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Abstract. In this paper we consider the problem of reducing the computational
difficulties in g-coherence checking and propagation of imprecise conditional
probability assessments. We review some theoretical results related with the
linear structure of the random gain in the betting criterion. Then, we propose
a modified version of two existing algorithms, used for g-coherence checking
and propagation, which are based on linear systems with a reduced number of
unknowns. The reduction in the number of unknowns is obtained by an iterative
algorithm. Finally, to illustrate our procedure we give some applications.

1 Introduction

When facing real problems we often need to reason with uncertain information
under partial knowledge. Then, the probabilistic treatment of uncertainty by
means of precise or imprecise probability assessments is a well founded theo-
retical approach. Usually, the probabilistic assessments are defined on a given
family of conditional events which has no particular algebraic structure. In these
cases a suitable probabilistic methodology is that based on the coherence prin-
ciple of de Finetti (see for example [1], [4], [7]), or on similar principles like that
ones adopted for lower and upper probabilities ([10], [11]). As well known, the
global checking of coherence is based on linear programming techniques which
have an exponential complexity. An efficient global procedure for the proba-
bilistic deduction from probabilistic knowledge-bases has been proposed in [8].
However, in the quoted paper it has been made the restrictive assumption that,
for every probabilistic formula (E|H)[α, β] in the knowledge base, both E and H
are conjunctive events and moreover P (H) > 0. Based on an idea suggested in
[5], a promising procedure for a local checking of coherence of precise conditio-
nal probability assessments has been examined in a recent working paper ([3]).
In this paper we consider the problem of reducing the computational difficulties
in g-coherence checking and propagation of conditional probability bounds. We
briefly review some theoretical results obtained in [2] which are related with the
linear structure of the random gain in the betting criterion. Then, we propose
a modified version of two algorithms given in [7] and [2], by means of which the
g-coherence checking and propagation can be made by studying, in each step,
the compatibility of a linear system with a reduced number of unknowns. The
paper is organized as follows. In section 2 we recall some preliminary concepts
and notations. In section 3 we first make some remarks concerning the set of
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constituents on which basis we can start the checking of g-coherence. Then, we
briefly review some theoretical results ([2]), connected with the linear structure
of the random gain in the betting criterion, which allow to reduce the number of
unknowns in the linear systems used in our algorithms. In section 4 we give two
algorithms for the checking of g-coherence and for the propagation of imprecise
probability assessments. In section 5 we give an iterative algorithm to determine
the reduced set of unknowns in our linear systems and we examine some aspects
related to the computational complexity. In section 6 we give some applications
of our iterative algorithm. Finally, in section 7 we give some conclusions and
comments on specific aspects which need further work.

2 Preliminary concepts and notations

We recall some preliminary concepts which will be used in the next sections.
Given a family Fn = {E1|H1, . . . , En|Hn} and a vector An = (α1, . . . , αn) of
lower bounds P (Ei|Hi) ≥ αi, with i ∈ Jn = {1, . . . , n}, we consider the following
definition of generalized coherence (g-coherence) introduced in [1].

Definition 1 The vector of lower bounds An on Fn is said g-coherent if and
only if there exists a precise coherent assessment Pn = (p1, . . . , pn) on Fn, with
pi = P (Ei|Hi), which is consistent with An, that is such that pi ≥ αi for each
i ∈ Jn.

The Definition 1 can be also applied to imprecise assessments like

αi ≤ P (Ei|Hi) ≤ βi , i ∈ Jn,

since each inequality P (Ei|Hi) ≤ βi amounts to the inequality P (Eci |Hi) ≥
1− βi, where Eci denotes the contrary event of Ei.
Given the pair (Fn,An), associated with the set Jn, denote by IP the partition
of the certain event Ω obtained by expanding the expression∧

i∈Jn

(EiHi ∨ EciHi ∨Hc
i ) (1)

and by C1, . . . , Cm the atoms or constituents of IP contained in H0 =
∨
j∈Jn Hj .

Moreover, we denote by C0 the constituent Hc
0 (if Hc

0 6= ∅), and in this case it
is: IP = {C0, C1, . . . , Cm}. Of course, one has:∨

Ch∈IP
Ch = H0 ∨Hc

0 = Ω .

In next section we will argue that the partition IP is a convenient one to de-
termine the starting system in the algorithm checking coherence. For each
constituent Cr, r = 1, . . . ,m, we introduce a vector Vr = (vr1, . . . , vrn), where
for each i ∈ Jn it is

vri =

 1 , if Cr ⊆ EiHi ,
0 , if Cr ⊆ EciHi ,
αi , if Cr ⊆ Hc

i .
(2)
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Given an imprecise assessment An = (α1, . . . , αn) on Fn, we denote by (Sn) the
following system with nonnegative unknowns λ1, . . . , λm.{ ∑m

r=1 λrvri ≥ αi, i ∈ Jn,∑m
r=1 λr = 1, λr ≥ 0, r ∈ Jm.

(3)

We say that (Sn) is associated with the pair (Fn,An).
In an analogous way, given a subset J of Jn, we denote by (FJ ,AJ) the pair
corresponding to J and by (SJ) the system associated with (FJ ,AJ). Then,
based on the previous concepts, a suitable procedure ([7]) can be used to check
the g-coherence of An. The g-coherent extension of An to a further conditional
event En+1|Hn+1 has been studied in [1] where, defining a suitable interval
[p◦, p◦] ⊆ [0, 1], the following result has been obtained.

Theorem 1 Given a g-coherent imprecise assessment An = ([αi, βi], i ∈ Jn) on
the family Fn = {Ei|Hi, i ∈ Jn}, the extension [αn+1, βn+1] of An to a further
conditional event En+1|Hn+1 is g-coherent if and only if the following condition
is satisfied

[αn+1, βn+1] ∩ [p◦, p◦] 6= ∅ .

In the quoted paper an algorithm has been proposed to determine [p◦, p◦].

3 Preliminary results on the checking of
g-coherence and propagation

In this section we first give some preliminary remarks and then we briefly review
some theoretical results obtained in [2]. A preliminary problem, related to
the computational aspects, is that of suitably determining the initial set C of
constituents, on which basis we can start the checking of coherence. Since it is
irrelevant to consider precise or imprecise assessments, for the sake of simplicity,
we examine the case of precise ones. Let be given a probability assessment
Pn = (p1, . . . , pn) on a family Fn = {Ei|Hi, i = 1, . . . , n}, with pi = P (Ei|Hi).
We observe that Ei|Hi = EiHi|Hi so that {Ei|Hi, i = 1, . . . , n} = {EiHi|Hi, i =
1, . . . , n} and then, in the algorithms for the coherence checking and propagation
of Pn, we can start with the partition generated by the family {EiHi,Hi, i =
1, . . . , n}, instead of the family {Ei,Hi, i = 1, . . . , n}. Then, as EiHiH

c
i = ∅,

the constituents of C are obtained by expanding the expression (1), so that its
cardinality is less than or equal to 3n. Given an imprecise assessment An on the
family Fn, for every J ⊆ Jn, we denote by HJ the event (

∨
j∈J Hj) and by GJ

the following random quantity (which in the betting scheme can be interpreted
as a random gain)

GJ =
∑
j∈J

sjHj(Ej − αj),

where sj ≥ 0, for every j ∈ J . We say that GJ is associated with the
pair (FJ ,AJ). We observe that, in the case of an interval-valued assessment

3



{[αi, βi], i ∈n} the random gain GJ can be represented by the following expres-
sion

GJ =
∑
j∈J

Hj [sj(Ej − αj)− σj(Ej − βj)], (4)

with sj ≥ 0, σj ≥ 0, for every j ∈ J . It can be proved that ([2]) An is g-coherent
if and only if, for every J ⊆ Jn, the following condition is satisfied

Max GJ |HJ ≥ 0.

In particular, denoting byGn the random gain associated with the pair (Fn,An),
in order An be g-coherent the following condition must be satisfied

Max Gn|H0 ≥ 0. (5)

Based on a suitable alternative theorem, the above condition is equivalent to
the compatibility of the system (3). Denoting by G = {g1, . . . , gm} the set of
possible values of Gn|H0, for every subscript h the value gh associated with the
constituent Ch can be represented by the following expression

gh =
n∑
i=1

si(vhi − αi) =
∑

i:Ch⊆Hi

si(vhi − αi). (6)

Denoting by z the vector (z1, . . . , zn) and by f(z) the linear function

f(z1, . . . , zn) =
n∑
i=1

sizi,

for every h = 1, . . . ,m, we have

gh = G(Vh) = f(Vh −An). (7)

Remark 1 Notice that, given two distinct constituents Ch, Ck, it may be Vh =
Vk. Then one has gh = gk, so that gk is not relevant. Therefore, to reduce the
number of unknowns, a preliminary computation of the set of distinct vectors
Vh’s is suitable.

We now illustrate the basic idea which allows to reduce the number of unkno-
wns in the linear systems involved in the algorithms for checking g-coherence
and for propagation of lower and upper probability bounds. Given a partition
{J ′, J ′′, J ′′′} of Jn, i.e. three disjoint subsets J ′, J ′′, J ′′′, with J ′∪J ′′∪J ′′′ = Jn,
assume that there exist three constituents C1, C2, C3 such that

C1 ⊆ Hc
i , ∀ i ∈ J ′ ∪ J ′′′ ,

C2 ⊆ Hc
i , ∀ i ∈ J ′′ ∪ J ′′′ ,

C3 ⊆ Hc
i , ∀ i ∈ J ′′′ .

Based on (2), for the corresponding vectors V1, V2, V3 one has

v1i = αi, for every i ∈ J ′ ∪ J ′′′,
v2i = αi, for every i ∈ J ′′ ∪ J ′′′,
v3i = αi, for every i ∈ J ′′′,
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with
v1i = v3i, for every i ∈ J ′′,
v2i = v3i, for every i ∈ J ′.

Then, concerning the values g1, g2, g3 associated with C1, C2, C3, from (6) we
obtain

g1 =
∑
i∈J′′ si(v1i − αi) =

∑
i∈J′′ si(v3i − αi),

g2 =
∑
i∈J′ si(v2i − αi) =

∑
i∈J′ si(v3i − αi),

g3 =
∑
i∈J′∪J′′ si(v3i − αi) = g1 + g2.

Based on the above relation, we observe that the value of g3 is not relevant for
the checking of the condition (5) as

g1 < 0, g2 < 0 =⇒ g3 < 0

and, conversely,
g3 ≥ 0 =⇒ g1 ≥ 0 or g2 ≥ 0.

By the same reasoning, if there exist three constituents C1, C2, C3 and two
positive numbers a, b such that

g3 ≤ ag1 + bg2,

then g3 is not relevant for checking coherence. By the previous remarks, defining
Jm = {1, . . . ,m}, we have

Theorem 2 Given a subscript r ∈ Jm, if there exists a strict subset Tr of the
set Jm, with r /∈ Tr, such that

gr ≤
∑
j∈Tr

ajgj ; aj > 0 , ∀j ∈ Tr ,

then gr is not relevant.

More in general, we have

Theorem 3 Given a subscript r ∈ Jm, if there exist a strict subset Tr of the
set Jm, with r /∈ Tr, and a positive constant cr such that

gr ≤ crMax {gj}j∈Tr (8)

then gr is not relevant.

By the previous results we obtain

Theorem 4 Let T be a strict subset of the set Jm such that for every r /∈ T
there exist Tr ⊆ T and a positive constant cr which satisfy the condition (8).
Then

Max {gj}j∈Jm ≥ 0 ⇐⇒ Max {gj}j∈T ≥ 0 .

Based again on an alternative theorem ([2]), a result equivalent to the Theorem
4 is the following one.
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Theorem 5 Let T ⊂ Jm be such that for every r /∈ T there exist Tr ⊆ T and
a positive constant cr which satisfy the condition (8). Then the condition (5)
is satisfied if and only if there exists a solution (λ1, . . . , λm) of the system (Sn),
such that λr = 0 , ∀r /∈ T .

Then, denoting by k, with k < m, the cardinality of T , in order to check
condition ( 5) we only need to study the compatibility of a system like ( 3),
denoted by STn , which has k (instead of m) unknowns. Therefore, to reduce the
number of unknowns in the system (3), we need to examine the set G in order
to determine a (possibly minimal) subset T of Jm satisfying, for all r /∈ T , the
condition (8), with Tr ⊆ T .

4 Modified algorithms for checking g-coherence
and propagation

We denote respectively by Λ and S the vector of unknowns and the set of
solutions of the system (STn ). Moreover, for every j we denote by Γj the set
of subscripts r such that Cr ⊆ Hj and by Fj the set of subscripts r such that
Cr ⊆ EjHj . For each j, we define the linear function

Φj(Λ) =
∑
r∈Γj

λr.

Moreover, we denote by I0 the (strict) subset of Jn defined as

I0 = {j ∈ Jn : Mj = MaxΛ∈SΦj(Λ) = 0} (9)

and by (F0,A0) the pair associated with the set I0. Then, the checking of
the g-coherence can be made by the following modified version of an algorithm
proposed in [7]. An algorithm for the determination of the subset T is given in
the next section.

Algorithm 1 Let be given the tern (Jn,Fn,An).

1. Determine a subset T satisfying, for all r /∈ T , the condition (8), with
Tr ⊆ T ;

2. Construct the system (STn ) and check its compatibility;

3. If the system (STn ) is not compatible then An is not g-coherent and the
procedure stops; otherwise, compute the set I0;

4. If I0 = ∅ then An is g-coherent and the procedure stops, otherwise set
(Jn,Fn,An) = (I0,F0,A0) and repeat steps 1-3.

Concerning the g-coherent extensions of An, the computation of the values
p0, p

0 can be carried out by means of the following modified version of the
algorithm proposed in [1].
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Algorithm 2 Let be given the pair (Fn,An), the conditional event En+1|Hn+1,
and define Jn+1 = {1, . . . , n+ 1}.

1. Expand the expression ∧
j∈Jn+1

(
EjHj ∨ EcjHj ∨Hc

j

)
,

and construct the vectors V1, . . . , Vm. Then, determine a subset T sati-
sfying, for all r /∈ T , the condition (8), with Tr ⊆ T ;

2. Construct the following system (STn+1) in the unknowns pn+1, λh, h ∈ T :
∑
r∈Fn+1∩T λr = pn+1

∑
r∈Γn+1∩T λr ,

αj ≤
∑
r∈T vrjλr ≤ βj , j ∈ Jn,∑

r∈T λr = 1,
λr ≥ 0, r ∈ T .

(10)

3. Check the compatibility of system ( 10) under the condition pn+1 = 0
(respectively pn+1 = 1). If the system (10) is not compatible go to Step
3, otherwise go to Step 4;

4. Solve the following linear programming problem

Compute : γ′ = Min
∑

r∈Fn+1∩T
λr

(respectively : γ′′ = Max
∑

r∈Fn+1∩T
λr )

subject to:
αj ≤

∑
r∈T vrjλr ≤ βj , j ∈ Jn,∑

r∈Γn+1∩T λr = 1, λr ≥ 0, r ∈ T .

The minimum γ′ (respectively the maximum γ′′) of the objective function
coincides with p0 (respectively with p0) and the procedure stops;

5. For each subscript j, compute the maximumMj of the function Φj , subject
to the constraints given by the system (10) with pn+1 = 0 (respectively
pn+1 = 1). We have the following three cases:

(a) Mn+1 > 0;
(b) Mn+1 = 0 , Mj > 0 for every j 6= n+ 1;
(c) Mj = 0 for j ∈ I0 = J ∪ {n+ 1} , with J 6= ∅.

In the first two cases it is p0 = 0 (respectively p0 = 1) and the procedure
stops.
In the third case, defining I0 = J ∪{n+1}, set Jn+1 = I0 and (Fn,Pn) =
(FJ ,PJ); then go to Step 1.

The procedure ends in a finite number of cycles by computing the value p0

(respectively p0).
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5 Computation of the subset T
In this section we will concentrate on the determination of a subset T . We first
observe that, in order to determine T , we can use an iterative procedure, as
shown by the following result.

Theorem 6 Assume that there exist two subsets T1, T2, with T2 ⊂ T1 ⊂ Jm,
such that:

1. for every r ∈ Jm \ T1 there exist Tr ⊆ T1 and a positive constant cr which
satisfy (8) ;

2. for every r ∈ T1 \ T2, there exist Tr ⊆ T2 and a positive constant cr which
satisfy (8) .

Then, for every r ∈ Jm \T2 there exist Tr ⊆ T2 and a positive constant cr which
satisfy (8) and therefore

Max Gn|H0 ≥ 0 ⇐⇒ Max{gj}j∈T2 ≥ 0 .

Remark 2 We observe that, based on the result above, we can determine a
subset T1 such that, for every r ∈ Jm \ T1, there exist h ∈ T1, k ∈ T1, such that
gr ≤ gh + gk. By iterating this procedure we can determine T2 ⊂ T1 such that,
for every k ∈ T1 \ T2, there exist s ∈ T2, t ∈ T2, such that gk ≤ gs + gt. In this
way, we automatically detect the cases of non relevance like gr ≤ gh + gs + gt,
when there exists a gain gk such that gk ≤ gh+gs, or gk ≤ gh+gt, or gk ≤ gs+gt.
If such a gain gk doesn’t exist, to establish the non relevance of gr we need to
explicitly check if the inequality gr ≤ gh+gs+gt holds for some tern (gh, gs, gt);
and so on.

In what follows we deepen in particular the aspect of detecting the cases like
gr ≤ gh + gk and we give an iterative algorithm to work out this problem. We
also examine some aspects related to the computational complexity.
Based on (7), we observe that

gr = f(Vr −An), gh = f(Vh −An), gk = f(Vk −An),

and then, recalling that the coefficients si, i ∈ Jn, in the function f are nonne-
gative, one has

Vr −An ≤ Vh −An + Vk −An =⇒ gr ≤ gh + gk ,

that is
An ≤ Vh + Vk − Vr =⇒ gr ≤ gh + gk . (11)

Based on (11), a procedure to determine a sequence of subsets T1, . . . , Ti, with
T1 ⊃ T2 ⊃ · · · ⊃ Ti−1 = Ti, is given in the Algorithm 3. We observe that the
sequence T1, . . . , Ti may change if we reorder the sequence of vectors V1, . . . , Vm.
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Algorithm 3 Let be given the tern (Jn,Fn,An).

1. Expand the expression ∧
j∈Jn

(
EjHj ∨ EcjHj ∨Hc

j

)
.

Denote by C1, . . . , Cs the constituents contained in H0 and by V1, . . . , Vs
the corresponding vectors.

2. Denote by {V1, . . . , Vm}, where m ≤ s, the set of distinct vectors and set
T0 = Jm.

3. Set T1 = T c1 = ∅ and r = 1.

4. If r ∈ T1, then go to Step 6. Otherwise, go to Step 5.

5. If a subset {h, k} ⊆ T0 \ {T c1 ∪ {r}} is found such that (11) holds, then
replace T c1 by T c1 ∪ {r} and T1 by {T1 ∪ {h, k}}. Otherwise, replace the
set T1 by the set T1 ∪ {r}.

6. If r = |T0|, go to Step 7. Otherwise, replace r by r + 1 and go to Step 4.

7. If T1 ⊂ T0, then introduce two sets T2, T c2 and set (T0, T1, T c1 ) = (T1, T2, T c2 ).
Then, go to Step 3. Otherwise, T = T1 and procedure ends.

The algorithm stops when, for some i, one has Ti−1 = Ti and T = Ti.
Of course, the previous algorithm is not the optimal one to determine the mi-
nimal subset T such that, for every r ∈ Jm \ T there exist Tr ⊆ T and a
positive constant cr which satisfy (8). For example, we could try to reduce the
cardinality of set T obtained by the Algorithm 3, by checking for every subset
{h, k, s, r} ⊆ T if the condition gr ≤ gh + gk + gs is satisfied, in which case gr
would be not relevant; and so on. Another modification of the algorithm could
be that of trying to eliminate some gr’s during the process of generation of the
constituents and not after that such generation is completed. The improvement
of the Algorithm 3 requires further work.
Concerning the computational complexity of the Algorithm 3, we observe that
for each r ∈ Jm we should search for a subset {h, k} satisfying the condi-
tion (11). Then, in the (worst) case in which all the gains gr are relevant, as
r ∈ Jm = {1, 2, . . . ,m} and the subsets {h, k} in Jm \ {r} are (m−1)(m−2)

2 , the
number of times the algorithm will execute the Steps 3-7 is m(m−1)(m−2)

2 . We
must also take into account that the vectors Vh’s have n components. Therefore,
concerning this aspect, the complexity is O(nm3).

6 Some applications

In this section we examine some applications of the Algorithm 3.
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Example 1 We examine a simple example given in [8], where an efficient global
procedure has been proposed to propagate conditional probability bounds for
families of conjunctive conditional events (as in the family F3 below). In [9]
the procedure has been generalized to the case of conditioning events (possibly)
having probability zero. Given the vector of upper bounds B3 = (0.2, 0.2, 0.2)
on the family F3 = {B|A,C|AB,D|C}, let us consider the extension of B3 to
BCD|A. The constituents contained in H0 = A ∨ C are respectively

C1 = ABCD C2 = ABCDc C3 = ABCc C4 = ABcCc

C5 = AcCD C6 = AcCDc C7 = ABcCD C8 = ABcCDc

As a preliminary remark, we could verify that g4 is surely nonnegative and so
the condition (5) is surely satisfied. Applying the Algorithm 3, we have T0 = J8

and T1 = {2, 3, 4, 6}. In fact

g1 ≤ g2 + g4, gr ≤ g4 + g6, r ∈ {5, 7, 8}.

By iterating, one has T2 = T3 = T = {3, 4, 6}. In fact g2 ≤ g3 + g6. Then,
applying the Algorithm 1 we obtain that A3 is g-coherent.
Concerning the propagation of B3 to BCD|A, we observe that the constituents
are the same. Moreover, given the assessment

P (B|A) ≤ 0.2, P (C|AB) ≤ 0.2, P (D|C) ≤ 0.2, P (BCD|A) = p,

based on the Theorem 1 we must determine the interval [p◦, p◦] of the values
p which are coherent extensions of B3 to BCD|A. By slightly modifying the
Algorithm 3 we have T0 = J8 and T1 = T2 = T = {1, 3, 5, 6, 8}. In fact

g2 ≤ g3 + g6, g4 = g6 + g8, g7 ≤ g5 + g8.

Notice that in [8] a set T with 6 (instead of 5) elements is obtained. Thus, the
starting system of the Algorithm 2 has 5 (instead of 8) unknowns. We obtain
[p0, p

0] = [0, 0.04].

Example 2 Given the imprecise assessment A3 = ( 1
5 ,

1
10 ,

1
10 ) on the family

F3 = {B|AC, C|(A ∨ B), D|(B ∨ C)}, let us consider the extension of A3 to
the conditional event A|BCDc. We first examine the g-coherence of A3. In our
case, by expanding the expression (1), we obtain the following 11 constituents
contained in H0 = A ∨B ∨ C.

C1 = ABCD C2 = ABCDc C3 = BCcD C4 = BCcDc

C5 = ABcCD C6 = ABcCDc C7 = ABcCc C8 = AcBCD
C9 = AcBCDc C10 = AcBcCD C11 = AcBcCDc

We observe at first that, based on the formula (4), with J = Jn = {1, 2, 3}, it
could be verified that

g10 < 0 =⇒ g11 ≥ 0, g11 < 0 =⇒ g10 ≥ 0,
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so that Max{g10, g11} ≥ 0 and therefore the condition (5) is surely satisfied.
Applying the Algorithm 3, we have T0 = J11 and T1 = {1, 5, 8}. In fact

g2 ≤ g1 + g8, gr ≤ g1 + g5, r ∈ {3, 4, 6, 7, 9, 10, 11}.

Iterating the algorithm, as g5 ≤ g1 + g8, we obtain T2 = {1, 8}. By iterating
again, one has T3 = T2 and then T = {1, 8}. Then, applying the Algorithm 1
we obtain that A3 is g-coherent.
Concerning the extension of A3 to A|BCDc, by the (modified) Algorithm 3 we
have T0 = J11 and T1 = {1, 2, 5, 9}. In fact

gr ≤ g1 + g5, r ∈ {3, 4, 6, 7, 8, 10, 11}.

At the second iteration, one has T2 = T1 and then T = {1, 2, 5, 9}. Thus, the
starting system of the Algorithm 2 has 4 (instead of 11) unknowns. We obtain
[p0, p

0] = [0, 1].

Example 3 Let F10 be the family

{B1|B2, B2|B3, B3|B4, B4|B5, B5|B6, B
c
6|B5, B

c
5|B4, B

c
4|B3, B

c
3|B2, B

c
2|B1}

and A10 be the vector of lower bounds

(0.9, 0.9, 0.9, 0.9, 0.9, 0.8, 0.8, 0.8, 0.8, 0.8)

on F10. The constituents obtained by expanding 1 are 63. Applying the Al-
gorithm 3 it is possible to reduce the set J63 to a subset T with 21 elements.
If we consider the extension of A10 to B6|B1 applying the (modified) Algo-
rithm 3, we obtain a subset T with 31 elements and it can be verified that
[p0, p

0] = [0, 0.000542] (as in [8]).

7 Conclusions

In this paper, with the aim of reducing the computational difficulties, we have
proposed a modified version of two existing algorithms for g-coherence checking
and propagation of conditional probability bounds. Our algorithms, in each
step, check the compatibility of a linear system with a reduced number of un-
knowns. At each step, to determine the set T , we have proposed an iterative
algorithm. As shown by the examples, the Algorithm 3, even if not optimal,
produces a good reduction in the number of unknowns (perhaps, in some cases
such reduction may be drastic). A modification which seems suitable is that of
eliminating the unknowns during the process of generation of the constituents.
Also an integration of local and global approaches could be useful. Further
improvements of the Algorithm 3 are under study.
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