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Abstract

We consider the computational difficul-
ties in the checking of coherence and
propagation of imprecise probability
assessments. We examine the linear
structure of the random gain in betting
criterion and we propose a general
methodology which exploits suitable
subsets of the set of values of the
random gain. In this way the checking
of coherence and propagation amount
to examining linear systems with a
reduced number of unknowns. We also
illustrate an example.
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1 Introduction

The probabilistic treatment of uncertainty by
means of precise or imprecise probability assess-
ments is well known. When the family of condi-
tional events has no particular structure a suitable
methodology is that based on the de Finetti’s co-
herence principle, or generalizations of it. In this
paper, we consider the computational difficulties
connected with the checking of coherence. Then,
exploiting the linear structure of the betting cri-
terion, we propose a method to check coherence
using suitable subsets of the set of values of the
random gain. This amounts to study linear sys-
tems with a reduced number of unknowns. The
paper is organized as follows. In section 2, af-

ter some comments related to the starting set of
constituents, we recall some preliminary concepts
and results. In section 3 we examine the linear
structure of the betting criterion, with the aim
of improving the efficiency of the procedure for
checking coherence and for propagation. Finally,
in section 4 we give an example.

2 Some remarks on constituents and
betting criterion

Let Pn = (p1, . . . , pn) be a precise probability as-
sessment on a family Fn = {Ei|Hi, i ∈ Jn}, where
Jn = {1, . . . , n} and pi = P (Ei|Hi). We observe
that Ei|Hi = EiHi|Hi and then, to check coher-
ence, we can start with the constituents gener-
ated by the family {EiHi,Hi, i ∈ Jn}. Then,
as EiHiHc

i = ∅, we can avoid to split Hc
i into

EiHc
i ∨ Ec

i H
c
i and, by expanding the expression

∧

i∈Jn

(EiHi ∨ Ec
i Hi ∨Hc

i ) , (1)

we obtain a set C of constituents with cardi-
nality less than or equal to 3n. This proce-
dure has been proposed, e.g., in [3] and [4],
where a geometrical approach to coherence has
been adopted by associating with each constituent
Ch ⊆ H0 = H1 ∨ · · · ∨ Hn a suitable point
Qh = (qh1, . . . , qhn) ∈ IRn. Then, denoting by the
same symbols the events and their indicators, for
each given Ch ⊆ H0 the corresponding value gh of
the random gain G =

∑n
i=1 siHi(Ei − pi), associ-

ated with the pair (Fn,Pn), can be represented by
the expression gh = G(Qh) =

∑n
i=1 si(qhi − pi).

We recall the following definition of generalized
coherence (g-coherence) introduced in [1].



Definition 1 Given a vector An = (α1, . . . , αn)
of probability lower bounds P (Ei|Hi) ≥ αi,
i ∈ Jn, on a family Fn = {E1|H1, . . . , En|Hn},
the vector An is said g-coherent if and only if
there exists a precise coherent assessment Pn =
(p1, . . . , pn) on Fn, with pi = P (Ei|Hi) such that
pi ≥ αi for each i ∈ Jn.

The Definition 1 can also be applied to impre-
cise assessments like αi ≤ P (Ei|Hi) ≤ βi, since
each inequality P (Ei|Hi) ≤ βi amounts to the in-
equality P (Ec

i |Hi) ≥ 1−βi, where Ec
i denotes the

contrary event of Ei.
We denote by C1, . . . , Cm the constituents con-
tained in H0 and, for each constituent Cr, r ∈ Jm,
we introduce a vector Vr = (vr1, . . . , vrn), where
for each i ∈ Jn it is

vri =











1 , if Cr ⊆ EiHi ,
0 , if Cr ⊆ Ec

i Hi ,
αi , if Cr ⊆ Hc

i .
(2)

We denote by (Sn) the following system, with
nonnegative unknowns λ1, . . . , λm, associated
with (Fn,An)

{

∑m
r=1 λrvri ≥ αi, i ∈ Jn,

∑m
r=1 λr = 1, λr ≥ 0, r ∈ Jm.

(3)

We denote respectively by Λ and S the vector of
unknowns and the set of solutions of the system
(3). Moreover, for every j we denote by Γj the
set of subscripts r such that Cr ⊆ Hj , by Fj the
set of subscripts r such that Cr ⊆ EjHj and by
Φj(Λ) the linear function

∑

r∈Γj
λr. We denote

by I0 the (strict) subset of Jn defined as

I0 = {j ∈ Jn : Mj = MaxΛ∈SΦj(Λ) = 0} (4)

and by (F0,A0) the pair associated with the set
I0. Then, based on the previous concepts, a suit-
able procedure ([4]) can be used to check the g-
coherence of An. The g-coherent extension of
An to a further conditional event En+1|Hn+1 has
been studied in [1] where, defining a suitable inter-
val [p◦, p◦] ⊆ [0, 1], the following result has been
obtained.

Theorem 1 Given a g-coherent imprecise assess-
ment An = ([αi, βi], i ∈ Jn) on the family Fn =
{Ei|Hi, i ∈ Jn}, the extension [αn+1, βn+1] of
An to a further conditional event En+1|Hn+1 is

g-coherent if and only if the following condition is
satisfied

[αn+1, βn+1] ∩ [p◦, p◦] 6= ∅ .

In [1] the computation of the values p◦, p◦ is made
by an algorithm implemented with Maple V.

3 Checking of g-coherence and
propagation

Given (Fn,An) and a subset J of Jn, we denote
by (FJ ,AJ) the pair associated with J and by
(SJ) the corresponding system. Moreover, we de-
note by HJ the event (

∨

j∈J Hj) and by GJ the
following random gain, associated with (FJ ,AJ),

GJ =
∑

j∈J

sjHj(Ej − αj) ,

where sj ≥ 0, for every j ∈ J . We observe
that, in the case of an interval-valued assessment
{[αi, βi], i ∈ Jn} the random gain GJ can be rep-
resented by the following expression

GJ =
∑

j∈J

Hj [sj(Ej − αj)− σj(Ej − βj)] , (5)

with sj ≥ 0, σj ≥ 0, for every j ∈ J . It can be
proved that An is g-coherent if and only if, for
every J ⊆ Jn, the following condition is satisfied

Max GJ |HJ ≥ 0 .

In particular, denoting by Gn the random gain as-
sociated with (Fn,An), in order An be g-coherent
the following (necessary) condition, equivalent to
compatibility of the system (3), must be satisfied

Max Gn|H0 ≥ 0 . (6)

Denoting by G = {g1, . . . , gm} the set of possible
values of Gn|H0, for every subscript h the value
gh associated with the constituent Ch can be rep-
resented by the following expression

gh =
n

∑

i=1

si(vhi−αi) =
∑

i:Ch⊆Hi

si(vhi−αi) . (7)

Moreover, given three disjoint subsets J ′, J ′′, J ′′′

of Jn, with J ′ ∪ J ′′ ∪ J ′′′ = Jn, assume that there
exist three constituents Ch, Ck, Cr such that

vhi = αi , for every i ∈ J ′ ∪ J ′′′,
vki = αi , for every i ∈ J ′′ ∪ J ′′′,
vri = αi , for every i ∈ J ′′′,



with

vhi = vri , for every i ∈ J ′′,
vki = vri , for every i ∈ J ′.

Then, for the corresponding values gh, gk, gr we
obtain

gh =
∑

i∈J ′′ si(vhi − αi) =
∑

i∈J ′′ si(vri − αi) ,
gk =

∑

i∈J ′ si(vki − αi) =
∑

i∈J ′ si(vri − αi) ,
gr =

∑

i∈J ′∪J ′′ si(vri − αi) = gh + gk .

Based on the above relation, we observe that the
value of gr is not relevant for the checking of con-
dition (6) as

gh < 0 , gk < 0 =⇒ gr < 0 ,

or conversely

gr ≥ 0 =⇒ gh ≥ 0 or gk ≥ 0 .

By the same reasoning, if gr = agh + bgk, with
a > 0, b > 0, then gr is not relevant. As an exam-
ple, denoting by Vh, Vk, Vr the vectors associated
with Ch, Ck, Cr, if

Vr = xVh + (1− x)Vk, 0 < x < 1,

then

gr = Gn(Vr) = Gn[xVh + (1− x)Vk] =
= xGn(Vh) + (1− x)Gn(Vk) = xgh + (1− x)gk,

so that gr is not relevant. By the previous re-
marks, we have

Theorem 2 Given a subscript r ∈ Jm, if there
exists a strict subset Tr of the set Jm, with r /∈ Tr,
such that

gr =
∑

j∈Tr

ajgj ; aj > 0 , ∀j ∈ Tr , (8)

then gr is not relevant.

More in general, we have

Theorem 3 Given a subscript r ∈ Jm, if there
exist a strict subset Tr of the set Jm, with r /∈ Tr,
and a positive constant cr such that

gr ≤ crMax gj ,
j ∈ Tr

(9)

then gr is not relevant.

We remark that in general the constant cr de-
pends on the values sj , j ∈ Jn. Then, by the
previous results we obtain

Theorem 4 Given a strict subset T of the set
Jm, if for every r /∈ T there exist Tr ⊆ T and
a positive constant cr satisfying the condition
(9), then the condition (6) is equivalent to the
following one

Max gj ≥ 0 .
j ∈ T (10)

Based on suitable alternative theorems, the con-
dition (10) is equivalent to the existence of a so-
lution (λ1, . . . , λm) of the system (3), such that
λr = 0 for every subscript r /∈ T . Then, in or-
der to check condition (10) we only need to study
the compatibility of a system STn , like (3), with
a number of unknowns equal to the cardinality k
of T . In many cases k is drastically less than m.
Therefore, to diminish the number of unknowns
in the system (3), we need to examine the set G
in order to determine a (possibly minimal) sub-
set T of Jm satisfying, for all r /∈ T , the condition
(9), with Tr ⊆ T . The checking of the g-coherence
can be made by the following modified version of
an algorithm proposed in [4].

Algorithm 1 Let be given (Jn,Fn,An).

1. Determine a subset T which satisfies the con-
dition (9), with Tr ⊆ T , for all r /∈ T ;

2. Construct the system (STn ) and check its
compatibility;

3. If the system (STn ) is not compatible then An
is not g-coherent and the procedure stops;
otherwise, replacing in Definition (4) the set
of solutions of the system (3) by the set of
solutions of the system (STn ), compute the
set I0;

4. If I0 = ∅ then An is g-coherent and the pro-
cedure stops, otherwise set (Jn,Fn,An) =
(I0,F0,A0) and repeat steps 1-3.

The extension of An can be made by a modified
version of an algorithm proposed in [1]. Such al-
gorithm, due to the lack of space, here is not in-
cluded.



4 An example

Given the assessment A3 = ([15 , 1
4 ], [ 1

10 , 1
5 ], [ 1

10 , 1
4 ])

on F3 = {B|AC, C|(A ∨ B), D|(B ∨ C)}, we ex-
amine the g-coherence of A3 and its extension to
A|BCDc. By (1), we obtain the following 11 con-
stituents contained in H0 = A ∨B ∨ C.

C1 = ABCD, C2 = ABCDc, C3 = BCcD,
C4 = BCcDc, C5 = ABcCD, C6 = ABcCDc,
C7 = ABcCc, C8 = AcBCD, C9 = AcBCDc,
C10 = AcBcCD, C11 = AcBcCDc.

We first observe that, based on ( 5), with J =
Jn = {1, 2, 3}, one has

g10 < 0 =⇒ g11 ≥ 0 , g11 < 0 =⇒ g10 ≥ 0,

so that Max{g10, g11} ≥ 0 and (6) is surely satis-
fied. Applying our method, we obtain

g3 = g7 + g10 , g4 = g7 + g11 ,

so that g3 and g4 are not relevant. Moreover, it is

g1 = δ1 + g8 , g5 = δ2 + g8 ,
g2 = δ1 + g9 , g6 = δ2 + g9 ,

with

δ1 =
4
5
s1 −

3
4
σ1 , δ2 = −1

5
s1 +

1
4
σ1 .

For every s1, σ1, the quantities δ1, δ2 cannot be
both negative, so that

g8 ≤ Max{g1, g5} , g9 ≤ Max{g2, g6}

and then g8 and g9 are not relevant. Therefore
the subset T = {1, 2, 5, 6, 7, 10, 11} satisfies, for
all r /∈ T , the condition ( 9), with Tr ⊆ T , so
that the compatibility of (3), which has 11 un-
knowns, is equivalent to the compatibility of STn
which has 7 unknowns. Then, by Algorithm 1,
A3 is g-coherent. Given an assessment A4 on
F3 ∪ {A|BCDc}, for the corresponding random
gain the condition g9 ≤ Max{g2, g6} is no more
satisfied. Then, in the algorithm concerning the
extension of A3 to A|BCDc, the starting system
has 8 (instead of 11) unknowns. It could be veri-
fied that [p◦, p◦] = [0, 1].
Actually, deepening the analysis, one has

g10 ≤ Max{g3, g8} ≤ Max{g7+g10,Max{g1, g5}}

from which it follows that, if g1, g5, g7 are neg-
ative, then g10 is negative too, so that it is not
relevant. It could also be verified that

g11 ≤ Max{g4, g9} ≤ Max{g7+g11,Max{g2, g6}}

and then g11 is not relevant too. There-
fore, we could apply the Algorithm 1 with
T = {1, 2, 5, 6, 7}. Differently from the ”lo-
cal” approach proposed in [2] to check coherence
of precise probability assessments, our method
for checking g-coherence and for propagation
of imprecise conditional probability assessments
is ”global” and its efficient implementation is
strictly connected with the choice of a good strat-
egy for determining the subset T . Work in
progress concerns the application of our method
to families of conjunctive conditional events, for
which an efficient ”global” procedure has been
proposed in [5].
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