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Abstract

We study, in the setting of coherence, the extension of a probability as-
sessment defined on n conditional events to their quasi conjunction. We
consider, in particular, two special cases of logical dependencies; more-
over, we examine the relationship between the notion of p-entailment of
Adams and the inclusion relation of Goodman and Nguyen. We also
study the probabilistic semantics of the QAND rule of Dubois and Prade;
then, we give a theoretical result on p-entailment. Keywords. Coher-
ence, Lower/upper probability bounds, Quasi conjunction, QAND rule,
p-entailment.

1 Introduction

In classical (monotonic) logic, if a conclusion C follows from some premises,
then C also follows when the set of premises is enlarged; that is, adding
premises never invalidates any conclusions. Differently, in (nonmonotonic)
commonsense reasoning typically we are in a situation of partial knowl-
edge and a conclusion reached from a set of premises may be retracted,
when some premises are added. Nonmonotonic reasoning is a relevant
topic in the field of artificial intelligence and has been studied in litera-
ture by many, symbolic or numerical, formalisms (see, e.g. [2, 3, 4, 9]). A
remarkable theory, related with nonmonotonic reasoning, has been given
by Adams in his probabilistic logic of conditionals ([1]). We recall that the
approach of Adams can be developed with full generality by exploiting a
coherence-based probabilistic reasoning, which allows a direct assignment
of conditional probabilities, without assuming that conditioning events
have a positive probability ([5]). A basic notion in the work of Adams is
the quasi conjunction of conditionals, which also plays a relevant role in
the work of Dubois and Prade on conditional objects, where a suitable
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QAND rule is introduced to characterize entailment from a knowledge
base. In our paper we deepen some probabilistic aspects related with
QAND rule and with the conditional probabilistic logic of Adams.
The paper is organized as follows: In Section 2 we recall the p-consistency
and p-entailment notions in the setting of coherence; in Sections 3 and
4 we study the lower and upper probability bounds for the quasi con-
junction of conditional events, by relating them to Lukasiewicz t-norm
and Hamacher t-conorm, respectively; we also examine two special cases
of logical dependencies related with the inclusion relation of Goodman
and Nguyen and with the compound probability theorem; in Section 5
we deepen the analysis on the lower and upper probability bounds for
the quasi conjunction, by examining further aspects; in Section 6 we ex-
amine the relation between the notion of p-entailment and the inclusion
relation of Goodman and Nguyen; then, we study the probabilistic seman-
tics of QAND rule, by proving the p-entailment from any given family of
conditional events F to the quasi conjunction C(F); finally, we prove the
equivalence between p-entailment from F and p-entailment from the C(S),
for some non-empty subset S of F ; in Section 7 we give some conclusions.
Due to the lack of space (almost) all proofs of our results are omitted.

2 Some Preliminary Notions

In this section we recall, in the setting of coherence ([5, 6]), the notions
of p-consistency and p-entailment of Adams ([1]). Given a conditional
knowledge base Kn = {Hi|∼ Ei , i = 1, . . . , n}, we denote by Fn =
{Ei|Hi , i = 1, . . . , n} the associated family of conditional events.

Definition 1. The knowledge base Kn = {Hi|∼ Ei , i = 1, . . . , n} is
p-consistent iff, for every set of lower bounds {αi, i = 1, . . . , n}, with
αi ∈ [0, 1), there exists a coherent probability assessment {pi, i = 1, . . . , n}
on Fn, with pi = P (Ei|Hi), such that pi ≥ αi, i = 1, . . . , n.

We say that Fn is p-consistent when it is p-consistent the associated
knowledge base Kn; then, we point out that the property of p-consistency
for Fn is equivalent to the coherence of the assessment (p1, p2, . . . , pn) =
(1, 1, . . . , 1) on Fn (strict p-consistency, [5]).

Definition 2. A p-consistent knowledge base Kn = {Hi|∼ Ei , i =
1, . . . , n} p-entails the conditional A|∼ B, denoted Kn ⇒p A|∼ B,
iff there exists a non-empty subset Γ ⊆ {1, . . . , n} such that, for every
α ∈ [0, 1), there exists a set of lower bounds {αi, i ∈ Γ}, with αi ∈ [0, 1),
such that for all coherent probability assessments {z, pi, i ∈ Γ} defined on
{B|A,Ei|Hi , i ∈ Γ}, with z = P (B|A) and pi = P (Ei|Hi), if pi ≥ αi for
every i ∈ Γ, then z ≥ α.

Remark 1. We say that a family of conditional events Fn p-entails a
conditional event B|A when the associated knowledge base Kn p-entails
the conditional A|∼ B. Therefore, p-entailment of B|A from Fn amounts
to the existence of a non-empty subset S = {Ei|Hi, i ∈ Γ} of Fn such
that, defining P (Ei|Hi) = pi, P (B|A) = z, for every α ∈ [0, 1), there exist
lower bounds αi, i ∈ Γ, with αi ∈ [0, 1), such that pi ≥ αi, i ∈ Γ, implies
z ≥ α.
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3 Lower and Upper Bounds for Quasi Con-
junction

Let A,H,B,K be logically independent events, with H 6= ∅,K 6= ∅. The
quasi conjunction of two conditional events A|H and B|K, as defined in
([1]), is given by C(A|H,B|K) = (AH ∨Hc) ∧ (BK ∨Kc)|(H ∨K). We
recall that quasi conjunction plays a key role in the logic of conditional
objects ([4]).
It can be easily verified that, for every pair (x, y), with x ∈ [0, 1], y ∈ [0, 1],
the probability assessment (x, y) on {A|H,B|K} is coherent. Then, it can
be verified (see [6]) that, for each given assessment (x, y) on {A|H,B|K},
the probability assessment P = (x, y, z) on F = {A|H,B|K, C(A|H,B|K)},
with z = P [C(A|H,B|K)], is a coherent extension of (x, y) if and only if

max(x+ y − 1, 0) = l ≤ z ≤ u =

{
x+y−2xy

1−xy , (x, y) 6= (1, 1),

1, (x, y) = (1, 1).

We observe that the lower bound l coincides with the Lukasiewicz t-norm
TL(x, y), while the upper bound u coincides with the Hamacher t-conorm
SH0 (x, y), with parameter λ = 0 (see [8]).

Remark 2. Notice that, if the events A,B,H,K were not logically in-
dependent, then some constituents Ch’s (at least one) would become im-
possible and the lower bound l could increase, while the upper bound u
could decrease. To examine this aspect we will consider two special cases
of logical dependencies.

3.1 The Case A|H ⊆ B|K
We recall the Goodman & Nguyen relation of inclusion for conditional
events ([7]). Given two conditional events A|H and B|K, we say that A|H
impliesB|K, denoted byA|H ⊆ B|K, if and only ifAH ⊆ BK and BcK ⊆
AcH. Given any conditional events A|H,B|K, we denote by Πx the set
of coherent probability assessment x on A|H, by Πy the set of coherent
probability assessment y on B|K and by Π the set of coherent probabil-
ity assessment (x, y) on {A|H,B|K}; moreover we indicate by Tx≤y the
triangle {(x, y) ∈ [0, 1]2 : x ≤ y}. In the next result, to avoid the specific
analysis of some trivial cases, we assume Πx = Πy = [0, 1]. We have

Theorem 1. Let A|H,B|K be two conditional events, with Πx = Πy =
[0, 1]. Then: A|H ⊆ B|K ⇐⇒ Π ⊆ Tx≤y.

Actually, concerning Theorem 1, the implication =⇒ also holds in
trivial cases where Πx ⊂ [0, 1], or Πy ⊂ [0, 1].

Remark 3. We observe that, under the hypothesis A|H ⊆ B|K, we have
C(A|H,B|K) = (AH ∨HcBK) | (H ∨K) and, as we can verify, it is

A|H ⊆ C(A|H,B|K) ⊆ B|K . (1)

Moreover, if we do not assume further logical relations, then Π = Tx≤y
and, for each coherent assessment (x, y) on {A|H,B|K}, the extension
z = P [C(A|H,B|K)] is coherent if and only if l ≤ z ≤ u, where

l = x = min(x, y) , u = y = max(x, y) .
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We remark that the values l, u may change if we add further logical rela-
tions; in particular, if H = K, it is C(A|H,B|H) = A|H, in which case
l = u = x.

Finally, in agreement with Remark 2, we observe that

TL(x, y) ≤ min(x, y) ≤ max(x, y) ≤ SH0 (x, y).

3.2 Compound Probability Theorem

We now examine the quasi conjunction of A|H and B|AH, with A, B, H
logically independent events. As it can be easily verified, we have C(A|H,B|AH) =
AB|H; moreover, the probability assessment (x, y) on {A|H,B|AH} is
coherent, for every (x, y) ∈ [0, 1]2. Hence, by the compound probability
theorem, if the assessment P = (x, y, z) on F = {A|H,B|AH,AB|H} is
coherent, then z = xy; that is, l = u = xy. In agreement with Remark 2,
we observe that TL(x, y) ≤ xy ≤ SH0 (x, y). More in general, given a fam-
ily F = {A1|H,A2|A1H, . . . , An|A1 · · ·An−1H}, by iteratively exploiting
the associative property, we have

C(F) = C(C(A1|H,A2|A1H), A3|A2A1H, . . . , An|A1 · · ·An−1H) =

= C(A1A2|H,A3|A2A1H, . . . , An|A1 · · ·An−1H) = · · · = A1A2 · · ·An|H ;

thus, by the compound probability theorem, if the assessment P = (p1, . . . , pn, z)
on F ∪ {C(F)} is coherent, then z = l = u = p1 · p2 · · · pn.

4 Lower and Upper Bounds for the Quasi
Conjunction of n Conditional Events

Given the family Fn = {E1|H1, . . . , En|Hn}, we denote by C(Fn) the
quasi conjunction of the conditional events in Fn. By the associative
property of quasi conjunction, defining Fk = {E1|H1, . . . , Ek|Hk}, for
each k = 2, . . . , n, it is C(Fk) = C(C(Fk−1), Ek|Hk). Then, we have

Theorem 2. Given a probability assessment Pn = (p1, p2, . . . , pn) on
Fn = {E1|H1, . . . , En|Hn}, let [lk, uk] be the interval of coherent exten-
sions of the assessment Pk = (p1, p2, . . . , pk) on the quasi conjunction
C(Fk), where Fk = {E1|H1, . . . , Ek|Hk}. Then, assuming E1, H1, . . . , En, Hn

logically independent, for each k = 2, . . . , n, we have

lk = TL(p1, p2, . . . , pk) , uk = SH0 (p1, p2, . . . , pk) ,

where TL is the Lukasiewicz t-norm and SH0 is the Hamacher t-conorm,
with parameter λ = 0.

4.1 The Case E1|H1 ⊆ E2|H2 ⊆ . . . ⊆ En|Hn

In this subsection we give a result on quasi conjunctions when Ei|Hi ⊆
Ei+1|Hi+1, i = 1, . . . , n− 1. We have
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Theorem 3. Given a family Fn = {E1|H1, . . . , En|Hn} of conditional
events such that E1|H1 ⊆ E2|H2 ⊆ . . . ⊆ En|Hn, and a coherent prob-
ability assessment Pn = (p1, p2, . . . , pn) on Fn, let C(Fk) be the quasi
conjunction of Fk = {Ei|Hi, i = 1, . . . , k}, k = 2, . . . , n. Moreover, let
[lk, uk] be the interval of coherent extensions on C(Fk) of the assessment
(p1, p2, . . . , pk) on Fk. We have: (i) E1|H1 ⊆ C(F2) ⊆ . . . ⊆ C(Fn) ⊆
En|Hn; (ii) by assuming no further logical relations, any probability as-
sessment (z2, . . . , zk) on {C(F2), . . . , C(Fk)} is a coherent extension of
the assessment (p1, p2, . . . , pk) on Fk if and only if p1 ≤ z2 ≤ · · · ≤ zk ≤
pk , k = 2, . . . , n; moreover

lk = min(p1, . . . , pk) = p1 , uk = max(p1, . . . , pk) = pk , k = 2, . . . , n .

Proof. (i) By iteratively applying (1) and by the associative property of
quasi conjunction, we have C(Fk−1) ⊆ C(Fk) ⊆ Ek|Hk , k = 2, . . . , n;
(ii) by exploiting the logical relations in point (i), the assertions immedi-
ately follow by applying a reasoning similar to that in Remark 3.

5 Further Aspects on the Lower and Up-
per Bounds

Now, given any coherent assessment (x, y) on {A|H,B|K}, we examine
further probabilistic aspects on the lower and upper bounds, l and u, for
the coherent extensions z = P [C(A|H,B|K)]. More precisely, given any
number γ ∈ [0, 1], we are interested in finding:
(i) the set Lγ of the coherent assessments (x, y) on {A|H,B|K} such that,
for each (x, y) ∈ Lγ , one has l ≥ γ;
(ii) the set Uγ of the coherent assessments (x, y) on {A|H,B|K} such that,
for each (x, y) ∈ Uγ , one has u ≤ γ.
Case (i). Of course, L0 = [0, 1]2; hence we can assume γ > 0. It must
be l = max{x + y − 1, 0} ≥ γ, i.e., x + y ≥ 1 + γ (as γ > 0); hence Lγ
coincides with the triangle having the vertices (1, 1), (1, γ), (γ, 1); that is

Lγ = {(x, y) : γ ≤ x ≤ 1, 1 + γ − x ≤ y ≤ 1} .

Notice that L1 = {(1, 1)}; moreover, for γ ∈ (0, 1), (γ, γ) /∈ Lγ .
Case (ii). Of course, U1 = [0, 1]2; hence we can assume γ < 1. We recall
that u = x+y−2xy

1−xy ; hence

u− x =
y(1− x)2

1− xy ≥ 0 , u− y =
x(1− y)2

1− xy ≥ 0 ; (2)

then, from u ≤ γ it follows x ≤ γ, y ≤ γ; hence Uγ ⊆ [0, γ]2. Then, taking
into account that x ≤ γ and hence 1− (2− γ)x > 0, we have

x+ y − 2xy

1− xy ≤ γ ⇐⇒ y ≤ γ − x
1− (2− γ)x

; (3)

therefore

Uγ =

{
(x, y) : 0 ≤ x ≤ γ , y ≤ γ − x

1− (2− γ)x

}
.
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Notice that U0 = {(0, 0)}; moreover, for x = y = γ ∈ (0, 1), it is u =
2γ
1+γ

> γ; hence, for γ ∈ (0, 1), Uγ is a strict subset of [0, γ]2.
Of course, for every (x, y) /∈ Lγ ∪ Uγ , it is l < γ < u.
In the next result we determine in general the sets Lγ ,Uγ .

Theorem 4. Given a coherent assessment (p1, p2, . . . , pn) on the family
{E1|H1, . . . , En|Hn}, where E1, H1, . . . , En, Hn are logically independent,
we have

Lγ = {(p1, . . . , pn) ∈ [0, 1]n : p1 + · · ·+ pn ≥ γ + n− 1} , γ > 0 ,

Uγ = {(p1, . . . , pn) ∈ [0, 1]n : 0 ≤ p1 ≤ γ , pk+1 ≤ rk , k = 1, . . . , n− 1} , γ < 1 ,
(4)

where rk = γ−uk
1−(2−γ)uk

, uk = SH0 (p1, . . . , pk), with L0 = U1 = [0, 1]n.

6 QAND Rule and Probabilistic Entail-
ment

We recall that in [4], based on a three-valued calculus of conditional ob-
jects, a logic for nonmonotonic reasoning has been proposed. Conditional
objects can be seen as the counterpart of the conditional assertions con-
sidered in [9] and, for what concerns logical operations, we can look at
them as conditional events. Given a set of conditional objects K, we de-
note by C(K) the quasi conjunction of the conditional objects in K. In
[4] the following inference rule, named QAND, derivable by applying the
inference rules of System P (see [9]), has been introduced

(QAND) K ⇒ C(K) .

As shown in Section 2, the notions of p-consistency and p-entailment of
Adams can be suitable defined in the setting of coherence (see [5, 6]). In
the next theorem, to avoid a specific analysis of trivial cases, we assume
Πx = Πy = [0, 1]. We have

Theorem 5. Given two conditional events A|H,B|K, with Πx = Πy =
[0, 1], we have

A|H ⇒p B|K ⇐⇒ A|H ⊆ B|K .

The next result, related to the approach of Adams, deepens in the
framework of coherence the probabilistic semantics of the QAND rule.

Theorem 6. Given a p-consistent family Fn = {Ei|Hi, i = 1, . . . , n}
and denoting by C(Fn) the associated quasi conjunction, for every ε ∈
(0, 1] there exist δ1 ∈ (0, 1], . . . , δn ∈ (0, 1] such that, for every coherent
assessment (p1, . . . , pn, z) on Fn ∪ {C(Fn)}, where pi = P (Ei|Hi), z =
P (C(Fn)), if p1 ≥ 1− δ1, . . . , pn ≥ 1− δn, then z ≥ 1− ε. Hence, we have
Fn ⇒p C(Fn).

Recalling Remark 1, in the next result we show that p-entailment of a
conditional event B|A from a family Fn is equivalent to the existence of
a non-empty subset S of Fn such that C(S) p-entails B|A.
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Theorem 7. A p-consistent family of conditional events Fn p-entails a
conditional event B|A if and only if there exists a non-empty subset S of
Fn such that C(S) p-entails B|A.

An example. We illustrate Theorem 7 by using the well known infer-
ence rules Cautious Monotonicity (CM), Or, and Cut, as shown below.
(CM) If {C|A,B|A} ⊆ Fn, then Fn ⇒p C|AB. The assertion follows by
observing that, defining S = {C|A,B|A}, it is C(S) = BC|A ⊆ C|AB, so
that C(S) ⇒p C|AB.
(Or) If {C|A,C|B} ⊆ Fn, then Fn ⇒p C|(A∨B). The assertion follows
by observing that, defining S = {C|A,C|B}, it is C(S) = C|(A ∨ B), so
that, trivially, C(S) ⇒p C|(A ∨B).
(Cut) If {C|AB,B|A} ⊆ Fn, then Fn ⇒p C|A. The assertion follows by
observing that, defining S = {C|AB,B|A}, it is C(S) = BC|A ⊆ C|A, so
that C(S) ⇒p C|A.
Of course, in the previous inference rules, the entailment of the conclusion
from Fn also follows by directly applying Definition 2, as made in [5].

7 Conclusions

We have studied, in a coherence-based setting, the extensions of a given
probability assessment on n conditional events to their quasi conjunction,
by also considering two cases of logical dependency. We have analyzed
further probabilistic aspects on quasi conjunction, by also examining the
relation between the notion of p-entailment and the inclusion relation of
Goodman and Nguyen. Then, we have shown that each p-consistent fam-
ily F p-entails the quasi conjunction C(F). Finally, we have given a result
on the equivalence between p-entailment from F and p-entailment from
C(S), where S is some non-empty subset of F .
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