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Abstract

In this paper we consider general conditional random quantities of the
kind X|Y , where X and Y are finite discrete random quantities. Then,
we introduce the notion of coherence for conditional prevision assessments
on finite families of general conditional random quantities. Moreover, we
give a compound prevision theorem and we examine the relation between
the previsions of X|Y and Y |X. Then, we give some results on random
gains and, by a suitable alternative theorem, we obtain a characterization
of coherence. We also propose an algorithm for the checking of coherence.
Finally, we briefly examine the case of imprecise conditional prevision
assessments by introducing the notions of generalized and total coherence.
To illustrate our results, we consider some examples.

1 Introduction

In a recent paper ([1]) we have studied the notion of general conditional previ-
sion P(X|Y ), where X and Y are finite discrete random quantities. This general
notion of conditional prevision has been introduced by Lad and Dickey in [5]
and also discussed in [6]. In their work Lad and Dickey consider a notion of
conditional prevision of the form P(X|Y ) where both X and Y are random
quantities, by generalizing the de Finetti’s definition of a conditional prevision
assertion P(X|H), where H is an event. In [5, 6] the case P(Y ) = 0 has not
been considered; on the other hand, P(Y ) = 0 doesn’t imply P(XY ) = 0; then
P(X|Y ) might not exist. In order to handle the case P(Y ) = 0 in [1] we have
proposed a notion of coherence which integrates the definition of P(X|Y ) given
by Lad and Dickey. In particular, among other results, we have given a strong
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generalized compound prevision theorem. In this paper we continue our study,
by considering in general conditional prevision assessments on finite families of
finite discrete conditional random quantities. We introduce in general the no-
tion of coherence; we examine the compound prevision theorem and a kind of
generalization of Bayes theorem; we obtain some results on random gains; more-
over, we give some results to characterize coherence and, by exploiting them,
we propose an algorithm for the checking of coherence; finally, we consider the
case of imprecise conditional prevision assessments, by introducing the notions
of generalized coherence and total coherence. We illustrate our results by some
examples.
The paper is organized as follows: in Section 2 we give some preliminary no-
tions and results; in Section 3 we introduce in general the notion of coherence
for conditional prevision assessments; in Section 4 we generalize the compound
prevision theorem and we examine the relation between P(X|Y ) and P(Y |X);
in Section 5 we give some results on random gains; in Section 6 we illustrate a
procedure, by proposing an algorithm, for the checking of coherence; in Section
7 we briefly examine the case of imprecise conditional prevision assessments by
introducing the notions of generalized and total coherence; finally, in Section 8
we give some conclusions and comments on future work.

2 Some preliminary notions and results

We recall below two definitions given in [5, 6].

Definition 1. The conditional prevision for X given Y , denoted P(X|Y ), is
a number you specify with the understanding that you accept to engage any
transaction yielding a random net gain G = sY [X − P(X|Y )], where s is an
arbitrary real quantity.

Definition 2. Having asserted your conditional prevision P(X|Y ) = µ, the
conditional random quantity X|Y is defined as

X|Y = XY + (1− Y )µ = µ+ Y (X − µ) . (1)

In [1] some critical comments and examples have been given on the previous
definitions. Then, based on the notion of coherence given in [2, 4, 7, 8, 9], the
following definition has been proposed

Definition 3. Given two random quantities X,Y and a conditional prevision
assessment P(X|Y ) = µ, let G = s(X|Y − µ) = sY (X − µ) be the net random
gain, where s is an arbitrary real quantity, with s 6= 0. Defining the event
H = (Y 6= 0), the assessment P(X|Y ) = µ is coherent if and only if: inf G|H ·
supG|H ≤ 0, for every s.

Let be X ∈ CX = {x1, . . . , xn} and Y ∈ CY = {y1, . . . , yr}, with yk ≥ 0 , ∀ k,
and (X,Y ) ∈ C ⊆ CX × CY . We denote by X0 the subset of CX such that for
each xh ∈ X0 there exists (xh, yk) ∈ C with yk 6= 0. Then, we set

x0 = minX0 , x0 = maxX0 . (2)
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Then, we have ([1])

Theorem 1. Given two finite random quantities X,Y , with Y ≥ 0, the previ-
sion assessment P(X|Y ) = µ is coherent if and only if x0 ≤ µ ≤ x0.

A similar result holds for Y ≤ 0.

3 Coherence of general conditional previsions

Given any random quantities X1, . . . , Xn, Y1, . . . , Yn, based on Definitions 1
and 2 we denote by Mn = (µ1, . . . , µn) a vector of conditional previsions
for ”X1 given Y1”, . . . , ”Xn given Yn”, where µi = P(Xi|Yi); then, we set
Fn = {X1|Y1, . . . , Xn|Yn} and we denote by

Gn =
n∑
i

si(Xi|Yi − µi) =
n∑
i

siYi(Xi − µi) ,

where s1, . . . , sn are arbitrary real quantities, the random gain associated with
the pair (Fn,Mn). We set Hi = (Yi 6= 0), Hn = H1 ∨ · · · ∨Hn; then, based on
[2, 4, 7, 8, 9], we generalize Definition 3 by the following

Definition 4. Let P be a real function defined on a family K of conditional
random quantities. P is said coherent if and only if, for every integer n, for every
s1, . . . , sn, and for every sub-family Fn ⊆ K, denoting by Mn = (µ1, . . . , µn)
the restriction of P to Fn, the following condition is satisfied

inf Gn|Hn ≤ 0 ≤ sup Gn|Hn , (3)

which is equivalent to inf Gn|Hn ≤ 0, or sup Gn|Hn ≥ 0.

We give below an example where, based on Definition 4, it is shown that in
some cases do not exist finite coherent conditional prevision assessments.

Example 1. Let be given a random quantity X ∈ {−1, 1}, with P(X) = 0,
i.e. P (X = −1) = P (X = 1) = 1

2 . Of course, it is X2 = P(X2) = 1; hence,
the assessment P(X) = 0 has the unique extension P(X2) = 1. It can be
shown that the assessment (0, 1) on {X,X2} has no finite extensions on X|X.
In fact, let M3 = (0, 1, µ) be a prevision assessment on F3 = {X,X2, X|X},
where µ = P(X|X). By compound prevision theorem, P(XY ) = P(Y )P(X|Y ),
it should be P(X2) = P(X)P(X|X), that is: 1 = 0 · µ, which has no finite
solutions in the unknown µ. We will show that, for every finite quantity µ, the
condition of coherence is not satisfied. In our case H1 = H2 = H3 = Ω = H3,
so that

G3|H3 = G3 = s1(X−0)+s2(X2−1)+s3X(X−µ) = (s1−s3µ)X+(s2+s3)X2−s2 ;

then, denoting by g1 (resp., g2) the value of G3 associated with X = −1 (resp.,
X = 1), it is g1 = −s1 + (1 + µ)s3, g2 = s1 + (1− µ)s3. Hence s1 < (1 + µ)s3



4 V. Biazzo, A. Gilio, G. Sanfilippo

implies g1 > 0, while s1 > (−1 + µ)s3 = (1 + µ)s3 − 2s3 implies g2 > 0. Then,
for every pair (s1, s3), with s3 > 0 and (1 + µ)s3 < s1 < −2s3(1 + µ)s3 it
is g1 > 0, g2 > 0; that is: inf G3|H3 > 0. Thus, the assessment (0, 1, µ) on
{X,X2, X|X} is not coherent, for every finite µ.
We remark that, still assuming X ∈ {−1, 1} and P(X) = 0, the incoherence of
the assessment P(X|X) = µ can be proved by directly observing that it should
be P[(X|X)−µ] = 0; that is P[X(X −µ)] = P(X2−µX) = 1−µ · 0 = 0, which
is false, for every µ.

4 Compound prevision and Bayes theorems

We give below a result which generalizes the compound probability theorem to
the case of n arbitrary random quantities X1, . . . , Xn.

Theorem 2. Given n random quantities X1, . . . , Xn, we have

P(X1 · · ·Xn) = P(X1)P(X2|X1) · · ·P(Xn|X1 · · ·Xn−1) .

Proof. The proof immediately follows by the compound prevision theorem; in
fact, by suitably iterating the formula P(XY ) = P(Y )P(X|Y ), we have

P(X1 · · ·Xn) = P(X1 · · ·Xn−1)P(Xn|X1 · · ·Xn−1) =

= P(X1 · · ·Xn−2)P(Xn−1|X1 · · ·Xn−2)P(Xn|X1 · · ·Xn−1) = · · · =

= P(X1)P(X2|X1) · · ·P(Xn|X1 · · ·Xn−1) .

The following result gives a kind of generalization of Bayes theorem, by
analyzing the relationship between P(X|Y ) and P(Y |X).

Theorem 3. Given two finite random quantities X,Y , with P(X) 6= 0, we have

P(Y |X) = P(X|Y ) ·
∑

j yjP (Y = yj)∑
j P (Y = yj)P(X|Y = yj)

.

Proof. We have P(XY ) = P(Y )P(X|Y ) = P(X)P(Y |X); then

P(Y |X) = P(X|Y ) · P(Y )
P(X)

= P(X|Y ) ·
∑

j yjP (Y = yj)∑
j P (Y = yj)P(X|Y = yj)

.

Given any event E and a random quantity Y , with P(Y ) 6= 0, we have

P(E|Y ) =
P(Y |E)P (E)

P(Y )
= P (E) ·

∑
j yjP (Y = yj |E)∑

j yjP (Y = yj)
.
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Moreover, given two logically incompatible events A and B, we have

P(A ∨B|Y ) = P(A+B|Y ) = P(A|Y ) + P(B|Y ) =

= P (A) ·
∑

j yjP (Y = yj |A)∑
j yjP (Y = yj)

+ P (B) ·
∑

j yjP (Y = yj |B)∑
j yjP (Y = yj)

.

5 Some results on random gains

In this section we deepen the notion of coherence given in Definition 4 and we
obtain further theoretical results. Given any integer n, we set Jn = {1, . . . , n}.
Let be given a conditional prevision assessment Mn = (µi, i ∈ Jn) on a family
Fn = {Xi|Yi, i ∈ Jn} of n conditional random quantities, where µi = P(Xi|Yi).
For each subset K ⊆ Jn, we set HK =

∨
i∈K Hi; moreover, considering the

sub-assessment MK = (µi, i ∈ K) on the sub-family FK = {Xi|Yi, i ∈ K}, we
denote by GK the random gain associated with the pair (FK ,MK). Of course,
Gn = GJn and Fn = FJn . We denote by K the class of the sets K ⊆ Jn which
satisfy the condition inf Gn|HK · supGn|HK > 0 for some si ∈ R, i ∈ Jn. Of
course, K may be empty. We have

Theorem 4. The class K is additive; that is, for every K ′ ∈ K,K ′′ ∈ K, it is
K ′ ∪K ′′ ∈ K. Moreover, for every K ∈ K, if K ′ ⊂ K, then K ′ ∈ K.

Proof. Assume that K ′ ∈ K,K ′′ ∈ K; i.e., inf Gn|HK′ > 0, inf Gn|HK′′ > 0.
We observe that the set of values of Gn|HK′∪K′′ is the union of the set of values
of Gn|HK′ and Gn|HK′′ ; therefore

inf Gn|HK′∪K′′ = min {inf Gn|HK′ , inf Gn|HK′′} > 0 ;

henceK ′∪K ′′ ∈ K. Moreover, given anyK ∈ K and anyK ′ ⊂ K, asHK′ ⊆ HK ,
the set of values of Gn|HK′ is contained in the set of values of Gn|HK and hence
inf Gn|HK′ ≥ inf Gn|HK > 0; therefore K ′ ∈ K.

We set
K0 =

⋃
K∈K

K , Γ0 = Jn \K0 . (4)

Of course, K0 ∈ K and K is the power set of K0; in conclusion, given any
K ⊆ Jn, it is K \K0 6= ∅, i.e. K /∈ K, if and only if inf Gn|HK ≤ 0. Then, we
have

Theorem 5. Given a family Fn = {Xi|Yi, i ∈ Jn} of n conditional ran-
dom quantities and any conditional prevision Mn = (µi, i ∈ Jn) on Fn, let
(FΓ0 ,MΓ0) be the pair associated with the subset Γ0 defined as in (4). The
conditional prevision sub-assessment MΓ0 on the sub-family FΓ0 is coherent.

Proof. Based on Definition 4, we have to prove that, for every J ⊆ Γ0, with
J 6= ∅, it is inf GJ |HJ ≤ 0. Given any J ⊆ Γ0, as J /∈ K, it is inf Gn|HJ ≤ 0,
for every s1, . . . , sn. Moreover, Gn|HJ = GJ |HJ + GJn\J |HJ ; in particular, if
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we choose si = 0 for i /∈ J , it is Gn|HJ = GJ |HJ . Then, in order the condition
inf Gn|HJ ≤ 0 , ∀ s1, . . . , sn, be satisfied, it must be inf GJ |HJ ≤ 0, for every
si, i ∈ J . Therefore, the assessment MΓ0 on FΓ0 is coherent.

Remark 1. We observe that inf GJ |HJ > 0 for some si, with i ∈ J , implies
inf Gn|HJ > 0 with the same si, for i ∈ J , and si = 0, for i ∈ Jn \ J .

We give below a necessary and sufficient condition of coherence.

Theorem 6. Let be given a family Fn = {Xi|Yi, i ∈ Jn} of n conditional
random quantities and a conditional prevision assessmentMn = (µi, i ∈ Jn) on
Fn. Moreover, let K∗ be any non empty subset of Jn such that K0 ⊆ K∗. The
assessment Mn is coherent if and only if:
(i) inf Gn|Hn · supGn|Hn ≤ 0 ∀ si ∈ R, i ∈ Jn; (ii) MK∗ on FK∗ is coherent.

Proof. Of course, coherence of Mn implies (i) and (ii). Conversely, based on
Definition 4, we have to prove that, for every K ⊆ Jn, it is inf GK |HK ≤ 0. We
distinguish two cases: (a) K ⊆ K∗; (b) K * K∗. In the case (a) the condition
inf GK |HK ≤ 0 follows from coherence of MK∗ ; in the case (b), K * K0 and
hence K /∈ K; therefore inf Gn|HK ≤ 0. Then, by reasoning as in Theorem 5,
it follows inf GK |HK ≤ 0. Therefore Mn is coherent.

We illustrate the previous result by the following

Example 2. Given a random vector (X1, X2, Y1, Y2), assume that the con-
stituents are

C1 = (X1 = 1, X2 = 0, Y1 = 0, Y2 = 1), C2 = (X1 = 1, X2 = 0, Y1 = 1, Y2 = 1),
C3 = (X1 = 0, X2 = 0, Y1 = 1, Y2 = 1), C4 = (X1 = 1, X2 = 2, Y1 = 0, Y2 = 0),
C5 = (X1 = 1, X2 = 2, Y1 = 1, Y2 = 0), C6 = (X1 = 0, X2 = 2, Y1 = 1, Y2 = 0).

Then, consider the assessment M3 = (0, 1, 0) on F3 = {X1|Y1, X2|Y2, Y2|X2}.
We observe that H3 = (Y1 6= 0) ∨ (Y2 6= 0) ∨ (X2 6= 0) = Ω and G3|H3 = G3 =
s1Y1X1 + s2Y2(X2 − 1) + s3X2Y2. The values of G3|H3 are

g1 = −s2 , g2 = s1 − s2 , g3 = −s2 , g4 = 0 , g5 = s1 , g6 = 0 .

Now, it can be verified that inf G3|H1 ≤ 0 and inf G3|H3 ≤ 0 for all s1, s2, s3,
which means that {1, 3} ⊆ Γ0. On the contrary, for some s1, s2, s3 (e.g. for
s2 > 0, s1 < s2 ) it is inf G3|H2 · supG3|H2 = −s2(s1 − s2) > 0. Thus,
Γ0 = {1, 3} and K0 = {2}. Moreover, GK0 |HK0 = s2Y2(X2 − µ2)|H2 = −s2;
hence the condition inf GK0 |HK0 ≤ 0 is not satisfied for every s2. This means
that condition (ii) is not satisfied, i.e. the assessment µ2 = 1 on X2|Y2 is not
coherent, so that M3 is not coherent too.
Of course, by Theorem 5, the assessment (0, 0) on {X1|Y1, Y2|X2} is coherent.
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6 A procedure for checking coherence

In this section, based on a suitable alternative theorem, we characterize the
coherence of conditional prevision assessments by some theoretical results; then
we propose an algorithm for the checking of coherence.
Let z, s and A be, respectively, a row m−vector, a column n−vector and a
m× n−matrix. The vector z = (z1, . . . , zm) is said semipositive if zi ≥ 0, ∀ i ∈
Jm and z1 + · · ·+ zm > 0 . Then, we have (Gale 1960; Theorem 2.9)

Theorem 7. Exactly one of the following alternatives holds.
(i) the equality zA = 0 has a semipositive solution;
(ii) the inequality As > 0 has a solution.

We observe that the equality zA = 0 has a semipositive solution z =
(z1, . . . , zm) if and only if the equality pA = 0 has a semipositive solution
p = (p1, . . . , pm) with p1 + · · ·+ pm = 1.
Given two random vectors X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), we set (X,Y ) =
(X1, . . . , Xn, Y1, . . . , Yn); moreover, we denote by CXY the realm of (X,Y ), that
is the (finite) set of points (x,y) ∈ R2n such that (X = x, Y = y) 6= ∅. We recall
that Hi = (Yi 6= 0), i ∈ Jn, Hn = H1∨· · ·∨Hn; moreover, we denote by C0

XY =
{(x1,y1), . . . , (xm,ym)}, with (xr,yr) = (xr1, . . . , xrn, yr1, . . . , yrn), r ∈ Jm,
the subset of points (x,y) of CXY such that y 6= 0; this means that, for any
(x,0) ∈ CXY , it is (x,0) /∈ C0

XY . Given an assessment Mn = (µ1, . . . , µn) on
Fn = {X1|Y1, . . . , Xn|Yn}, we denote by Cr the constituent (X = xr, Y = yr).
Then, the value gr of the random gain Gn|Hn =

∑n
i=1 siYi(Xi − µi), associated

with the constituent Cr, is given by

gr =
n∑

i=1

siyri(xri − µi) =
n∑

i=1

si(xriyri − µiyri) , r ∈ Jm .

We define the matrix A = (ari), where ari = xriyri−µiyri, r ∈ Jm, i ∈ Jn, and
the column n−vector s = (s1, . . . , sn)t. If the inequality As > 0 has a solution,
this means gr > 0, ∀ r; that is inf Gn|Hn > 0. Then, by (the alternative)
Theorem 7, the coherence condition inf Gn|Hn ≤ 0, ∀ s1, . . . , sn, means that the
equality zA = 0 has a semipositive solution p = (p1, . . . , pm), with

∑m
r=1 pr = 1.

This amounts to solvability of the following system{ ∑m
r=1 pr(xriyri − µiyri) = 0 , i ∈ Jn,∑m
r=1 pr = 1 ; pr ≥ 0, r ∈ Jm.

(5)

Remark 2. Given any K ⊂ Jn, we denote by AK = (ari) the sub-matrix of A
such that i ∈ Jn and r such that Cr ⊆ HK . By the same alternative theorem, we
have that the condition inf Gn|HK ≤ 0, ∀ s1, . . . , sn, means that the inequality
AKs > 0 has no solutions, or equivalently that the equality pKAK = 0 has
a semipositive solution pK = (pr, r : Cr ⊆ HK); i.e., the following system is
solvable { ∑

r:Cr⊆HK
pr(xriyri − µiyri) = 0 , i ∈ Jn,∑

r:Cr⊆HK
pr = 1 ; pr ≥ 0, r : Cr ⊆ HK .

(6)
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We observe that, denoting by (x(i)
j , y

(i)
j ) the generic possible value of (Xi, Yi),

the system (5) can be equivalently rewritten as{ ∑
j x

(i)
j y

(i)
j

∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

pr = µi

∑
j y

(i)
j

∑
r:Cr⊆(Yi=y

(i)
j )

pr, i ∈ Jn,∑m
r=1 pr = 1 ; pr ≥ 0, r ∈ Jm.

(7)
Notice that, in probabilistic terms, we have the following interpretations

pr = P (Cr|Hn) = P [(X = xr, Y = yr)|Hn] ;∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

pr = P [(Xi = x
(i)
j , Yi = y

(i)
j )|Hn] ;∑

r:Cr⊆(Yi=y
(i)
j )

pr = P [(Yi = y
(i)
j )|Hn] ;

(8)

hence, system (7) can be looked at

Pr(XiYi|Hn) = µiPr(Yi|Hn), i ∈ Jn ; P (Hn|Hn) = 1 . (9)

Now, assuming that system (7) is solvable, we denote by S its (non empty) set
of solutions. Given any p = (p1, . . . , pm) ∈ S, we set

Φj(p) =
∑

r:Cr⊆Hj

pr, Mj = maxp∈S Φj(p), j ∈ Jn; I0 = {j ∈ Jn : Mj = 0}.

(10)
Of course, solvability of system (7) implies I0 ⊂ Jn. Given any K ⊆ Jn, we
denote by (FK ,MK) the pair associated with K and by GK |HK (resp., by (SK))
the random gain (resp., the system) associated with (FK ,MK).
Of course, Gn = GJn

and Fn = FJn
. We have

Theorem 8. Assume that system (7) is solvable; moreover, let I0 be defined
as in (10). Then, given any K ⊂ Jn such that K \ I0 6= ∅, the system (SK) is
solvable; that is inf GK |HK ≤ 0. Moreover, the sub-assessment MJn\I0 on the
sub-family FJn\I0 is coherent.

Proof. Given any j ∈ K \ I0 there exists a solution p(j) = (p(j)
1 , . . . , p

(j)
m ) ∈ S

such that Φj(p(j)) > 0; moreover∑
r:Cr⊆HK

p(j)
r ≥

∑
r:Cr⊆Hj

p(j)
r = Φj(p(j)) > 0 .

Hence, p(j) is a solution of the following system related with system (7){ ∑
j x

(i)
j y

(i)
j

∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

pr = µi

∑
j y

(i)
j

∑
r:Cr⊆(Yi=y

(i)
j )

pr, i ∈ K,∑
r:Cr⊆HK

pr > 0 ; pr ≥ 0, r ∈ Jm.

(11)
As it can be verified, the solvability of the system (11) is equivalent to solvability
of the system (SK); that is, by the alternative theorem, to satisfiability of the
condition inf GK |HK ≤ 0. In particular, the condition inf GK |HK ≤ 0 holds
for every K ⊆ Jn \ I0 and this amounts to coherence of MJn\I0 .
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By the previous result, we obtain

Theorem 9. Let be given a family Fn = {Xi|Yi, i ∈ Jn} of n conditional
random quantities and a conditional prevision assessmentMn = (µi, i ∈ Jn) on
Fn. Moreover, let K∗ be any non empty subset of Jn such that I0 ⊆ K∗. The
assessment Mn is coherent if and only if:
(i) the system (7) is solvable; (ii) MK∗ on FK∗ is coherent.

Proof. Of course, coherence of Mn implies conditions (i) and (ii). Conversely,
based on Definition 4, we have to prove that inf GK |HK ≤ 0, ∀K ⊆ Jn. We
observe that, by (i), it is inf Gn|Hn ≤ 0 and I0 ⊂ Jn. We distinguish two cases:
(a) K ⊆ K∗; (b) K * K∗. In the case (a) the condition inf GK |HK ≤ 0 follows
from coherence of MK∗ ; in the case (b) the condition inf GK |HK ≤ 0 follows
by Theorem 8, as K \K∗ 6= ∅.

Remark 3. We recall that, for each r ∈ Jm, Cr represents the constituent
(X = xr, Y = yr); hence, given any K ⊆ Jn, with K \ I0 6= ∅, for each r such
that Cr ⊆ (Yi = y

(i)
j ) , i ∈ K, we have Cr ⊆ HK . Hence, in system (11) for all

the variables pr’s it is Cr ⊆ HK and the condition r ∈ Jm can be replaced by
r : Cr ⊆ HK . It follows that, by defining

λr =
pr∑

r:Cr⊆HK
pr
, ∀ r : Cr ⊆ HK ,

the system (11) can be rewritten as the following one{ ∑
j x

(i)
j y

(i)
j

∑
r:Cr⊆(Xi=x

(i)
j ,Yi=y

(i)
j )

λr = µi

∑
j y

(i)
j

∑
r:Cr⊆(Yi=y

(i)
j )

λr, i ∈ K,∑
r:Cr⊆HK

λr = 1 ; λr ≥ 0, r : Cr ⊆ HK .

(12)
Moreover, concerning system (6), as s1, . . . , sn are arbitrary, by choosing si =
0, ∀ i ∈ Jn \K, the system obtained by (6), with i ∈ Jn replaced by i ∈ K, is
equivalent to system (11). As a consequence: (i) K0 = I0; (ii) Theorems 5 and
8 are equivalent; (iii) Theorems 6 and 9 are equivalent too.

We observe that, if K ⊆ I0, nothing can be said about the solvability of
system (SK), which requires a direct checking, by starting with K = I0.
Based on Theorems 8 and 9, we can use the algorithm below for the checking
of coherence.

Algorithm 1. Let be given a conditional prevision assessmentMn = (µ1, . . . , µn)
on Fn = {X1|Y1, . . . , Xn|Yn}.
Step 1. Check the solvability of system (7); if the system is not solvable, then
Mn is not coherent.
Step 2. If the system is solvable, determine I0; if I0 = ∅, thenMn is coherent.
Step 3. If I0 6= ∅, then determine the pair (FI0 ,MI0); replace the pair
(Fn,Mn) by (FI0 ,MI0) and repeat the previous steps.
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As we can see, using the algorithm above, we can check coherence of the
assessment Mn on Fn in a finite number of iterations. If the initial system
is solvable, a suitable sequence of sets I(1)

0 , . . . , I
(t)
0 is computed. We have two

cases: (a) ifMn is coherent, it is t ≤ n and I(t)
0 = ∅; (b) ifMn is not coherent,

it is t ≤ n− 1 and I
(t)
0 6= ∅. We give an example to illustrate Algorithm 1.

Example 3. (we continue Example 2) Concerning the assessmentM3 = (0, 1, 0)
on the family F3 = {X1|Y1, X2|Y2, Y2|X2}, with each constituent Cr, we asso-
ciate a variable pr, r = 1 . . . , 6. Then, based on Algorithm 1, we check the
solvability of the initial system given below.

0(p1 + p3 + p4 + p6) + 1(p2 + p5) = 0(0(p1 + p4) + 1(p2 + p3 + p5 + p6)),
0 = 1(0(p4 + p5 + p6) + 1(p1 + p2 + p3)),
0 = 0(0(p1 + p2 + p3) + 2(p4 + p5 + p6)),∑6

r=1 pr = 1, pr ≥ 0, r = 1, . . . , 6,
(13)

which can be written{
p2 + p5 = 0 , p1 + p2 + p3 = 0 , 0 = 0 ,∑6

r=1 pr = 1, pr ≥ 0, r = 1, . . . , 6.
(14)

Each vector p = (p1, . . . , p6), with p1 = p2 = p3 = p5 = 0, p4 + p6 = 1, is a
solution of this system. We have

Φ1(p) = p2 + p3 + p5 + p6 , Φ2(p) = p1 + p2 + p3 , Φ3(p) = p4 + p5 + p6 ,

hence M1 > 0, M2 = 0, M3 > 0. Then, I0 = {2} and we have to check the
coherence of the assessment µ2 = P(X2|Y2) = 1. As conditionally on (Y2 6= 0)
the unique possible value of X2 is 0, it must be P(X2|Y2) = 0; hence, by the
algorithm it results that the assessment M3 is not coherent. Of course, by
Theorem 8, the sub-assessment (0, 0) on {X1|Y1, Y2|X2} is coherent.

7 Imprecise conditional prevision assessments

In this section we briefly examine imprecise conditional prevision assessments;
we introduce below the notions of generalized coherence and total coherence.

Definition 5. Let be given any random quantities X1, . . . , Xn, Y1, . . . , Yn and
a set S ⊆ Rn. With each point Mn = (µ1, . . . , µn) ∈ S we associate the family
Fn = {X1|Y1, . . . , Xn|Yn}, where Xi|Yi = µi + Yi(Xi − µi), i ∈ Jn. We say
that the set S is coherent in a generalized sense (g-coherent) if and only if there
exists Mn ∈ S which is a coherent conditional prevision assessment on Fn.
We say that the set S is totally coherent if and only if, for every Mn ∈ S, Mn

is a coherent conditional prevision assessment on Fn.

Of course, total coherence implies g-coherence.
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Given a family of n conditional random quantities Fn = {X1|Y1, . . . , Xn|Yn},
we assume (Xi, Yi) ∈ Ci , i ∈ Jn; moreover, for each i, we set C0

i = (x, y) ∈
Ci : y 6= 0 and Hi = (Yi 6= 0). For each i, we denote by X0

i the set of values
of Xi such that for each x ∈ X0

i there exists a possible value y of Yi such that
(x, y) ∈ C0

i . Moreover, we set mi = minX0
i , Mi = maxX0

i , i ∈ Jn. We recall
that, assuming Yi ≥ 0, or Yi ≤ 0, the assessment P(Xi|Yi) = µi is coherent if
and only if mi ≤ µi ≤ Mi. We set I = [m1,M1] × · · · × [mn,Mn]. Then, we
have the following result which concerns the total coherence of I.

Theorem 10. Let be given a conditional prevision assessmentMn = (µ1, . . . , µn)
on a family Fn = {X1|Y1, . . . , Xn|Yn}, where for each i it is Yi ≥ 0, or Yi ≤ 0.
Moreover, assume that HiHj = ∅, for each i 6= j. Then, the assessment Mn is
coherent if and only if mi ≤ µi ≤Mi for every i; that is, I is totally coherent.

Proof. We set Gi = siYi(Xi − µi), i ∈ Jn; then

Gn = G1 + · · ·+Gn = H1G1 + · · ·+HnGn ,

where s1, . . . , sn are arbitrary real numbers. Of course, for each i, the condition
inf Gi|Hi ≤ 0 ∀ si is satisfied if and only if mi ≤ µi ≤Mi. Then, recalling that
Hn = H1 ∨ · · · ∨Hn, from the hypothesis HiHj = ∅ for i 6= j, it follows

Gn|Hn =

 G1|H1, H1 true,
. . . . . . . . . . . .
Gn|Hn, Hn true.

Then
inf Gn|Hn = min {inf Gi|Hi , i ∈ Jn} ,

and the condition inf Gn|Hn ≤ 0 ∀ s1, . . . , sn, is satisfied if and only if it is
satisfied the condition inf Gi|Hi ≤ 0 ∀ si, i ∈ Jn; that is mi ≤ µi ≤Mi ∀ si, i ∈
Jn. Of course, a similar reasoning can be applied to each sub-family of Fn; hence
I is totally coherent.

We illustrate the previous result by the following

Example 4. Assume that the random vector (X1, X2, X3, Y1, Y2, Y3) has the
following possible values

(1, 1, 1, 1, 0, 0) , (−1,−1,−1, 1, 0, 0) , (1, 1, 1, 0, 1, 0) ,

(−1,−1,−1, 0, 1, 0) , (1, 1, 1, 0, 0, 1) , (−1,−1,−1, 0, 0, 1) ;

moreover, let M = (µ1, µ2, µ3) a conditional prevision assessment on F3 =
{X1|Y1, X2|Y2, X3|Y3}. We observe that [mi,Mi] = [−1, 1], i = 1, 2, 3, and
I = [−1, 1]3. Moreover, we have the following values for the random gain G3|H3

s1(1− µ1) , −s1µ1 , s2(1− µ2) , −s2µ2 , s3(1− µ3) , −s3µ3 .

As it can be easily verified, the condition minG3|H3 ≤ 0 , ∀ s1, s2, s3, is satisfied
if and only if −1 ≤ µi ≤ 1, i = 1, 2, 3; of course, a similar reasoning can be
applied to each subfamily of F3. Hence the interval I = [−1, 1]3 is totally
coherent.
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8 Conclusions

In this paper we have introduced the notion of coherence for conditional pre-
vision assessments on finite families of general conditional random quantities.
Moreover, we have examined the compound prevision theorem and the relation
between P(X|Y ) and P(Y |X). Then, we have given some theoretical results
on random gains and, based on a suitable alternative theorem, we have given
a characterization of coherence. We have also proposed an algorithm for the
checking of coherence. Finally, we have introduced the notions of generalized
and total coherence; then, we have briefly examined the case of imprecise condi-
tional prevision assessments. To illustrate our results we have considered some
examples. Future work should concern the deepening of the case of imprecise
prevision assessments.
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