value. Each of the two previous registers
is connected to a shadow register, SR0 and SR1 respectively. So the CM0 and CM1 registers
are not written directly but will be loaded automatically after writing the corresponding shadow
register. The transmission is interrupted when the CCU0 register that increases during shifting
reaches the value stored in CM0. Clearly the advantage of the ATOM module compared to the
TOM lies in the possibility of using the ARU, therefore through the latter the previous registers
are modified independently without involving the CPU. In this case an ARU word contains in
the least significant part (from bits 0 to bits 23) the amount of bits to be shifted that is the value
of the CM0 register, while the most significant part (from bits 24 to bits 48) the data to be sent
and then the contents of the CM1 register. Finally, ACB bits encode sending properties such as
the shifting direction of the register.
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Chapter 6

GTM Communication Interface

The purpose of this chapter is to describe an application of the GTM peripheral, in order to
implement a different way of communicating between a supervisor microcontroller and a DUT.
The main advantage is the reduction of the CPU workload, for instance the latter could perform
other operations while the GTM transmits ATPG patterns or JTAG signals. Since the previous
techniques require at least a data and a clock line, the communication model to be implemented
is similar to an SPI bus. Therefore, two software models developed by BOSCH [17] and NXP
Semiconductors [19] were taken as reference in the development of the following application.
The aim of the latter is to emulate an SPI bus using the GTM. All the peripheral modules chosen
for the project are described in the previous chapter.

6.1 The Proposed Architecture

This application can be thought as an SPI protocol between a master and a slave device. The
input and output part described below work monolithically, for example is possible to connect
the MCU to a real SPI master device and this would work properly. The choice of configuration
depends strictly on the type of test architecture to be realized. In order to optimally describe
the project it’s convenient to divide it into two distinct sections: input and output. The TIM and
PSM were chosen for the input part, while for the output the modules used are ATOM, PSM, and
MCS. For both sections the ARU will manage the communication between the modules inside
the peripheral. The Tables 6.1 and 6.2 summarize the modules, channels and the respective
modes of use.
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MODULE CHANNEL MODE
TIM CH0, CH1 TBCM
PSM CH0 NORMAL OP.

Table 6.1: Input: modules and channels configurations.

MODULE CHANNEL MODE
ATOM CH0, CH1 SOMS
PSM CH1 NORMAL OP.
MCS CH0, CH1 ROUND-ROBIN

Table 6.2: Output: modules and channels configurations.

6.1.1 Input Description

The module chosen to capture input signals is obviously the TIM. As described in the
previous chapter, it has different operating modes, but for the purpose of this application the
most suitable one is the TBCM. The selected TIM channels are CH0 and CH1, in the first
channel is connected the clock line, while in the second the data. The trigger is set on the rising
edge of the clock signal, so each time the event is detected the data line will be sampled. The
captured bit (stored into the GPR1 register) will be forwarded to the first channel (CH0) of the
FIFO sub-module by the ARU. Basically the latter is a buffer capable of storing the received
data. It should be noted that this operation is performed every time the trigger is detected and
therefore bit per bit captured. For example, if the clock frequency is 1kHz, every microsecond
the ARU will send to the PSM module a bit of the transmission. Moreover each bit occupies
one FIFO data word, indeed the ARU transfers an entire 29-bit word for each clock pulse. Once
a fill threshold is reached (then a certain number of received bits) the PSM module will raise
an interrupt, hence the CPU will empty the FIFO and assemble the bits in a data buffer. The
threshold is chosen by looking for a compromise between the number of interruptions raised
and the memory occupation. Obviously a value too small will require a frequent use of the CPU,
while too large can cause the saturation of memory. The Figure 6.1 summarises what has been
described by identifying five distinct phases:
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Figure 6.1: Input: flow of operations.

0. The TIM is activated on the rising edge of the clock signal (CLK) input to channel 0
(CH0), sampling the corresponding bit on the data line (CH1);

1. The sampled bit at the previous step is stored within a data word contained in the GPR1
register;

2. Through the ARU the content of the GPR1 registrer and then the current bit is forwarded
to the FIFO sub-module;

3. When the FIFO fill level exceeds the threshold (sketched in figure) an interrupt that invokes
the CPU is raised;

4. The CPU reads the FIFO words and composes a data buffer (RX_BUFFER).

The previous flow of operations is repeated until the transmission ends (there is no more data
to receive), then the clock signal is interrupted.
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6.1.2 Output Description

In the proposed architecture the ATOM generates the output signals, in particular the first
channel (CH0) the data line, while the second (CH1) the clock. Both channels are configured in
SOMS mode, hence each channel acts like a shift-register and able to emit (shift) bits at a rate
determined by the target clock source selected from the CMU module.

Figure 6.2: Correct waveforms.

Recall that when an ATOM channel is enabled in SOMS mode, the number of bits to shift
and their value are stored in the CM0 and CM1 registers respectively. Even the clock line is
treated like a data to be sent, indeed it can be encoded as a sequence of 0 and 1, the hexadecimal
value 0x00AAAA. In order to achieve the correct behavior shown in the Figure 6.2, ensuring
proper sampling of the data line, the channel CH0 is associated with an internal clock frequency
twice that of CH1. This last consideration is crucial: if the data line was not stable at the time of
sampling (on the rising edge of the clock), there could be errors in the transmission.
Also this part of the application makes use of the FIFO sub-module, but unlike the previous
case the second channel (CH1) is selected to avoid data overlapping. The module stores in two
successive words the content of the registers CM0 and CM1. These two memory locations are
transmitted to the ATOM channels by the ARU.
The MCS module synchronizes all the modules involved, two channels are needed: the first
(CH0) manages the transmission of the clock signal, while the second (CH1) the data line.
It’s important to recall that an MCS channel is a task: a set of instructions written in a proper
assembly language and executed by the module. From now on, to avoid confusion with ATOM
channels, reference will be made to MCS channels as tasks: TASK0 and TASK1. The Figure
6.3 shows the overall process:
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Figure 6.3: Output: flow of operations.

0. Before starting the transmission an handshake function synchronizes the CPU and the
MCS. Then setting the value 0x01 inside the STRG, the CPU activates the TASK1. After
it writes in the R1 register the number of bytes to be transmitted;

1. The TASK1 reads an ARU data word containing the data to be shifted and its size from the
FIFO-submodule. These values are stored inside the R2 and R3 registers of the channel;

2. After the reading, the TASK1 enables (this time by writing 0x0 in the STRG register) the
TASK0 which is responsible for managing the clock line;

3. At this point both tasks must use the ARU to write CM0 and CM1 registers of the ATOM
channels CH0 and CH1. Once the previous are loaded, the shifting (transmission) will
start automatically. The TASK0 that manages the clock line will write the registers with
the values 0x00AAAA and 0x10, indicating respectively the clock pattern and the number
of pulse. While the other the contents of the R2 and R3 registers received by the FIFO
module at step 1).

The process is repeated until the value of the R1 register of the TASK1 (containing the number
of bytes to be transmitted and decremented from time to time) is reset to zero.
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6.2 Code Overview

The project is organized in a modular way, so the application can be configured by varying
the choice of modules and channels. Please note that the GTM has multiple units of the same
module, for example the choice of the first ATOM module is not mandatory and can be changed
according to design requirements. The same considerations apply to all other settings.
The following files contain the functions needed to control and configure the peripheral: how to
use a channel; loading the compiled code to be executed by the MCS; filling the FIFO with data;
and so on. The overall structure of the code is summarised by the Figure 6.4.

• ATOM_config.c

• PSM_config.c

• MCS_config.c

• TIM_config.c

Each of the previous includes an header file containing the prototypes of the functions and the
macros to specify the configurations. The functions to manage the transmission are included
inside the file GTM_lld.c. The struct GTM_config stores the settings of a transmission, the
parameters are similar to an SPI bus configuration:

• Clock frequency;

• Transmission modes: Least significant bit (LSB), Most significant bit (MSB);

• Phase, the logical level of clock line when the transmission is not running.

The previous struct is an attribute of the GTM_driver struct, the latter contains the following
fields:

• A receiving buffer in which incoming data will be stored;

• The number of buffer elements;

• A buffer to save the data to be sent.
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Figure 6.4: Code Structure.

As is shown in the Figure 6.4(a) the below functions, whose execution starts the entire
transmission process described in the previous paragraphs, refer to those that directly manage
the modules of the device.

1. GTM_start: configure GTM modules based on a parameter passed as argument;

2. GTM_transmit: start the transmission by sending the content of the txBuffer, at the same
time the rxBuffer is filled with the received data (Figure 6.5);

3. GTM_stop: the call to this function causes the release of all the peripheral resources.
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Figure 6.5: A correct transmission.

In the Figure 6.5 is depicted an example of execution of the previous ones. In this case the
sending buffer transmitted is:

txBu f f er = {0xAA,0xCF,0xAA,0x95,0x55,0x00,0x00...} (6.1)

The ATOM channels from which the data and clock line are emitted, are directly connected to
the TIM channels, so as to test the operation of both modules of the application. How the image
shows, the data line (ATOM_CH1_DATA) correspond to the content of the txBuffer. In this
case the transmission works correctly, the buffer where the received data are stored (rxBuffer)
coincides with the txBuffer.
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6.3 Transmission Limit

This architecture has a limit in the transmission rate. By considering just the case of the
input the proof is immediate, however similar observations also apply to the output part and
the application as a whole. The strength of the peripheral is the ARU, nevertheless it is also
a bottleneck. The input capture is performed by the TIM module, each bit received during a
transmission is stored inside the FIFO sub-module; then these last are directly connected by the
ARU. As described in the previous chapter, when multiple sources require the ARU routing
service, there is always a fixed time interval between two adjacent requests so-called RTT, and
calculated as follows:

RT T =
1
C

SY S_CLOCK (6.2)

In the expression 6.2 the parameter C is a device-dependent constant, while the term SYS_CLOCK
is the operating clock of the GTM (configurable by setting the MCU clock tree). The RTT value
defines a limit in the data transmission rate:

RT T < T c (6.3)

If the values of Tc in 6.3 (the clock period of a signal to capture) is less than an RTT, then the
ARU will not be able to forward the current bit to the FIFO before a subsequent bit has arrived,
thus there will be an error in the transmission. A similar result was obtained by BOSCH in [17],
this note also identifies a limit for the output part of the application:

RT T < 3 T c (6.4)

Nevertheless the latter result is less significant, because the chosen architecture differs from that
described in this thesis work.
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6.4 Transmission issues

The proposed application has shown some problems. Initially will be discussed what happens
when the transmission limit is exceeded, and subsequently an incorrect behavior in the generation
of waveforms. The first experiment consists in sending an array of 8-bit integers (6.5), before at
a frequency below the limit, and then at a higher rate.

txBu f f er = {0xAA,0xAB,0x12,0xBB,0xFF,0xEF,0xAE,0xBA,0xA6,0xC8} (6.5)

Figure 6.6: Correct input capture: transmission rate below the limit.

In the Figure 6.6 are depicted the waveform in which the buffer 6.5 is encoded and the FIFO
sub-module memory dump, while the application is running. Please recall that every sampled
bit by the TIM module is forwarded to the PSM module within an ARU word. Since each array
element is an 8-bit integer, eight distinct data words are consumed, one for each sampled bit.
For instance to recognize the value txBuffer[0] in the memory dump, consider the first set of
locations, from the last (0xF7D19010) to the first (0xF7D19000): when the value ends with the
digit three (11)2 the bit is considered 1, otherwise 0. The explanation of this last statement can
be easily understood by recalling what is described in the last paragraph (6.1.1). When the TIM
module samples a bit of the transmission, the entire channel set is captured, not just the data line.
Therefore the clock level, that is the first of the two bits must be ignored.
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Figure 6.7: Input capture error: transmission rate over the limit.

How is shown in figure, in case of a correct transmission, the memory dump and the items of
the sending buffer coincide. Differently in the following example (Figure 6.7) the memory dump
is different. Indeed in this case the transmission rate is over the limit, then there will be errors
in the capture. In the figure in blue are marked the bits that the ARU uses to report an overflow
event (ARU Conrol Bits (ACB)): if the frequency is too high, the module fails to forward the
currently captured bit to the FIFO, before the next one arrives. It’s possible to note the overflow
bit (GPROFL) also in the Figure 6.8, the latter shows the C struct that models the GPR1 register
of the TIM module.

Figure 6.8: Input capture error: overflow bit.
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Figure 6.9: Incorrect waveforms: indeterminate sampling.

The other critical point (identified during the application test) is the capture of some incorrect
waveform. The Figure 6.2 shows the proper behavior of the lines, in order to have correct data
encoding. Remember that to obtain a right sampling it’s necessary that the data line is already
stable on the clock sampling edge. If they change simultaneously, the value of the captured bit
is indeterminate. As can be seen from the vertical dashed lines in the Figure 6.9, the signals
change level together, then since the data line is sampled on the rising edge of the clock, a
random behavior is obtained.
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Conclusions

The testing methodologies described in the State of the Art (2) are performed by means of
complex and costly testers. They send to DUTs the test files containing a sequence of JTAG
instructions to set internal configuration registers, in order to configure a DUT in the appropriate
state to start a specific test. After the devices is configured, tests are performed via dedicated
interfaces such as Scan In (SI) and Scan Out (SO).
The communication interface described in 4.1 derives directly from the possibility to convert
the stil test file in simple arrays (this solution was developed Ing. Francesco Peri, STMicroelec-
tronics). With this approach the complex stil files are translated into arrays easily managed by
the supervisor MCU. This files are often complex and their understanding is not always easy.
Nevertheless the solution is not problem free. First of all: the array size can be considerable;
managing big arrays with the limited RAM resources of a microcontroller is not trivial. In
second: the application described in 4.1 is based upon a blocking delay function necessary for
signal generation; the problem can be solved by means of the DMA. Finally, the last considera-
tion to be made is the possibility of adding the vectorial interface in a complex software testing
environment such as the System Level Test (SLT). For instance the software module [24] can
be integrated with the vectorial transmission mode, in addition to the SPI-based serial interface.
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The integration of PRNG algorithm described in chapter five, is another example of how
much an accurate software design (together with the hardware knowledge) becomes crucial
to develop applications which are compatible with the resources of an MCU. The memory is
managed by partition the information (ATPG pattern) in chunks of a manageable size. The DMA
allows to perform transmissions more efficiently sparing the processor from being overloaded
during the sending. Furthermore, the time savings obtained using DMA is not to be considered
negligible, indeed during a test the patterns are sent several times, then the advantage is repeated
at each sending.
The Generic Timer Module (GTM) was exploited to emulate a serial communication interface,
since the peripheral is able to manage data transmission independently from the CPU. The
computational resources of an MCU are always limited, especially when it has to run a testing
software environment based for instance, on FreeRTOS. Thus the advantages of using the GTM
are similar to those described for DMA in chapter five. Nevertheless considering the proposed
architecture, the GTM scope strictly depends on the type of data to be transmitted. As an exam-
ple in the case of ATPG pattern, since the scan-chain length reaches considerable dimensions, a
low rate transmission could be limiting: the testing time would drastically increase.
The versatility is a clear advantage of the GTM, indeed by slightly varying the application (6),
it’s possible to connect the supervisor with multiple DUTs simultaneously. Would be required a
more complex connection schema, to achieve the same result with an SPI based solution.
Finally, the thesis work proved that, if properly exploited, the resources and versatility of au-
tomotive microcontrollers can also be used in different context from their native applications.
Besides, it has been shown that knowledge of hardware is essential in developing applications
on systems so profoundly different from a general purpose CPU.
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