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Abstract

In this paper we consider general conditional random quantities of the
kind X|Y, where X and Y are finite discrete random quantities. Then,
we introduce the notion of coherence for conditional prevision assessments
on finite families of general conditional random quantities. Moreover, we
give a compound prevision theorem and we examine the relation between
the previsions of X|Y and Y|X. Then, we give some results on random
gains and, by a suitable alternative theorem, we obtain a characterization
of coherence. We also propose an algorithm for the checking of coherence.
Finally, we briefly examine the case of imprecise conditional prevision
assessments by introducing the notions of generalized and total coherence.
To illustrate our results, we consider some examples.

1 Introduction

In a recent paper ([I]) we have studied the notion of general conditional previ-
sion P(XY'), where X and Y are finite discrete random quantities. This general
notion of conditional prevision has been introduced by Lad and Dickey in [5]
and also discussed in [6]. In their work Lad and Dickey consider a notion of
conditional prevision of the form P(X|Y) where both X and Y are random
quantities, by generalizing the de Finetti’s definition of a conditional prevision
assertion P(X|H), where H is an event. In [5] [6] the case P(Y) = 0 has not
been considered; on the other hand, P(Y') = 0 doesn’t imply P(XY') = 0; then
P(X|Y) might not exist. In order to handle the case P(Y) = 0 in [I] we have
proposed a notion of coherence which integrates the definition of P(X]Y") given
by Lad and Dickey. In particular, among other results, we have given a strong



generalized compound prevision theorem. In this paper we continue our study,
by considering in general conditional prevision assessments on finite families of
finite discrete conditional random quantities. We introduce in general the no-
tion of coherence; we examine the compound prevision theorem and a kind of
generalization of Bayes theorem; we obtain some results on random gains; more-
over, we give some results to characterize coherence and, by exploiting them,
we propose an algorithm for the checking of coherence; finally, we consider the
case of imprecise conditional prevision assessments, by introducing the notions
of generalized coherence and total coherence. We illustrate our results by some
examples.

The paper is organized as follows: in Section 2 we give some preliminary no-
tions and results; in Section 3 we introduce in general the notion of coherence
for conditional prevision assessments; in Section 4 we generalize the compound
prevision theorem and we examine the relation between P(X|Y) and P(Y|X);
in Section 5 we give some results on random gains; in Section 6 we illustrate a
procedure, by proposing an algorithm, for the checking of coherence; in Section
7 we briefly examine the case of imprecise conditional prevision assessments by
introducing the notions of generalized and total coherence; finally, in Section 8
we give some conclusions and comments on future work.

2 Some preliminary notions and results

We recall below two definitions given in [5] [6].

Definition 1. The conditional prevision for X given Y, denoted P(X|Y), is
a number you specify with the understanding that you accept to engage any
transaction yielding a random net gain G = sY[X — P(X|Y)], where s is an
arbitrary real quantity.

Definition 2. Having asserted your conditional prevision P(X|Y) = pu, the
conditional random quantity X|Y is defined as

XY =XY +(1-Y)pu=p+Y(X —p). (1)

In [I] some critical comments and examples have been given on the previous
definitions. Then, based on the notion of coherence given in [2] 4 [7, [8 @], the
following definition has been proposed

Definition 3. Given two random quantities X,Y and a conditional prevision
assessment P(X 1Y) = p, let G = s(X|Y — u) = sY (X — p) be the net random
gain, where s is an arbitrary real quantity, with s # 0. Defining the event
H = (Y #0), the assessment P(X|Y) = u is coherent if and only if: inf G|H -
sup G|H <0, for every s.

Letbe X € Cx ={z1,...,2ptand Y € Cy = {y1,...,yr}, with yp, > 0, Vk,

and (X,Y) € C C Cx x Cy. We denote by X the subset of Cx such that for
each 5, € XO there exists (Zh,yx) € C with yg # 0. Then, we set

o =min X°, 2°=maz X°. (2)
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Then, we have ([I)

Theorem 1. Given two finite random quantities X, Y, with Y > 0, the previ-
sion assessment P(X|Y) = p is coherent if and only if x¢g < pu < 2°.

A similar result holds for Y < 0.

3 Coherence of general conditional previsions

Given any random quantities Xi,...,X,,Y1,...,Y,, based on Definitions
and [2| we denote by M,, = (p1,...,n) a vector of conditional previsions
for 7 X, given Y77, ..., 7 X, given Y;,”, where p; = P(X;|Y;); then, we set
Fn={X1|Y1,..., Xn|Yn} and we denote by

Gn = ZSZ(XJYZ — i) = ZsiYi(Xi — i),

%

where si,...,s, are arbitrary real quantities, the random gain associated with
the pair (F,, M,,). We set H; = (Y; #0), H,, = Hy V- -+ V H,; then, based on
[2, [, [7, 8, [9], we generalize Definition |3| by the following

Definition 4. Let P be a real function defined on a family K of conditional
random quantities. P is said coherent if and only if, for every integer n, for every
S1y.-.,8n, and for every sub-family F,, C K, denoting by M,, = (u1,..., tn)
the restriction of P to JF,, the following condition is satisfied

inf GulHn < 0 < sup Gn|Hon, (3)

which is equivalent to inf G, |H, < 0, or sup G,|H, > 0.

We give below an example where, based on Definition [4] it is shown that in
some cases do not exist finite coherent conditional prevision assessments.

Example 1. Let be given a random quantity X € {—1,1}, with P(X) = 0,
ie. P(X = —1) = P(X =1) = 5. Of course, it is X? = P(X?) = 1; hence,
the assessment P(X) = 0 has the unique extension P(X?) = 1. It can be
shown that the assessment (0,1) on {X, X2} has no finite extensions on X|X.
In fact, let M3 = (0,1, ) be a prevision assessment on F3 = {X, X2 X|X},
where 4 = P(X|X). By compound prevision theorem, P(XY) = P(Y)P(X]Y),
it should be P(X?) = P(X)P(X|X), that is: 1 = 0 - g, which has no finite
solutions in the unknown pu. We will show that, for every finite quantity p, the
condition of coherence is not satisfied. In our case Hy = Hy = H3 = Q) = Ha3,
so that

g3|H3 =03 = 81(X—O)+82(X2—1)+83X(X—/L) = (Sl—Sgu)X+(82+S3)X2—82;

then, denoting by g1 (resp., g2) the value of G5 associated with X = —1 (resp.,
X =1),itis g1 = —s1 + (1 + p)s3, go = s1 + (1 — u)s3. Hence s1 < (14 p)s3
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implies g; > 0, while 81 > (=1 + u)s3 = (1 + p)ss — 2s3 implies go > 0. Then,
for every pair (s1,s3), with s3 > 0 and (1 + p)s3 < s1 < —2s3(1 + p)ss it
is g1 > 0, g2 > 0; that is: inf G3|Hs > 0. Thus, the assessment (0,1, ) on
{X, X2, X|X} is not coherent, for every finite .

We remark that, still assuming X € {—1,1} and P(X) = 0, the incoherence of
the assessment P(X|X) = p can be proved by directly observing that it should
be P[(X|X) — u] = 0; that is P[X (X — p)] = P(X? —puX) =1 — -0 = 0, which
is false, for every p.

4 Compound prevision and Bayes theorems

We give below a result which generalizes the compound probability theorem to
the case of n arbitrary random quantities X1, ..., X,,.

Theorem 2. Given n random quantities X, ..., X,,, we have
P(X; - X,) =P(X)P(X5|X7) - P(Xp| X1 - Xpm1) -

Proof. The proof immediately follows by the compound prevision theorem; in
fact, by suitably iterating the formula P(XY) = P(Y)P(XY), we have

P(X1- - Xn) =P(X1- Xn1)P(X,| Xy -+ Xpy) =
=P(X1 - Xp2)P(Xn_1| X1 Xn2)P(Xp| Xy Xppy) =+ =
=P(X)P(Xa|X1) - P(Xp| X1 Xn1).
O

The following result gives a kind of generalization of Bayes theorem, by
analyzing the relationship between P(X|Y) and P(Y'|X).

Theorem 3. Given two finite random quantities X, Y, with P(X) # 0, we have

>y PY =y;)
>, PY =y)P(X[Y =y;)

Proof. We have P(XY) =P(Y)P(X|Y) =P(X)P(Y]X); then

>y P(Y =y;)
>, PY =y)PX|Y =y;)

P(Y|X) = P(X]Y) -

P(Y|X) = P(X]Y)- gg()) =P(X]Y) -

Given any event F and a random quantity Y, with P(Y") # 0, we have

2 uiP(Y =yl E)
> Y P(Y =y;)

riely) = FHEPE) i
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Moreover, given two logically incompatible events A and B, we have
P(AV B]Y)=P(A+ B|]Y)=P(A|Y)+P(BJY) =

>y P(Y = y;]A) >y P(Y =y;|B)

=P e >y PY = y))

P(B)-

5 Some results on random gains

In this section we deepen the notion of coherence given in Definition 4] and we
obtain further theoretical results. Given any integer n, we set J, = {1,...,n}.
Let be given a conditional prevision assessment M,, = (u;,i € J,,) on a family
Fn =A{Xi|Yi,i € J,} of n conditional random quantities, where u; = P(X;|Y;).
For each subset K C J,, we set Hg = Vz'eK H;; moreover, considering the
sub-assessment Mg = (u;,% € K) on the sub-family Fx = {X;|Y;,i € K}, we
denote by G the random gain associated with the pair (Fg, M ). Of course,
Gn =Gy, and F, = F;,. We denote by K the class of the sets K C J,, which
satisfy the condition inf G,|Hk - sup G,|Hk > 0 for some s; € R,i € J,. Of
course, K may be empty. We have

Theorem 4. The class K is additive; that is, for every K/ € K, K" € K, it is
K'UK" € K. Moreover, for every K € K, if K’ C K, then K’ € K.

Proof. Assume that K' € K, K" € K; i.e., inf G,|Hik > 0,inf G,|Hk» > 0.
We observe that the set of values of G,,|H Uk is the union of the set of values
of Gn|Hk and G, |Hf; therefore

nf gn|HK/uK~ = min {an gn|HK/, inf gn|HK~} >0;

hence K'UK" € K. Moreover, given any K € K and any K’ C K, as Hg C Hg,
the set of values of G,,|H - is contained in the set of values of G,,|Hx and hence

inf Gu|Hi > inf G,|Hk > 0; therefore K’ € K. O
We set
Ko= |J K, To=J,\Ky. (4)
KeKk

Of course, Ky € K and K is the power set of Kj; in conclusion, given any
KCJ,, itis K\ Ky#0,ie K ¢K,ifand only if inf G,|Hx < 0. Then, we
have

Theorem 5. Given a family F, = {X;|Y;,i € J,} of n conditional ran-
dom quantities and any conditional prevision M,, = (u;,i € J,) on F,, let
(Fry, Mr,) be the pair associated with the subset I'y defined as in (4). The
conditional prevision sub-assessment Mr, on the sub-family Fr, is coherent.

Proof. Based on Definition [d] we have to prove that, for every J C T'g, with
J#£D, itisinfGs|H; <0. Given any J C Ty, as J ¢ K, it is inf G,|Hs < 0,
for every si1,...,8,. Moreover, G,|H; = Gs|H; + G;,\s|H; in particular, if
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we choose s; =0 for i ¢ J, it is G,|H; = Gs|H . Then, in order the condition
infGnHy <0, Vsi1,...,58n, be satisfied, it must be inf G;|H; < 0, for every
i, © € J. Therefore, the assessment Mrp, on Fr, is coherent. O

Remark 1. We observe that inf G;|H; > 0 for some s;, with ¢ € J, implies
inf Gn|Hys > 0 with the same s;, for i € J, and s; =0, for ¢ € J,, \ J.

We give below a necessary and sufficient condition of coherence.

Theorem 6. Let be given a family F, = {X;|Y;,i € J,} of n conditional
random quantities and a conditional prevision assessment M,, = (u;,% € J,,) on
Fn. Moreover, let K* be any non empty subset of J,, such that Ky C K*. The
assessment M, is coherent if and only if:

(i) inf Gu|Hn - supGn|Hn <0V s; €R,i € Jp; (i) Mgx on Fi~ is coherent.

Proof. Of course, coherence of M,, implies (i) and (ii). Conversely, based on
Deﬁnition we have to prove that, for every K C J,, it isinf Gx|Hrk < 0. We
distinguish two cases: (a) K C K*; (b) K ¢ K*. In the case (a) the condition
inf Gx|Hk < 0 follows from coherence of Mg-; in the case (b), K ¢ K, and
hence K ¢ K; therefore inf G, |Hx < 0. Then, by reasoning as in Theorem
it follows inf Gx|Hk < 0. Therefore M,, is coherent. O

We illustrate the previous result by the following

Example 2. Given a random vector (X7, Xa,Y7,Ys), assume that the con-
stituents are

01:(X1:17X2:0aY1207}/2:1)7 02_(X1_17X2_03Y1:17Y2: )
C3=(X1=0,X2=0Y1=1Yo=1), C4=(X1=1,X,=2,Y1=0,Y=0)
Cs=(X1=1,X2=2Y1=1Y=0), Co=(X1=0,X2=2,Y1=1Y,=0)

Then, consider the assessment M3 = (0,1,0) on F3 = {X;]Y7, X2|Ys, Y2| X2}
We observe that Hs = (Y1 #0) V (Y2 £ 0) V (X2 #0) = Q and G3|H3 = G3 =
511Xy + 82Yo(Xo — 1) + s3X2Y5. The values of G3|H3 are

g1 = —52, g2 =581 — 82, g3=—52, 94 =0, gs =51, g6 = 0.

Now, it can be verified that inf G3|H; < 0 and inf G3|Hs < 0 for all s1, s9, s3,
which means that {1,3} C T'g. On the contrary, for some 1, s2,s3 (e.g. for
sg > 0, 81 < s9 ) it is infGs|Hs - supGs|Ha = —sa(s1 — s2) > 0. Thus,
I'y = {1,3} and Ky = {2}. Moreover, Gi,|Hk, = s2Y2(X2 — p2)|Ha = —so;
hence the condition inf Gk, |Hk, < 0 is not satisfied for every sp. This means
that condition (ii) is not satisfied, i.e. the assessment us = 1 on X5|Ys is not
coherent, so that Mg is not coherent too.

Of course, by Theorem the assessment (0,0) on {X7|Y7,Y2| X2} is coherent.
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6 A procedure for checking coherence

In this section, based on a suitable alternative theorem, we characterize the
coherence of conditional prevision assessments by some theoretical results; then
we propose an algorithm for the checking of coherence.

Let z, s and A be, respectively, a row m—vector, a column n—vector and a
m X n—matrix. The vector z = (21, ..., z;,) is said semipositive if z; > 0, Vi €
Jm and z1 + -+ 2z, > 0. Then, we have (Gale 1960; Theorem 2.9)

Theorem 7. Exactly one of the following alternatives holds.
(i) the equality zA = 0 has a semipositive solution;
(ii) the inequality As > 0 has a solution.

We observe that the equality zA = 0 has a semipositive solution z =

(21,-.-,2m) if and only if the equality pA = 0 has a semipositive solution
P=(P1,. -, Pm) With p1 + -+ +pp = 1.
Given two random vectors X = (X3,...,X,,),Y = (Y1,...,Y,), weset (X,Y) =
(X1,...,Xn,Y1,...,Y,); moreover, we denote by Cxy the realm of (X,Y), that
is the (finite) set of points (x,y) € R*" such that (X = x,Y =y) # 0. We recall
that H; = (Y; #0), ¢ € J,, Hn, = H1 V- --V H,; moreover, we denote by C%Y =
{x1,¥51), -5 (Xmy Ym) }s With (X0, y7) = (et Tens Yrty -+ 5 Yrn )y 7 € I,
the subset of points (x,y) of Cxy such that y # 0; this means that, for any
(x,0) € Cxy, it is (x,0) ¢ C%y. Given an assessment M,, = (u1,...,i,) on
F, = {X;|Y1,..., X,|Y,}, we denote by C.. the constituent (X = x,,Y =y,).
Then, the value g, of the random gain G, |H, = > -, s, Yi(X; — p1;), associated
with the constituent C,., is given by

Si(xriy’r'i - uiy7-i) , T E Iy -
1

(2

n n
9r = Z $iYri(Tri — pi) =
i=1 =
We define the matrix A = (a,;), where a,; = TriYri — WiYri, T € i, © € Jp, and
the column n—vector s = (s1,...,s,)". If the inequality As > 0 has a solution,
this means g, > 0, Vr; that is inf G,|H, > 0. Then, by (the alternative)
Theorem the coherence condition inf G,|H, <0, Vs1,..., s, means that the
equality zA = 0 has a semipositive solution p = (p1,...,pp), with Y-, p, = 1.
This amounts to solvability of the following system

Z:L:1 Pr(TriYri — pilyri) =0, 7 € Jp, 5)
St ipr=1; p. >0, 1€ Jp.

Remark 2. Given any K C J,,, we denote by Ax = (a,;) the sub-matrix of A
such that ¢ € J,, and r such that C,, C Hg. By the same alternative theorem, we
have that the condition inf G,|Hx <0, Vs1,...,s,, means that the inequality
Ags > 0 has no solutions, or equivalently that the equality pxAx = 0 has
a semipositive solution px = (p,,r : C,. C Hg); i.e., the following system is
solvable

{ ZT:CTQHK pr(xriyri - Miyri) =0,1€Jy, (6)

Yomc e Pr=1; pr >0, 7:C. C Hg.
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We observe that, denoting by (xy), j(l)) the generic possible value of (X;,Y;),

the system can be equivalently rewritten as

i
J

(4), (4) — 0 ; ;
j mj yj ZT:CTQ(Xisz),Y,;:y( )) Pr = W Zj yj ZT:CTg(yi:yy))pra S Jn7
Do Pr=1; pr >0, 7€ Jp.

(7)
Notice that, in probabilistic terms, we have the following interpretations
Dr :P(CT‘|HTL) :P[(X:eryz}’r)n;{n]; 0
3 C(Xima? ey ) Pr = P[E-))(i — 2V, = y )M ®)
Zr;crg(yizy;“)pr = P(Y; = y;")[Ha];

hence, system @ can be looked at
Pr(X,Yi|H,) = i Pr(YilHn), i € Jn; P(Ha|Hn) =1. (9)

Now, assuming that system is solvable, we denote by S its (non empty) set
of solutions. Given any p = (p1,...,pm) € S, we set

;(p)= Y pr Mj=mazpes ®;(p), j € Jn; Io={j € Jp: M;=0}.
r:CrCH;
(10)
Of course, solvability of system implies Iy C J,. Given any K C J,, we
denote by (Fk, M) the pair associated with K and by G |Hk (resp., by (Sk))
the random gain (resp., the system) associated with (Fr, Mx).
Of course, G, = G, and F,, = F;,. We have

Theorem 8. Assume that system @ is solvable; moreover, let Iy be defined
as in (10). Then, given any K C J, such that K \ Iy # 0, the system (Sk) is
solvable; that is inf Gx|Hx < 0. Moreover, the sub-assessment M1, on the
sub-family F, \r, is coherent.

Proof. Given any j € K \ Iy there exists a solution pt¥) = (pgj), e ,p,(%)) es
such that ®;(p\)) > 0; moreover

Y s Y =m0

r:CrCHki rC.CH;

Hence, p'¥) is a solution of the following system related with system @

{ Zj xgz)ygz) Zr:crg(Xi:w;i)in:Uﬁi)) Pr = i Zj yy) Z,-;CTE(YFZ/;O) pr, 1t €K,
Zr:CTgHK pr>0; p.>0, 7€ J,.

(1)
As it can be verified, the solvability of the system is equivalent to solvability
of the system (Sk); that is, by the alternative theorem, to satisfiability of the
condition inf Gx|Hk < 0. In particular, the condition inf Gx|Hx < 0 holds
for every K C J,, \ Iy and this amounts to coherence of M \z,. O
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By the previous result, we obtain

Theorem 9. Let be given a family F,, = {X;|Y;,i € J,} of n conditional
random quantities and a conditional prevision assessment M,, = (u;,7 € J,,) on
Fn- Moreover, let K* be any non empty subset of J,, such that Iy C K*. The
assessment M, is coherent if and only if:

(i) the system (7)) is solvable;  (ii) Mg+ on Fi« is coherent.

Proof. Of course, coherence of M,, implies conditions (i) and (ii). Conversely,
based on Definition [4] we have to prove that inf Gx|Hk < 0, VK C J,. We
observe that, by (i), it is inf G,|H, < 0 and Iy C J,,. We distinguish two cases:
(a) K C K*; (b) K ¢ K*. In the case (a) the condition inf Gx|Hx < 0 follows
from coherence of M+; in the case (b) the condition inf Gx|Hxk < 0 follows
by Theorem [§ as K \ K* # 0. 0O

Remark 3. We recall that, for each r € J,,, C, represents the constituent
(X =x,,Y =y,); hence, given any K C J,, with K \ Iy # (), for each r such
that C,. C (Y; = ](-Z))7 1 € K, we have C,. C Hy. Hence, in system for all
the variables p,’s it is C). C Hg and the condition r € J,,, can be replaced by
r: Cr C Hg. It follows that, by defining

Pr

Ap = ———
ET:CTQHK Dr

,VT:OTQHK,

the system can be rewritten as the following one

{ Z] w‘gl)yj(l) ZT:CT‘Q(Xi:I;i),Yi:y;i)) )\r = Mg Z] yj(l) Z"'icrg(Yi:y;i)) )\r, S Ka
Er:c,.gHK Ar=1; N\ >0, 7r:C, CHg.

(12)
Moreover, concerning system @, as si,...,Sy are arbitrary, by choosing s; =
0,Vie J,\ K, the system obtained by @, with i € J, replaced by i € K, is
equivalent to system (1I)). As a consequence: (i) Ko = Io; (ii) Theorems [5] and
are equivalent; (iii) Theorems |§| and |§| are equivalent too.

We observe that, if K C I, nothing can be said about the solvability of
system (S ), which requires a direct checking, by starting with K = Ij.
Based on Theorems [8 and [0} we can use the algorithm below for the checking
of coherence.

Algorithm 1. Let be given a conditional prevision assessment M,, = (u1, ..., fn)
on F, = {X1|Y1,..., Xn|Ya}.

Step 1. Check the solvability of system ; if the system is not solvable, then
M., is not coherent.

Step 2. If the system is solvable, determine Iy; if Iy = @), then M,, is coherent.
Step 3. If Iy # (), then determine the pair (Fj,, My,); replace the pair
(Fn, M) by (Fi,, My,) and repeat the previous steps.



10 V. Biazzo, A. Gilio, G. Sanfilippo

As we can see, using the algorithm above, we can check coherence of the
assessment M, on F, in a finite number of iterations. If the initial system
is solvable, a suitable sequence of sets Iél), e ,Iét) is computed. We have two
cases: (a) if M,, is coherent, it is t < n and I(()t) = {; (b) if M,, is not coherent,
itist<m-—1and Iét) # (). We give an example to illustrate Algorithm 1.

Example 3. (we continue E:mmple@) Concerning the assessment M3 = (0, 1,0)
on the family F3 = {X1|Y1, X2|Y2, Y2| X2}, with each constituent C.., we asso-
ciate a variable p,., r = 1...,6. Then, based on Algorithm 1, we check the
solvability of the initial system given below.

0(p1 +p3 + pa +pe) + 1(p2 + ps) = 0(0(p1 + pa) + 1(p2 + p3 + ps + pe)),
0 =1(0(ps + ps +ps) + L(p1 + p2 + p3)),

0 =0(0(p1 +p2 +p3) +2(pa + 5 + ps)),

S pr=1, p>0,r=1,...,6

(13)
which can be written
p2+ps =0, pr+p2+p3=0, 0=0, (14)
SO pe=1, p>0,r=1,...,6.

Each vector p = (p1,...,ps), With p1 = pa =p3 = ps = 0,ps +ps = 1, is a
solution of this system. We have

Q1 (p) =p2+p3+p5+06, P2(pP) =p1 +p2+ 03, P3(P) =ps+p5+ s,

hence M; > 0, My = 0, M3 > 0. Then, Iy = {2} and we have to check the
coherence of the assessment po = P(X2|Y2) = 1. As conditionally on (Y2 # 0)
the unique possible value of X5 is 0, it must be P(X5|Y3) = 0; hence, by the
algorithm it results that the assessment Mj is not coherent. Of course, by
Theorem [§] the sub-assessment (0,0) on {X;|Y7, Y2| X3} is coherent.

7 Imprecise conditional prevision assessments

In this section we briefly examine imprecise conditional prevision assessments;
we introduce below the notions of generalized coherence and total coherence.

Definition 5. Let be given any random quantities X1,...,X,,Y1,...,Y, and
a set S C R™. With each point M,, = (u1,...,un) € S we associate the family
Fn = {X0|Y1, ..., Xp|Yyn}, where Xi|Y; = py + Yi(Xs — p3), 1 € Jn. We say
that the set S is coherent in a generalized sense (g-coherent) if and only if there
exists M,, € § which is a coherent conditional prevision assessment on F,.
We say that the set S is totally coherent if and only if, for every M,, € S, M,,
is a coherent conditional prevision assessment on F,,.

Of course, total coherence implies g-coherence.
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Given a family of n conditional random quantities F,, = {X1|Y1,..., Xn|Yn},
we assume (X;,Y;) € C;, i € Jy,; moreover, for each i, we set C? = (x,y) €
Ci:y #0and H; = (Y; # 0). For each i, we denote by X? the set of values
of X; such that for each x € X? there exists a possible value y of Y; such that
(z,y) € CY. Moreover, we set m; = min X2, M; =maz X?, i € J,. We recall
that, assuming Y; > 0, or Y; < 0, the assessment P(X;|Y;) = u; is coherent if
and only if m; < p; < M;. We set I = [mq, My] X -+ X [my, M,]. Then, we
have the following result which concerns the total coherence of I.

Theorem 10. Let be given a conditional prevision assessment M,, = (u1,. .., fn)
on a family F,, = {X;1|Y1, ..., X,|Y,}, where for each i it is ¥; > 0, or ¥; < 0.
Moreover, assume that H;H; = (), for each i # j. Then, the assessment M,, is
coherent if and only if m; < u; < M; for every i; that is, I is totally coherent.

Proof. We set G; = 8;Y;(X; — p;), @ € Jp; then

where s1, ..., s, are arbitrary real numbers. Of course, for each ¢, the condition
inf G;|H; < 0Vs; is satisfied if and only if m; < p; < M;. Then, recalling that
H, =H,V---V H,, from the hypothesis H;H; = () for i # j, it follows

Gn|H,, H, true.
Then
inf Gn|Hn = min {inf Gi|H;, i € J,},
and the condition inf G,|H, < 0 Vs1,...,8,, is satisfied if and only if it is
satisfied the condition inf G;|H; <0V s;, i € J,; thatism; < pu; < M; Vs;, i €
Jn. Of course, a similar reasoning can be applied to each sub-family of F,,; hence
I is totally coherent. O

We illustrate the previous result by the following

Example 4. Assume that the random vector (X7, Xo, X3,Y7,Ys,Ys) has the
following possible values

(1>1717130’0)7 (_17_1,_1713())0), (1’1717031’0)3
(_15_17_1707170)7 (171a1707071)7 (_la_17_1a05071);

moreover, let M = (u1,p2,pu3) a conditional prevision assessment on Fz =
{X1|Y1, X5|Y2, X3|Y3}. We observe that [m;, M;] = [-1,1],7 = 1,2,3, and
I = [~1,1]3. Moreover, we have the following values for the random gain G3|H3

s1(1— 1), —sipr, s2(1—p2), —sopa, s3(1—ps), —s3us.
As it can be easily verified, the condition min Gs|Hs < 0, V s1, s2, S3, is satisfied
if and only if —1 < u; < 1,7 = 1,2,3; of course, a similar reasoning can be

applied to each subfamily of F3. Hence the interval I = [—1,1]? is totally
coherent.
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8 Conclusions

In this paper we have introduced the notion of coherence for conditional pre-
vision assessments on finite families of general conditional random quantities.
Moreover, we have examined the compound prevision theorem and the relation
between P(X|Y) and P(Y|X). Then, we have given some theoretical results
on random gains and, based on a suitable alternative theorem, we have given
a characterization of coherence. We have also proposed an algorithm for the
checking of coherence. Finally, we have introduced the notions of generalized
and total coherence; then, we have briefly examined the case of imprecise condi-
tional prevision assessments. To illustrate our results we have considered some
examples. Future work should concern the deepening of the case of imprecise
prevision assessments.
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