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Abstract: This article displays an application of the statistical method moti-
vated by Bruno de Finetti’s operational subjective theory of probability. We
use exchangeable forecasting distributions based on mixtures of linear com-
binations of exponential power (EP) distributions to forecast the sequence
of daily rates of return from the Dow-Jones index of stock prices over a 20
year period. The operational subjective statistical method for comparing
distributions is quite different from that commonly used in data analysis,
because it rejects the basic tenets underlying the practice of hypothesis test-
ing. In its place, proper scoring rules for forecast distributions are used
to assess the values of various forecasting strategies. Using a logarithmic
scoring rule, we find that a mixture linear combination of EP distributions
scores markedly better than does a simple mixture over the EP family, which
scores much better than does a simple Normal mixture. Surprisingly, a mix-
ture over a linear combination of three Normal distributions also makes a
substantial improvement over a simple Normal mixture, although it does
not quite match the performance of even the simple EP mixture. All sub-
stantive forecasting improvements become most marked after extreme tail
phenomena were actually observed in the sequence, in particular after the
abrupt drop in market prices in October, 1987. However, the improvements
continue to be apparent over the long haul of 1985-2006 which has seen a
number of extreme price changes. This result is supported by an analysis
of the Negentropies embedded in the forecasting distributions, and a proper
scoring analysis of these Negentropies as well.

Key words: Dow-Jones index, exponential power distributions, fat tails, log-
arithmic scoring rule, mixture distributions, partial exchangeability, proper
scoring rules, subjective probability, subjectivist statistical methods.

1. Introduction

It is now widely recognised that a sequence of return rates from statistical
indices of stock or bond prices observed at almost any time frequency, short or
long, generates a histogram that is more centrally peaked and displays fatter
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tails than is well described by a Normal distribution. Results in articles by
Timmerman (1995) and Mantegna and Stanley (1995) have been supported in
investigations of many specific phenomena such as the work of Lim et al (2006,
1998) on exchange rates and currency options, to cite only one example. Many
hundreds of related research reports circulate on the web sites “arXiv.org” and
“gloriamundi.org”. Both sites provide a clearing ground for much collaborative
research propagated by physicists with economists. Motivation for understanding
the fat-tail phenomenon can be achieved by realising that actual trades whose
prices are recorded in the sequence are trades between only two parties (one or
both of them perhaps being a managed group of portfolio holders). The parties
who actually make an exchange exhibit opinions or utilities that must be extreme
in some way relative to the other parties who did not engage in that transaction.
Thus, the conditions of the central limit theorem do not really apply to the
definition of trading prices, which are not sums. When conditions arise that
might motivate a trade, the size of the expected price change required by the
parties to break the inertia of the “hold” option can be substantial.

Concomitant with this recognition of empirical tail behaviour have been re-
newed investigations of the properties of the family of Exponential Power (EP)
distributions. This family parameterises the exponent on |(x − µ)/σp|p in the
Normal density as a variable, p. When p is less than 2, family members display
fatter tails in their densities than does the Normal. The early work of Subbotin
(1923) has been extended with varying terminologies in works such as Box and
Tiao (1953); Vianelli (1963); Agrò (1995, 1999); and Choy and Walker (2003).

A third important contemporary development in statistical forecasting strate-
gies has been stimulated by the understanding of exchangeability as a judgement
of symmetry, and the representation of exchangeable distributions via mixture
distributions. This has stemmed from the original result of de Finetti (1937), the
didactic article of Heath and Sudderth (1976), and systematic expositions as in
the text of Lad (1996). More than 200 refereed journal articles on exchangeability
have been published during the past thirty years, as can be found through the
Current Index to Statistics. A common misinterpretation in statistical applica-
tions presumes that the data sequence is generated by independent emanations
from some particular member of the family of distributions over which exchange-
able mixtures are constructed. It is common to use a maximum likelihood or even
Bayesian estimates of the parameters underlying the mixture, and to forecast the
continuing data sequence using such estimates. The subjectivist understanding
of the issue counters such procedures with the suggestion that there is no “true
distribution” generating the data. Rather, the feature of exchangeability and
its representation via a mixture distribution may be a property of a forecaster’s
uncertain assessment of the historical processes that are measured by the data
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sequence. There need be no presumption that the mixing function over p, µ and
σp in an EP mixture, for example, will degenerate over time onto a single point.
Rather, the need for mixtures is a fact of life, and the use of mixture distributions
to forecast throughout the sequence is usually appropriate.

This article unifies these three themes of research in an applied sequential
scoring analysis of daily closing values of the Dow-Jones Industrial Stock Price
Average. Since our primary purpose is to exhibit the method of data analysis
motivated by Bruno de Finetti’s operational subjective theory of probability, we
begin in Section two with a brief primer on methodological implications of the
subjective point of view. We itemise a few important concepts that will be used
in our analysis for readers who are new to them, and we reference a source of
more extensive introductory materials. Section three introduces the data source
and relevant institutional information pertinent to our specific data analysis. In
Section four we describe details of four different forecasting distributions for the
historical data that we study here, along with the computational arrangements
we have required. Section five describes the properties of “proper” scoring rules
we use to assess the quality of the sequential mixture forecasting distributions.
Numerical and graphical results are presented in Section six, and are discussed in
the concluding Section seven. Appendices 1 and 2 display the relevant sequence
of Dow-Jones daily return rates and an array of EP density functions. Appendix
3 presents four Tables summarising features of terminal mixing distributions.

2. A Primer on Operational Subjective Data Analysis

The foundational work in probability of Bruno de Finetti (1906-1986) is widely
regarded as innovative and insightful. Nonetheless, the procedures of statistical
practice that his work supports are not commonly followed or even known. During
the century in which the objectivist understanding of probability won widespread
support and inspired the common practice of hypothesis testing and parameter es-
timation, de Finetti’s work followed a distinctly different path. He characterised
probabilities not as unobservable objective properties of nature, but rather as
numerical representations of individuals’ uncertain knowledge about historical
occurrences which are measurable by numerically defined categories. If proba-
bilities “do not exist” (de Finetti, 1974, p. x) as unobservable entities to be
estimated, the entire objectivist statistical practice of hypothesis testing regard-
ing alternative “generating distributions” and the estimation of parameters of
favoured distributions is a programme that follows an illusion. In the place of
these procedures, a complete operational subjective statistical programme has by
now been developed.

About any sequence of measured historical quantities (whether the result of
designed experiments or mere historical observations of happenstance) the initial
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step in the programme is to formulate probability structures that adequately
represent considered yet uncertain opinions about the historical occurrence of
these measurements. When a joint distribution can be formulated regarding
a sequence of observations, each actual observation value is incorporated into
a sequence of conditional forecasting distributions that specify probabilities for
various possible values of the next observation conditioned on the sequence that
has actually occurred. The conditioning is based on standard laws of probability
which are motivated by the principle of coherency of probabilities. Coherency is
a generalisation of the principle of non-contradiction in the two-valued logic of
certainty, and applies to the array of operational claims that define uncertainty
probabilities.

The central unifying feature of joint distributions over a sequence of quan-
tities that specifies forms of learning by conditioning is exchangeability and its
extensions to various forms of partial exchangeability. This is a judgement that
formalises the symmetries that often characterise considered attitudes towards
observations that occur in a sequence, either temporal or spatial. A complete
introduction to the concept and its application must be deferred to a work such
as Lad (1996, 3.8-3.12). In this article we shall not dwell on fundamental charac-
terisations regarding symmetry over permutations. Rather we shall use directly
a very important result of de Finetti’s work, that infinitely extendible exchange-
able distributions in whatever form of exchangeability can be represented by
conditionally independent mixture distributions. A joint density f(x1, x2) is a
conditionally independent mixture with respect to a parameter, θ, if it is repre-
sentable in the form f(x1, x2) =

∫
f(x1|θ) f(x2|θ) f(θ) dθ. In such a situation

f(x2|x1) is quite different from f(x2). This brief review is meant to make our
allusions to exchangeability in the article clear.

Probability distributions over an array of possible measurement values are not
required for the specification of professional uncertainty. In many practical prob-
lems the elicitation of expectations of the measured quantity would suffice. Such
expectations are called “previsions” in the technical construction of de Finetti’s
mathematics. However in other problems, the assessment of a distribution is
fairly essential to the operational specification of uncertainty. Unknown rates of
return on investment portfolios held by banks are a specific case in point. Specif-
ically, early in the 1990’s it became required that banks hold specific reserves
among their assets to offset the extreme “tail probabilities” for extreme losses
that they might conceivably occur, specific to the types of risk they allow in their
investment portfolio choice. For this reason it is important to be able to compare
the performance of different opinion distributions in terms of the entire array
of probabilities assessed rather than merely in terms of some specific quantity
expectations.
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When several possible families of mixture distributions are presented as con-
tenders to adequately represent considered scientific opinion regarding an un-
certain historical process, operational statistical procedures have been developed
that are designed to compute comparable scores for each of the tendered fami-
lies in order to assess which of them provides a more realistic assessment of the
uncertainties involved. It is widely agreed among proponents of the subjectivist
statistical position that the scoring rules to be used for this programme should
be proper. A scoring rule for a probability distribution is a function of both the
observation that comes to be observed and of the probabilities assessed that the
observation will occur in various regions of its possible realm. The rule is said to
be proper if anyone who assesses a personal probability distribution cannot “ex-
pect” (in the technical sense, according to the tendered distribution) to achieve
a greater score by professing a probability distribution that is different from the
actual distribution as assessed. That is, no gain can be expected from systematic
distortion of professed opinions.

An important proper scoring rule for distributions, which is widely honored
and which shall be used in the application of the present article, is the logarithmic
scoring rule. This awards the score to an uncertainty density that equals the
logarithm of the density function evaluated at the observed value of the quantity
that eventuates. If you assert a density for a quantity X as f(x), and X is
observed to equal the value xo, say, then the score you are awarded is log[f(xo)].
As you observe a sequence of values of successive X’s, these logarithmic values
will be accumulated and compared to the scores that accumulate for alternative
tendered uncertainty distributions. In this context, the logarithmic score that
you “expect” to achieve when you tender a density f(x) is computed via the
expectation

∫
log[f(x)] f(x) dx. This integral can be recognised as the negative

of the entropy in your density (entropy being defined exactly as this integral
value but preceded by a negative sign). Thus, its value is commonly termed
the “negentropy” measure of your distribution. Now the negentropy is not a
probability distribution but an expectation, or prevision. The theory of proper
scoring rules also extends to proper scores for previsions. When the time to score
negentropies for competing distributions arises in this article, they shall be scored
according to the quadratic scoring rule, which is also a proper rule.

It is hoped that this brief introduction will familiarise the reader with the
context in which the data analysis we present in this article will proceed. We
shall make brief technical notes for matters that may be unfamiliar when they
arise. However in the main, we are hoping that this article will exemplify the
perhaps unfamiliar format of an operational subjective statistical analysis of a
real contentious applied scientific question for readers who might wonder what
might be the alternative to “hypothesis testing” procedures which subjectivist
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statisticians completely reject. The reader who is interested by these ideas and
who finds them new is directed to the sophisticated yet introductory level text
of Lad (1996) that covers these and many more matters in great detail. It dwells
on foundational issues of the meaning of statistical activities while providing
complete technical developments with practical applications.

3. Data: Operational Definitions and Their Implications

Suppose that a sequence of observed daily closing prices for a financial instru-
ment or index is denoted by the variables P0, P1, P2, ..., Pt, ..., PT . The daily rates
of return that are accrued by an owner of the instrument are then commonly
described by the transformed variables Xt = log(Pt/Pt−1). Since the increase in
value of the instrument over the course of a single day is expected to be small,
the interpretation of Xt as the daily rate of return derives from the mathematical
fact that log(1+r) ≈ r for small values of r. In this article we study the sequence
of daily closing values of the Dow-Jones Industrial Index, covering the period of
25 October, 1984 through 25 October, 2006. This series is readily available on
the web site “www.djindexes.com”. A plot of the daily rates of return over the
period of our data series is displayed in Appendix 1 to the present article.

It is worthwhile to make some comments of common sense about the theoret-
ical and computational understanding of procedures for forecasting this data. In
the arena of economic “high theory” that is largely conducted within an objec-
tivist understanding of probability, it has become common to speak forthrightly
about the “generation” of a price series in a rational market in terms of a con-
tinuous stochastic process of independent increments governed by some fat-tailed
distribution. It needs to be recognised at this outset that the observed price
variables cannot possibly be generated in such a way. Firstly, of course, the
possible observable measurements of a specific price data series or an index se-
ries are necessarily discrete. Thus, the data series cannot really be generated by
a continuous-valued process. Moreover, there is no real relevance of “fat tail”
properties of a supposed generating distribution in the way these properties are
mathematically defined. If one thinks about a series as commonplace as the Dow-
Jones average, one should be aware that if historical events would occur that could
stimulate either a doubling or a halving of this price index on a single day, for
example, the directors of the New York Stock Exchange would doubtless suspend
trading well before such a cataclysm could occur, merely to allow traders’ nerves
to settle. After a controversial decision to interrupt trading for such a reason in
October, 1987, the NYSE publicly announced new standard procedures for sus-
pending trading for limited periods in the case that the Dow-Jones index drops
by 10, 20, and 30% during a day’s trading. The directors of the exchange may
decide to close the exchange to trading for other reasons as well. For example,
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the exchange was closed during the week following 9/11.

This information is presented here only to highlight an explicit awareness
that the application of mixture EP distributions to opinions about the measured
rates of return is only an approximation to distributions that are actually dis-
crete. Our use of EP mixtures instead of Normal mixtures is motivated simply
by the fact that members of the EP family are more centrally peaked and display
relatively larger tail probabilities than do members of the Normal family. The
usual theoretical interpretations of continuous distributions are amusing further
because many computations, such as used in this article for the determination
of entropies, necessarily resort once again to discreteness in order to perform the
required numerical integrations!

Another approximative aspect of our analysis here is that pure exchangeabil-
ity is not precisely appropriate to informed attitudes about the rate of return
series. Analysis such as the work of Lim et al (2006) already cited highlights the
recognition that market prices do go through periods of varying volatility, though
it is hard to identify precisely when they will occur. Partial exchangeability via
another level of mixing distributions is required to portray this. The approxima-
tion of exchangeability is specified in this application so that we can focus on the
construction of an appropriate computational forecasting procedure that can be
scored by proper rules.

4. Mixture EP Distributions Used in Forecasting

Our forecasting scenario is designed to represent the learning process of some-
one who accepts that the expectation of a day’s closing price, conditional on a
sequence of closing price values on previous days, equals the closing price value on
the preceding day. It is presumed that previous data observations do not provide
useful information to motivate an expectation of a price increase or decline. This
is to say that the price sequence is understood as a martingale. The expected
rate of return over a day, conditioned on an observed sequence of returns over
previous days, always equals zero for all the distributions we compare. In more
detail however, accumulating data observations may allow one to learn about the
variability that is to be expected in the price sequence. We utilise the awareness
of empirical tail properties of return histograms by representing opinions via ex-
changeable mixtures over a linear combination of EP distributions. Starting with
an initial value of the price sequence, called time t = 0, we compute sequential
forecasting densities for the transformed sequence of daily returns in the form of
f(x1), f(x2|x1), f(x3|x1, x2), ..., f(xt+1|xt), ..., where the bold symbol xt denotes
the vector of observations of x1 through xt.

The EP(p, µ, σp) family is a three-parameter family of distributions, composed
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by member densities of the form

fX(x|p, µ, σp) = [2p1/pσpΓ(1 + 1/p)]−1 exp[−(pσ p
p )−1|x − µ|p] ,

defined over all real values of x. The term µ is a location parameter, the con-
ditional expectation of X, and may be any real number. The term σp is a scale
parameter that relates to the standard deviation of X given (p, µ, σp) through
the equation

SD(X|µ, p, σp) =
[

p2/p Γ(3/p)
Γ(1/p)

]1/2

σp . (4.1)

Finally, the variable value of p ∈ (0,∞) is a shape parameter, identifying the
tail and curvature properties of a family member. Member densities with p < 2
have tails that are fatter than a Normal density, while those with p > 2 have
thinner tails than does a Normal. The Normal density itself is the family member
corresponding to p = 2. A graphical display of several members of the EP family
of density functions appears in Appendix 2 of this article.

We should remark on the technical meaning of our allusion to “fat tails”. Two
distribution functions, F (.) and G(.) are said to be “equivalent in their right tails”
if there exists a constant λ+ ∈ (0,∞) such that limx→+∞[1−G(x)]/[1−F (x)] =
λ+. If the distribution functions support densities, then this limiting ratio also
equals the limit of the density ratio, according to L’Hospital’s rule. A similar
definition governs equivalence in the left tail. A distribution F (.) is said to have
“fat tails” with respect to a Normal (Gaussian) G(.) if the limit of this same
ratio equals 0. It should be evident that a mixture distribution combining fat
tailed distributions also has fat tails. Specifically relevant to our analysis, the
EP(p, µ, σp) family of distributions displays fat tails with respect to a Normal
distribution whenever p < 2. Moreover, any convex mixture of such distributions
also has fat tails relative to a Normal.

Exchangeable distributions that are infinitely extendible as exchangeable dis-
tributions can be represented by mixtures of conditionally independent distribu-
tions. The first forecasting distribution we describe for the sequence of daily rates
of return is a simple, two-parameter mixture of EP distributions, mixed over fam-
ily members with p < 2. The mixing function is degenerate on µ = 0, and is rather
mild with respect to p and σp over a wide but sensible grid. Once the details
of this structure are explained, we shall embellish the forecasting distributions
to a mixture over a linear combination of three EP distributions, all degenerate
on µ = 0. These will be denoted by EP(α3,p3, σp3), meaning a mixture over
a linear combination of distributions with convex coefficients α3 ≡ (α1, α2, α3)T

and a common tri-part parameter structure over (p, σp). Details will appear when
the construction is proposed. As exemplified in the second preceding sentence,
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throughout this article we use bold notation for variables that are vectors, sub-
scripted by the number of their components.

A final clarification should be highlighted, regarding the difference between a
distribution for a combination of variables and a combination of distributions for
a variable. This well-known difference can be recalled most easily via some ex-
amples. The distribution for a linear combination of quantities, each distributed
Normally, is of course distributed Normally. However a linear combination of
Normal distributions for a variable is not a Normal distribution. A linear com-
bination of Normal distributions can be considered as a mixture distribution. A
Normal mixture distribution of Normals (via the location parameter) is Normal.
Any other mixture of Normals is not. Our description in the next two subsections
will clarify what we mean by an important family of distributions for the analysis
in this article, the MixLC3EP family. By this we mean

f(x) =
∫

[α1 f1(x|p1, σp1) + α2 f2(x|p2, σp2) +α3 f3(x|p3, σp3)] dF (α3,p3,σp3)
,

which is aptly called a mixture of a Linear (convex) Combination of 3 Exponential
Power distributions. Details follow.

4.1 Mixing functions and mixture distributions

We shall begin our forecasting analysis by describing the details of a simple
mixture of EP(p, σp) distributions for which the location is fixed at µ = 0 for
every p. This will simplify the subsequent description of the extension to mix-
ture linear combinations of EP members. Theoretically speaking, any form of
initial mixing density f(p, σp) can be used to represent a mixture EP forecast
distribution for the sequence of Xt observations. For computational reasons, we
have found it convenient to use a mixing function that is defined by masses over
a grid of discrete values of p and σp, and to compute the mixture probabilities
via summations. The grid is chosen to be fine enough to represent reasonable
opinions. The computations will eventually involve numerical integrations for
both the Negentropy and the expected density value of the distributions as well.
While MCMC methods might be used for the computations of any single step of
this forecasting analysis, they are impractical for the computation of the entire
sequential analysis of this data series, including more than 5000 observations.

We express the initial mixing function over p and σp using the conditional-
marginal factorisation f(p, σp) = f(p) f(σp|p). The “prior” mixing distribution
on p is meant to represent an opinion that recognises the importance of the feature
of fat tails for the uncertainty distribution, but is not very precise in understand-
ing just “how fat” the tails should be. Specifically, the mixing probabilities on
p place positive weights only on the discrete digits from .4 through 2.1, in steps
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of .02. This grid is described using Matlab notation by p = [0.4 : 0.02 : 2.1], a
notation which is common in many other programming languages as well. We
shall use this notation through the rest of this article when it is helpful. The
weights we assessed for our initial mixing function at the beginning of the data
series are best described by viewing the top half of Figure 1.
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Figure 1: Factored components of the initial mixing function f(p, s) = f(p)f(s)
over grids of their arguments.

As to the conditional mixing functions f(σp|p), they are designed to represent
an opinion that is not very precise in identifying the variability to be expected
in the return sequence, but is fairly sure that the standard deviation of the
uncertainty about the rates of return should be less than .02, and most likely much
less. Recall from equation (4.1) the proportional relation between SD(X|p, σp)
and the mixing parameter σp. For each p we allow the corresponding value of
SD(X|p, σp) to cover the grid range s = [0.001 : 0.0002 : 0.02]. For each value of
p, this grid over s is transformed to the corresponding grid range for σp. As is
apparent, this initial mixing function specifies the mixture over “s” independently
from p, implying a specific dependence between p and σp. However, the form
of this dependence will surely change as the conditional forecasting sequence
progresses, and thus a dependence between p and s will emerge in the posterior
mixing functions as well.

Again, the best way to understand the weights on our initial mixing function
and the grid over values of SD(X|p, σp) is to view now the bottom half of Figure 1.
This mixing function expresses explicitly the idea that initial opinions are fairly
precise about limits on the values of s but they are rather uninformed about how
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s, and thus σp, ought to vary with p in any way more complex than is known
through equation (4.1). As the mixing function is subsequently updated with
each observation of xt, a more informed dependence will become specified in a
dependent joint posterior mixing function for p and σp.

Having implicitly specified the grid (p, σp), we can now simply express that
the initial forecast density for X1 is computed for each possibility of x1 via the
mixture density

f(x1) =
∑

p

∑
σp

f(x1|p, σp) f(σp|p) f(p) . (4.2)

Furthermore, for any step t in the sequence, the conditional forecast density is
computed via

f(xt|xt−1) =
∑

p

∑
σp

f(xt|p, σp) f(p, σp|xt−1) (4.3)

for each possibility of xt, but only for the conditioning observed values of xt−1.
The sequential mixing functions f(p, σp|xt−1) appearing in (4.3) are computed
iteratively according to Bayes’ rule via

f(p, σp|xt−1) ∝ f(xt−1|p, σp) f(p, σp|xt−2) . (4.4)

Computationally, the factorisation of f(p, σp) into f(σp|p) f(p) is made only in
equation (4.2) to construct the mixing mass function values at the appropriate
values of (p, σp) in a matrix form. Subsequently, the mixing function matrix is
updated according to equation (4.4) merely by multiplying each component of
that matrix by the appropriate likelihood value and normalising the components
of the matrix so they sum to 1.

4.2 Extension to mixture linear combinations of the EP family

The fact that some EP distributions are fat-tailed relative to Normal distribu-
tions does not necessarily motivate the representation of informed uncertainty by
a simple mixture EP distribution. Convex combinations of such EP distributions
can also be fat-tailed, as are many other distributions, both parametric and non-
parametric. We have extended the array of forecasting distributions under study
to mixtures of linear combinations of three EP distributions, parameterised by
the vectors α3,p3, and σp3. Essentially, the LC3 α3 parameters are spread across
the unit-simplex S2: the domain of α1 values is [0.1 : 0.1 : 0.8]; for each value of
α1, the domain of α2 is [0.1 : 0.1 : 0.9− α1]; and finally, for each pair of (α1, α2),
the value of α3 = 1−α1−α2. The ranges of values for p1, p2, and p3 are staggered
about p1 = [0.4 : 0.3 : 1.9], with the range for p2 = p1 + 0.1, and p3 = p1 + 0.2.
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This computational strategy allows us to cover the appropriate range of values
for p (specified in the simple mixture EP distribution) in the linear combinations
without expanding the sizes of matrices required for the computations beyond
what is practical. The associated domains for the three σp parameters are stag-
gered as well, to cover the same range for their associated standard deviations
as for the MixEP, 0.001 through 0.023. Details of the three associated initial
mixing functions for the three p’s and si’s can be viewed in Figure 2. Sequential
forecasting according to the associated distribution is labeled MixLC3EP in the
displays of scores for distributions appearing in Section 5. They are computed
similarly to the strategy outlined in equations (4.2-4.4), but those equations are
embellished in any instance to replace f(xt|p, σp) by f(xt|α3,p3,σp3), and to re-
place the initial f(p, s) by f(α3,p3, s3) =

∏3
i=1 f(αi)f(pi)f(si) with appropriate

modifications to the embellished mixing functions.
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Figure 2: Marginal components f(p3) and f(s3) of the initial mixing function
for MixLC3EP.

4.3 Mixture Nnormal forecasts, and mixture linear combinations of
normals

For completeness of comparisons, we also computed a mixture Normal fore-
casting procedure, and we extended this to a mixture of three linear combinations
of Normal distributions as well. These forecasting procedures will be labeled
MixN and MixLC3N in the report of the scored forecasts. These forecasting dis-
tributions can be considered as special cases of the MixLC3EP distributions, but
with mixing functions that are degenerate in the p-dimension that specifies the
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Normal family as a subfamily of EP distributions. The initial mixing functions in
the SD-dimension were specified identically to the mixing functions constructed
for the MixEP and MixLC3EP distributions.

5. Assessment of Forecast Strategies via Proper Scoring Rules

We shall now describe the sequential computational procedure we follow for
computing scores of these forecasting distributions when the unknown quantity
comes to be observed in the various periods t as values denoted by Xt = xo

t .
Two scoring functions are relevant here: the first is a score of the forecasting
distributions themselves, namely the logarithmic scoring rule; the second is a
score of the expected score to be achieved, according to the assessment of the
distribution itself. As will be explained, for the latter score we shall report on
the quadratic score of the expected score for each distribution.

Developed within the context of the subjective theory of probability, the two
scoring functions we employ are both said to be “proper” scoring rules. Someone
asserting a probability distribution for a quantity with the awareness that the
logarithmic function will be used to evaluate the quality of the distribution will
expect to achieve a maximum score only by asserting honestly the actual dis-
tribution that represents his/her uncertainty. No improvement can be expected
to be achieved via false posturing. The relevant theory of proper scoring rules
for distributions has a long history. It was central to de Finetti’s ideas about
assessing the relative values of different subjective forecasting distributions. See
de Finetti (1962). The application to scoring continuous densities was described
in the article of Matheson and Winkler (1976), while the general theory and ap-
plication has been reviewed in the text of Lad (1996, Chapter 6) and in the recent
article by Gneiting and Raftery (2007). Specified in terms of a generic density for
a quantity X on the basis of observing the value of X to equal xo, the logarith-
mic scoring function is defined by Slog(X = xo, fX(x)) ≡ log[fX(xo)]. While
there are many functions that qualify as proper scoring rules for distributions,
the logarithmic scoring rule is the unique scoring rule that is a function of the
observed datum only through the actual value of the observation. The score does
not depend on the probability density assessed at values of X that might have
been, but were not observed. In enjoying this property, it mimics a feature of the
likelihood principle for inference. See Bernardo (1979). It is also a proper rule
for which the score of a joint distribution equals the cumulative summed score
for the sequential conditional distributions. For these reasons, we shall compare
the quality of the four sequential forecasting distributions under consideration
according to how they fare with respect to the cumulating sum of the logarithmic
scores they achieve.

It should be evident that the expectation of the logscore to be achieved by a
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distribution, according to the distribution itself, equals the negative entropy of
the distribution: E[SlogfX(.)] =

∫
log[fX(x)]fX(x)dx = −Entropy[fX(.)]. Since

the Negentropy in X is an assessment that varies according to the uncertainty
distribution of the assessor, it is appropriate to track the distributions accord-
ing to a proper score of their Negentropy assessments as well. We shall use
a quadratic score of the Negentropy relative to the achieved logarithmic score
do to this. The quadratic scoring function is also a proper scoring rule for ex-
pected values. It is conventional that scoring functions are scaled so that a larger
score is a better score. Thus, the quadratic rule we employ to score the fore-
casts’ assessed negentropies is defined by Squad(X = xo, Negentropy[fX(.)]) ≡
− {log[fX(xo)]−Negentropy[fX(.)]}2. As we shall see, the scoring of the Negen-
tropies inhering in the various distributions shall provide us with an understand-
ing of the differences in the scores achieved according to the logarithmic scoring
rules of the distributions. The Negentropy in a distribution is a measure of the
amount of information inherent in the distribution. Of course a forecaster might
make a reasonable evaluation of the amount of information his/her uncertainty
provides, or might be mistaken. The quadratic score of the Negentropy can assess
this.

One proviso must be made regarding proper scoring rules: that they are
meaningful only up to a linear transformation. That is, their enviable properties
define them uniquely only up to a linear transformation, similar to utility func-
tions which they can be taken to represent. See DeGroot (1984). As a result,
comparisons of forecasts according to any particular scaling factor are useful only
for ordering the quality of the forecasts. Assessing the scale of the differences
between the forecasts is achieved by viewing the forecasting distributions them-
selves, to observe the extent of the differences in uncertainty assessment they
imply. This is the tack we shall follow in presenting our computational results.

To review the entire computational strategy that we have described to this
point, let us list a row of objects to be computed for each time period, t =
1, 2, ..., T in the time series. The row for time t corresponding to any fore-
cast density f(xt|xt−1) and the observation Xt = xo

t will consist of the triple
Slog[xo

t , f(xt|xt−1)],
E{Slog[xo

t , f(xt|xt−1)]}, and Squad{Slog[xo
t , f(xt|xt−1)] E{Slog[xo

t , f(xt|xt−1)]}}.
These three computations are, respectively, the log score of the forecast density,
the expectation of that score which is embedded in that density (its negative
entropy), and a quadratic score of this expectation against the actual log score
that obtains. The computation of this vector for each observation can be used
to evaluate the relative merits of the various types of forecasting distributions we
have described for consideration. As we compute these functions through each
period, we shall cumulate the scores of the forecast densities and the associated
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expected values of the scores that are embedded within them. The results of
these computations are presented graphically in the next Section.

6. Statistical Results

We begin with a reminder to pay attention to the units of all displayed graphs.
These are marked on the top left corner of the ordinate scale (the “y-coordinate
axis”).

6.1 Cumulative logarithmic scores of the distributions

Figure 3(a) introduces the scores we report with a global comparison of the
cumulating logarithmic scores of the four forecasting distributions MixLC3EP,
MixEP, MixLC3N, and MixN. These names are stated in the order from the best
scoring to the worst scoring among these four distributions over the period. This
ordering among the first three distributions is not completely apparent, because
on the scale of the cumulative scores over twenty years, the first three of them
appear to achieve so similarly. Moreover, the four distributions achieve virtually
indistinguishable scores during the first 750 trading days of the period we tracked.
Figure 3(b) will be required to display the differences, as explained below.
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Figure 3: Gross and detailed comparisons of the logarithmic scoring rule as-
sessments of the distributions. Left panel: Gross cumulative logarithmic scores
of the forecasting distributions over twenty years. Right panel: Differences be-
tween the cumulative logarithmic scores of MixLC3EP and the scores of MixEP
and MixLC3N.

Trading day 752 was the infamous day of 19 October, 1987, when the Dow-
Jones index dropped 554 points, which was one-quarter of its total value at the
time. On this day, the NYSE abruptly announced a “circuit-breaker” procedure
and temporarily closed the market. Subsequently, the NYSE established formal
procedures for implementing automatic temporary closures. The relevance of day
752 to our scoring analysis is that the MixN distribution abruptly dropped off the
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rank of a creditably contending form of forecasting distribution for daily returns,
relative to the other three contenders. Moreover, it is evident even on the gross
scale of Figure 3(a) that the quality of its forecasting performance deteriorated
fairly steadily relative to the others throughout the remaining forecast period.

Details of the differences in the scores for the forecasting performance of
the three best distributions appear in Figure 3(b). This displays the differences
between the cumulating score of MixLC3EP and the cumulating scores of the
other two distributions. On day 752, the MixLC3EP distribution begins a fairly
steady, though sometimes erratic, improvement in its cumulating log score rela-
tive to MixEP and MixLC3N. Implied by the fact that the difference MixLCEP-
MixLC3N is the greater of these two difference functions is that MixEP scores
better than MixLC3N. The scale of these differences is small relative to the scale
of the cumulative scores used in Figure 3(a). What is surprising relative to
current widespread interest in “fat-tailed” distributions is that the MixLC3N
distribution, though admittedly inferior to the other two as cumulated over the
entire period, does perform rather well. It even scores better during a few time
intervals, as indicated by the periods when the difference value of cumulative
MixLC3EP-MixLC3N scores declines in Figure 3(b). Nonetheless, the MixLC3N
is not considered to be a “fat tailed” distribution in the technical sense we have
discussed. Even more provocative may be a visual inspection of Figures 4(b),
which shows that to the crude eye, the tail areas of the MixLC3N distribution
appear fatter over the sub-domain [.035, .06] than either of the mixture EP distri-
butions shown there. In practical discussion, we need be precise in our technical
use of “fat-tail” to describe distributions, which is a property of densities that
only bites at the “infinite” end of the density domain!

6.2 Distinctive features of the predictive densities

A striking feature evident from Figure 3 is that while the scores of all four
distributions are virtually indistinguishable through trading day 751, the score of
MixN drops away quite quickly while the other three distributions appear to be
sensitive enough to be not so drastically affected in their accumulating scores.

The pairs of Figures 4 and 5 exhibit enough differences among the four se-
quential forecasting densities to summarise how this has occurred. Each of these
Figures displays all four forecasting densities we are considering, but at different
points in time. Figure 4 shows the forecasting distributions appropriate to trad-
ing days 3 and 5584, the beginning and end days of our sequence, while Figure 5
shows the distributions appropriate to days surrounding one of the major price
adjustments of the century. The ordinate scales displayed run only over the inter-
val from −.04 through +.04, though the density domains are actually unbounded.
Comparing the left-hand panels of Figures 4 and 5, you can see what was learned
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about return variation over the two years prior to the big drop on 19 October,
1987; then comparing the two sides of Figure 5 you see what immediate influence
the observation of the four days’ tumult would have had on assessors’ attitudes
about the distribution of daily returns. Figure 4(b) displays how the forecasters’
opinions would have settled by the end of the 20 years of trading experience.
We have done our best to make the graphical distinctions evident in a black and
white printing, but they will always be clearer in colour on the electronic version
of this Journal.
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Figure 4: The four predictive densities at the beginning and the end of the
sequential forecasting analysis. Left panel: Four predictive densities for the
rate of return on the third day of trading in the series. Right panel: Four
predictive densities for the rate of return after learning from more than 20
years’ trading experience.
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Figure 5: The four predictive densities shortly before and shortly after the
striking drop and partial recovery of stock prices in October, 1987. Left panel:
Four predictive densities for the rate of return on trade day 750, which was
19 October, 1987. Right panel: Four predictive densities for the rate of return
only four trading days later.

Viewing the entire range of predictive distributions, it is noticeable that the
mixture EP distributions both assert higher forecast probabilities for rates of
return in the vicinity of zero, and for rates of return more extreme than 3.5 per-
cent, than does the mixture Normal distribution. It is evident to the eye that
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the mixture of a linear combination of three Normals does have some capacity to
represent a similar form of distribution too, much more so than a simple mixture
Normal. It is also evident that the MixLC3EP makes use of its flexibility to
include more sharpness around zero and in the tails than does a simple mixture
EP. The relevance of these seemingly minor differences to practical matters re-
volves around issues of “value at risk”, or VAR characteristics of portfolios held
by banks. This concerns the risk exposure of banks to extreme changes in stock
prices, which is regulated in the USA by the Federal Deposit Insurance Corpora-
tion. See, for example, the report of Lopez (1998). A specialised study to score
the relevant tail areas of the distributions we are tracking here is being conducted
by the authors.

6.3 Signals about the relative importance of the LC3 component of the
mixture distribution ... from changes in the mixing function

In our introduction to this article we had raised the question as to whether it
is useful to think in terms of a single “fat-tailed” distribution from the EP family
when assessing a sequence of daily price returns, or whether the perspective that
a mixture of such family members would be more appropriate. Attention to the
development of the mixing functions for the sequential forecasting distributions
provides a useful way to get a handle on this question.

Under the initial grid specification we described in Section 3.3, the MixLC3EP
distribution involved a mixture over more than 2 million parametric LC3EP dis-
tributions. Remember that the parameter vector specifying each such distribution
is (α3,p3, σp3). The initial grid over this 8-dimensional parameter space (recall
that the convex coefficients α3 sum to 1) covers 45× 216× 216 points. However,
by the time 500 days of trading were observed, the mixing function was updated
to the extent that only 2550 of these parameter vectors were accorded weights ex-
ceeding .0001, with only three exceeding .001 while not exceeding .01. The mixing
function does coalesce further to some extent, with time. By the final observation
in our sequential forecasting study the mixing function for MIXLC3EP assesses 56
parameter vectors with weights exceeding .001, of which fourteen exceed .01, while
six exceed .03, and only two exceed .1. The largest weight is .36, associated with
the vector (α3,p3, σp3) = (0.1, 0.3, 0.6, 0.4, 1.4, 1.8, 0.013, 0.014, 0.017). Sum-
mary Tables reporting the sequential development of the mixing functions for
MixLC3N and MixLC3EP appear in Appendix 3.

The conclusion from this review of the mixing function’s development is that
the spread of the mixture weights over the EP parameter space remains quite
diffuse, even after more than five thousand observations in the data sequence.
By contrast, the mixture LC3N distribution settled virtually uniquely with all its
weight on the single parameter vector (α3,σp3) = (0.4, 0.5, 0.1, 0.005, 0.010, 0.023)
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after only 2500 observations (weight = .96, which increases to .9999 by the end of
the observation sequence). In still another contrast, the mixture Normal forecast-
ing distribution MixN would have degenerated into a simple Normal distribution
quite early on in the time sequence. This distribution performs quite poorly
relative to the others we have assessed.

6.4 Self-assessed negentropy of the forecasts: their expected scores

We have described how the negative entropy of a forecasting distribution
represents its own assessment of expectation (“prevision” in de Finetti’s ter-
minology) for the logarithmic score the distribution would achieve. It is also
a well-known measure of the amount of information inherent in a distribution,
and thus represents the assessor’s understanding of the amount of information
his/her own uncertainty proclaims. Figure 6(a) shows that, like the scores of the
distributions themselves, the negentropies of the forecast distributions were fairly
indistinguishable prior to the sharp decline in prices on 19 October, 1987 (period
752 of our sequence). However, after that time, the information measure embed-
ded in MixLC3EP is slightly though noticeably larger than that in MixEP and
MixLC3N (which diminish in the order mentioned). However, the Negentropy
measure for MixN is much smaller.
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Figure 6: Sequence of the Negentropies and their quadratic scores. Left panel:
Sequential Negentropy information measures of the four forecasting distribu-
tions. Right panel: Cumulative quadratic scores of the daily Negentropies for
the four forecasting distributions.

It may be surprising to readers unaccustomed to the applied computation
of entropy measures that the “Negentropies” of the sequential forecasting distri-
butions, displayed in Figure 6(a), are all positive-valued! This is not an error.
Discrete probability distributions, described by a vector of probabilities pN , nec-
essarily entail a negative value to the function Σpi log(pi). That is why “entropy”
was defined by Shannon (1948) with a negative sign on this function value, fol-
lowing Boltzmann, and ensuring that “entropy” is a positive-valued measure.
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Negentropy, defined without the negative sign, is a negative-valued function of
a probability mass function. In a continuous context, however, the entropy of a
density, defined by an integral, is no longer assured of being positive-valued, nor
is Negentropy necessarily negative-valued. In fact, in the context of the densi-
ties studied in this article, which are supported almost entirely over a very short
domain, all display positive Negentropies.

6.5 Scoring the negative entropies: a clue to the success of MixLC3EP

For reasons of computational simplicity, we scored the assessed expectations
of the log scores (their negative entropies) by a quadratic score. Figure 6(b)
shows that once again, MixLC3EP achieves the best score of the four, followed
in order by the scores of MixEP and MixLC3N, just as the entropy information
measures themselves. Again, the score of the MixN distribution is in another
league.

The purpose of conducting this kind of analysis is to exhibit that not only
does the MixLC3EP distribution proclaim that it expects to achieve a better
logarithmic score than do the others proclaim (i.e. asserts a greater expected
score), it actually achieves a better score on a regular basis, as assessed by the
quadratic score of this expectation. It turns out that this is a common feature in
our experience: when finding that one distribution achieves a better logarithmic
score than does another, it is common also to find that the preferred distribution
both claims to entail more information, as measured by its Negentropy, and
indeed it does achieve a better score in its self-assessed Negentropy.

7. Concluding Discussion

The computational procedures we followed for this article are based on mixing
functions that are evaluated over what we deemed as appropriate discrete grids in
a parameter space. While attention to the size of the grid in this multidimensional
problem was required to make the computations feasible, we have performed
robustness checks over finer grids with smaller portions of the data. These results
suggest that extending the fineness of the grid would not generate computational
differences of any practical significance. We are aware that developments in
sequential Monte Carlo programming would allow us in principle to perform
the computations in this mode as well. However the running time of Monte
Carlo procedures for 5500 sequential forecasting distributions involving mixture
distributions over 9 dimensions would be impractical. Recall that numerical
integrations are required at each step to assess the information in the distributions
via negentropy. We are pleased that the grid mixture strategy of computation
we have followed allows practical insights into a substantive problem.
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The largest methodological contribution of our programming strategy is to
display the richness and the practicality of the method of sequential scoring of
alternative probability distributions, for purposes of resolving scientific questions.
This method was proposed by Bruno de Finetti in various writings. Computa-
tional details and practice have been developed in a tradition of researchers who
subscribe to his basic point of view regarding probability as a representation of
uncertainty.

We have computed much more information of interest than can be included
in this article. Further information is available in a research report of the au-
thors1. The most important extensions to the results discussed here are those
that compare the assessments of the forecast distributions using the logarithmic
scoring rule with assessments based on other proper rules. This matter is im-
portant, since the choice of scoring rules is based on utilitarian assessments of
the consequences of forecast errors. However, the results from other scoring rules
are similar. Also included in our computations were comparisons of the quality
of maximum likelihood based forecasting relative to the fully integrated mixture
distributions that we have reported on here. In brief, the mixture distributions
do perform better than the maximum likelihood forecast procedure, although the
differences do reduce as the data accumulates. They do not eliminate completely,
because of the diffuseness that remains in the mixing distribution for MixLC3EP
displayed in Appendix 3.
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Appendix 1. Dow-Jones index daily rates of return
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Figure 7: Data series of daily returns covering the period of 25 October, 1984
through 25 October, 2006

Appendix 2. Selected exponential power densities
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Appendix 3. Sequential mixing function summary tables

Table 1: MixLC3EP. Point of maximum for the Posterior Mixing Function at
time t.

t p1 p2 p3 s1 s2 s3 α1 α2 α3 Mixing P Mass

500 1.0 1.1 1.5 0.009 0.007 0.007 0.1 0.3 0.6 0.00104
1000 1.3 0.5 1.5 0.013 0.007 0.007 0.4 0.1 0.5 0.00890
1500 0.7 1.7 1.5 0.021 0.011 0.011 0.1 0.4 0.5 0.02586
2000 0.4 1.7 1.5 0.021 0.011 0.011 0.1 0.4 0.5 0.02689
2500 0.4 1.7 1.5 0.021 0.011 0.011 0.1 0.5 0.4 0.08480
3000 0.4 1.7 1.2 0.017 0.011 0.011 0.1 0.5 0.4 0.08396
3500 0.4 1.7 1.5 0.017 0.011 0.011 0.1 0.5 0.4 0.33464
4000 0.4 1.7 1.5 0.017 0.011 0.011 0.1 0.4 0.5 0.35594
4500 0.4 1.7 1.5 0.017 0.011 0.011 0.1 0.3 0.6 0.13044
5000 0.4 1.7 1.8 0.017 0.007 0.007 0.1 0.3 0.6 0.25091
5500 0.4 1.4 1.8 0.013 0.007 0.007 0.1 0.3 0.6 0.29455

Table 2: MixLC3EP. Number of points of the Posterior Mixing Function
greater than a fixed value, P.

t P > 0.0001 P > 0.001 P > 0.01 P > 0.03 P > 0.1

500 2550 3 0 0 0
1000 1635 231 0 0 0
1500 914 218 7 0 0
2000 597 190 17 0 0
2500 477 146 19 3 0
3000 326 104 22 7 0
3500 170 59 12 8 2
4000 147 61 15 7 2
4500 111 52 21 13 1
5000 107 30 11 6 3
5500 93 31 16 10 2
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Table 3: MixLC3N. Point of maximum for the posterior mixing function at
time t.

t p1 p2 p3 s1 s2 s3 α1 α2 α3 Mixing P Mass

500 2.0 2.0 2.0 0.005 0.015 0.015 0.6 0.3 0.1 0.10473
1000 2.0 2.0 2.0 0.005 0.023 0.023 0.4 0.5 0.1 0.54008
1500 2.0 2.0 2.0 0.005 0.023 0.023 0.4 0.5 0.1 0.96274
2000 2.0 2.0 2.0 0.005 0.023 0.023 0.4 0.5 0.1 0.85799
2500 2.0 2.0 2.0 0.005 0.023 0.023 0.5 0.4 0.1 0.96427
3000 2.0 2.0 2.0 0.005 0.023 0.023 0.6 0.3 0.1 0.97053
3500 2.0 2.0 2.0 0.005 0.023 0.023 0.5 0.4 0.1 0.98354
4000 2.0 2.0 2.0 0.005 0.023 0.023 0.5 0.4 0.1 0.86350
4500 2.0 2.0 2.0 0.005 0.023 0.023 0.4 0.5 0.1 0.99977
5000 2.0 2.0 2.0 0.005 0.023 0.023 0.4 0.5 0.1 0.99911
5500 2.0 2.0 2.0 0.005 0.023 0.023 0.4 0.5 0.1 0.99996

Table 4: MixLC3N. Number of points of the Posterior Mixing Function greater
than a fixed value, P.

t P > 0.0001 P > 0.001 P > 0.01 P > 0.03 P > 0.1

500 211 109 27 5 1
1000 23 12 4 3 3
1500 8 5 2 1 1
2000 6 2 2 2 2
2500 4 2 2 2 1
3000 6 2 2 1 1
3500 4 3 2 1 1
4000 4 2 2 2 2
4500 2 1 1 1 1
5000 2 1 1 1 1
5500 1 1 1 1 1
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