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Abstract. In this paper we study the relationship between the notion of
coherence for conditional prevision assessments on a family of finite con-
ditional random quantities and the notion of admissibility with respect
to bounded strictly proper scoring rules. Our work extends recent results
given by the last two authors of this paper on the equivalence between
coherence and admissibility for conditional probability assessments. In
order to prove that admissibility implies coherence a key role is played
by the notion of Bregman divergence.
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1 Introduction

Proper scoring rules have been largely studied in many fields, such as probability,
statistics and decision theory. The notion of proper scoring rules was central to
de Finetti’s ideas about assessing the relative values of different subjective prob-
ability assessments ([4]). A review of the general theory, with applications, has
been given in [6,7]; an application to sequential forecasting of economic indices
has been given in [1]. The connections between the notions of coherence and
of admissibility have been investigated in many works (see, e.g., [4,8,9,10,11]).
In [5] the last two authors of this paper extended the results given in [9] to
the case of conditional probability assessments. In this paper we further extend
the work made in [5], by considering the case of conditional prevision assess-
ments on arbitrary families of finite conditional random quantities. We prove
the equivalence between the coherence of a conditional prevision assessment on
an arbitrary family of finite conditional random quantities and the admissibility
of the assessment with respect to any given bounded strictly proper scoring rule.
The paper is organized as follows: In Section 2 we give some preliminary notions
on conditional prevision assessments; then, we recall some results on the check-
ing of coherence for conditional prevision assessments; in Section 3 we illustrate
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the notions of strictly proper scoring rules and admissibility for conditional pre-
vision assessments; we also give a list of properties for the conditional prevision
of strictly proper scoring rules; finally, in Section 4 we prove that a conditional
prevision assessment on an arbitrary family of finite conditional random quanti-
ties is coherent if and only if it is admissible with respect to any bounded strictly
proper scoring rule.

2 Some preliminary notions

We denote by Ac the negation of A and by A ∨B (resp., AB) the logical union
(resp., intersection) of A and B. We use the same symbol to denote an event
and its indicator. For each integer n, we set Jn = {1, 2, . . . , n}. Given a pre-
vision function P defined on an arbitrary family K of finite conditional ran-
dom quantities, let Fn = {Xi|Hi, i ∈ Jn} be a finite subfamily of K and Mn

the vector (µi, i ∈ Jn), where µi = P(Xi|Hi) is the assessed prevision for the
conditional random quantity Xi|Hi. With the pair (Fn,Mn) we associate the
random gain Gn =

∑
i∈Jn siHi(Xi−µi), where s1, . . . , sn are arbitrary real num-

bers and H1, . . . ,Hn denote the indicators of the corresponding events. We set
Hn = H1 ∨ · · · ∨Hn; moreover, we denote by Gn|Hn the restriction of Gn to Hn.
Then, using the betting scheme of de Finetti, we have

Definition 1. The function P is coherent if and only if, ∀n ≥ 1, ∀Fn ⊆
K, ∀ s1, . . . , sn ∈ R, it holds: supGn|Hn ≥ 0.

Given a family of n conditional random quantities Fn = {X1|H1, . . . , Xn|Hn},
for each i ∈ Jn we assume Xi ∈ {xi1, . . . , xiri}; then, for each i ∈ Jn and
j = 1, . . . , ri, we set Aij = (Xi = xij). Of course, for each i ∈ Jn, the family
{Aij , j = 1, . . . , ri} is a partition of the sure event Ω. Moreover, for each
i ∈ Jn, the family {Hc

i , AijHi , j = 1, . . . , ri} is a partition of Ω too. Then, the
constituents generated by the family Fn are (the elements of the partition of
Ω) obtained by expanding the expression

∧
i∈Jn(Ai1Hi ∨ · · · ∨AiriHi ∨Hc

i ). We
set C0 = Hc

1 · · ·Hc
n (it may be C0 = ∅); moreover, we denote by C1, . . . , Cm the

constituents contained in Hn = H1 ∨ · · · ∨Hn. Hence

∧
i∈Jn

(Ai1Hi ∨ · · · ∨AiriHi ∨Hc
i ) =

m∨
h=0

Ch .

With each Ch, h ∈ Jm, we associate a vector Qh = (qh1, . . . , qhn), where

qhi =


xi1 , Ch ⊆ Ai1Hi ,
..... ..................
xiri , Ch ⊆ AiriHi ,
µi , Ch ⊆ Hc

i .

(1)

In more explicit terms, for each j ∈ {1, . . . , ri} the condition Ch ⊆ AijHi

amounts to Ch ⊆ Aci1 · · ·Aci,j−1AijAci,j+1 · · ·AcirAciriHi.
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Given any vector (λh , h ∈ Jm) and any event A, we set
∑
h:Ch⊆A λh =

∑
A λh.

Then, by observing that Hi =
∨ri
j=1AijHi, for each i ∈ Jn we have

∑
h∈Jm

λhqhi =
∑
Hi

λhqhi +
∑
Hc

i

λhqhi =

ri∑
j=1

xij
∑
AijHi

λh + µi
∑
Hc

i

λh . (2)

Denoting by In the convex hull of the points Q1, . . . , Qm, we examine the sat-
isfiability of the condition Mn ∈ In; that is we check the existence of a vector
(λ1, . . . , λm) such that:

∑
h∈Jm λhQh = Mn ,

∑
h∈Jm λh = 1 , λh ≥ 0 , ∀h.

More explicitly, we check the solvability of the following system Σ associated
with the pair (F ,M), in the nonnegative unknowns λ1, . . . , λm,

Σ :
∑
h∈Jm λhqhi = µi , i ∈ Jn ;

∑
h∈Jm λh = 1 , λh ≥ 0 , ∀h . (3)

We remark that XiHi =
∑ri
j=1 xijAijHi; hence, by interpreting the vector

(λh, h ∈ Jm) as a probability assessment on the family {C1|Hn, . . . , Cm|Hn},
one has: P(XiHi|Hn) =

∑ri
j=1 xij

∑
AijHi

λh = P(Xi|Hi)P (Hi|Hn), where

P (Hi|Hn) =
∑
Hi
λh. Then in system (3), by decomposition formula (2), the

equality
∑
h∈Jm λhqhi = µi represents the condition P(XiHi|Hn) = µiP (Hi|Hn).

Given a subset J ⊆ Jn, we set FJ = {Xi|Hi , i ∈ J} , MJ = (µi , i ∈ J) ; then,
we denote by ΣJ , where ΣJn = Σ, the system like (3) associated with the pair
(FJ ,MJ). Then, it can be proved the following ([2])

Theorem 1. [Characterization of coherence]. Given a family of n conditional
random quantities F = {X1|H1, . . . , Xn|Hn} and a vector M = (µ1, . . . , µn),
the conditional prevision assessment P(X1|H1) = µ1 , . . . , P(Xn|Hn) = µn is
coherent if and only if, for every subset J ⊆ Jn, defining FJ = {Xi|Hi , i ∈ J},
MJ = (µi , i ∈ J), the system ΣJ associated with the pair (FJ ,MJ) is solvable.

3 Scoring rules and admissibility for conditional prevision
assessments

In this section we consider scoring rules for conditional prevision assessments and
we illustrate the notions of weak and strong dominance, and of admissibility with
respect to a scoring rule. A score may represent a reward or a penalty; we think
of scores as penalties, so that to improve the score means to reduce it. We now
extend the notion of strictly proper scoring rule in the following way.

Definition 2. A function σ : (−∞,+∞) × (−∞,+∞) → [0,+∞) is said to
be a strictly proper scoring rule if the following conditions are satisfied:
(a) given any real numbers x1, . . . , xr, z, p1, . . . , pr, with∑r

i=1 pi = 1 ,
∑r
i=1 pixi = µ 6= z , pi ≥ 0 , ∀ i ,

it holds ∑r
i=1 pi σ(xi, z) >

∑r
i=1 pi σ(xi, µ) ; (4)

(b) for every real number x, the function σ(x, z) is a continuous function of z.
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In this paper we focus our attention on strictly proper scoring rules which are
bounded. Given a scoring rule σ, with any (finite) conditional random quantity
X|H, we associate the conditional scoring rule σ(X|H, z) defined as σ(X|H, z) =
Hσ(X, z). Consider any conditional random quantityX|H, withX ∈ {x1, . . . , xr},
and any probability distribution P = (p1, . . . , pr) ∈ Vr−1, where pi = P (X =
xi|H) and Vr−1 = {P = (p1, . . . , pr) :

∑r
i=1 pi = 1, pi ≥ 0}. We denote by P

the subvector (p1, p2, . . . , pr−1) of P and by Sr−1 ⊂ Rr−1 the convex set

Sr−1 = {P = (p1, . . . , pr−1) ∈ Rr−1 : P = (P, 1−
∑r−1
i=1 pi) ∈ Vr−1}.

For any given real number z and for any proper scoring rule σ the conditional
prevision of σ(X|H, z) w.r.t. P is given by

s(P, z) = PP(σ(X|H, z)|H) =
∑r−1
i=1 pi σ(xi, z) + (1−

∑r−1
i=1 pi)σ(xr, z) . (5)

We give below, without proof, some properties of the function s(P, z).
Proposition 1. The function s(P, z) : Sr−1 × (−∞,+∞) → [0,+∞) satisfies
the following properties:

1. s(αP ′ + (1− α)P ′′, z) = α s(P ′, z) + (1− α) s(P ′′, z) for every α ∈ [0, 1];
2. we have s(P, z) ≥ s(P, µ), where µ =

∑r−1
i=1 pixi + (1 −

∑r−1
i=1 pi)xr, with

s(P, z) = s(P, µ) if and only if z = µ;
3. s(P, µ), with µ =

∑r−1
i=1 pixi+(1−

∑r−1
i=1 pi)xr, is a strictly concave function

of P;
4. given any P = (p1, . . . , pr−1), with

∑r−1
i=1 pixi+(1−

∑r−1
i=1 pi)xr = µ, s(P, z)

is partially derivable with respect to z, ∀ z, and it holds ∂s(P,z)
∂z |z=µ = 0 ;

5. given any interior point P of Sr−1, with
∑r−1
i=1 pixi + (1−

∑r−1
i=1 pi)xr = µ,

for each j = 1, . . . , r − 1, we have ∂s(P,µ)
∂pj

= σ(xj , µ) − σ(xr, µ). Moreover,

s(P, µ) is differentiable in the interior of Sr−1;
6. for any interior point P of Sr−1, with

∑r−1
i=1 pixi+ (1−

∑r−1
i=1 pi)xr = µ, and

for every P ′ ∈ Sr−1, we have

s(P ′, µ) = s(P, µ) +∇s(P, µ) · (P ′ − P) .

Given a prevision assessment Mn = (µ1, µ2, . . . , µn) on a family of conditional
random quantities Fn = {X1|H1, X2|H2, . . . , Xn|Hn}, where µi = P(Xi|Hi),
and a proper scoring rule σ, let C0, C1, . . . , Cm be the constituents generated by
Fn and Q1, . . . , Qm the points associated with the pair (Fn,Mn), as defined by
formula (1). The penalty L associated with the pair (Fn,Mn) is given by

L =

n∑
i=1

σ(Xi|Hi, µi) =

n∑
i=1

Hiσ(Xi, µi) .

We denote by Lk the value of L associated with Ck, k = 0, 1, . . . ,m. Of course,
L0 = 0; moreover, by defining the quantities

hki =

{
1 , Ck ⊆ Hi ,
0 , Ck ⊆ Hc

i ,
ekij =

{
1 , Ck ⊆ Aij ,
0 , Ck ⊆ Acij ,
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we have
Lk =

∑n
i=1 hki

∑ri
j=1 ekijσ(xij , µi) , k = 1, . . . ,m . (6)

We give below the notions of weak and strong dominance and admissibility with
respect to scoring rules.

Definition 3. Let σ be a scoring rule and Mn be a prevision assessment on a
family Fn of n conditional random quantities. Given any assessmentM∗n on Fn,
with M∗n 6=Mn, we say that Mn is weakly dominated by M∗n, with respect to
σ, if denoting by L (resp., L∗) the penalty associated with the pair (Fn,Mn)
(resp., (Fn,M∗n)), it holds L∗ ≤ L, that is: L∗k ≤ Lk, for every k = 0, 1, . . . ,m.
Moreover, by observing that L0 = L∗0 = 0, we say thatMn is strongly dominated
by M∗n, with respect to σ, if L∗k < Lk, for every k = 1, . . . ,m.

We observe thatMn is not weakly dominated byM∗n if and only if L∗k > Lk for
at least a subscript k.

Definition 4. Let σ be a scoring rule and Mn be a prevision assessment on
a family Fn of n conditional random quantities. We say that Mn is admissible
w.r.t. σ if Mn is not weakly dominated by any M∗n 6= Mn. Moreover, given a
prevision assessmentM on an arbitrary family of conditional random quantities
K, we say that M is admissible w.r.t. σ if, for every finite subfamily Fn ⊆ K,
the restriction Mn of M to Fn is admissible w.r.t. σ.

Remark 1. We observe that, by Definition 4, it follows:
- If the assessment Mn on Fn is admissible, then for every subfamily FJ ⊂ Fn
the sub-assessment MJ associated with FJ is admissible.

4 Coherence and admissibility of conditional prevision
assessments

In this section we give the main result of the paper, by showing the equivalence
between the coherence of conditional prevision assessments and admissibility
with respect to proper scoring rules. Given the assessment Mn = (µ1, . . . , µn)
on Fn = {X1|H1, X2|H2, . . . , Xn|Hn} and a bounded strictly proper scoring
rule σ, we set S(P,Zn) = S(P1, . . . ,Pn,Zn) =

∑n
i=1 s(Pi, zi), where P =

(P1, . . . ,Pn),Pi = (pi1, . . . , piri−1),
∑ri−1
j=1 pijxij + (1 −

∑ri−1
j=1 pij)xiri = µi

and Zn = (z1, . . . , zn). Given any vector P
′

= (P ′1, . . . ,P
′
n) ∈ Π, with P ′i =

(p′i1, . . . , p
′
iri−1) and Π =

∏n
i=1 Sri−1 ⊂ Rr−n, r =

∑n
i=1 ri, from the properties

5 and 6 in Proposition 1 we have S(P
′
,Mn) = S(P ,Mn)+∇S(P ,Mn)·(P ′−P ) .

We set Φ(P ) = −S(P ,Mn) = −
∑n
i=1 s(Pi, µi) . Then, we have S(P

′
,Mn) =

−Φ(P )−∇Φ(P ) · (P ′ − P ) , that is

S(P
′
,Mn)− S(P ,Mn) = −∇Φ(P ) · (P ′ − P ) . (7)

We observe that the function Φ(P ) is continuous on Π and strictly convex in the
interior of Π. Moreover, Φ(P ) has continuous partial derivatives on the interior
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of Π, so that Φ(P ) is differentiable in the interior of Π and the gradient ∇Φ(P )
is a continuous function on the interior of Π. As the functions σ(xij , zi) are
assumed bounded, then ∇Φ(P ) extends to a bounded continuous function on
Π. The Bregman divergence ([3,9]) associated with the function Φ is given by

dΦ(P
′
, P ) = Φ(P

′
)− Φ(P )−∇Φ(P ) · (P ′ − P ) .

Then, from (7) it follows

dΦ(P
′
, P ) = Φ(P

′
)−Φ(P )+S(P

′
,Mn)+Φ(P ) = S(P

′
,Mn)−S(P

′
,M′n) . (8)

We illustrate now the relationship between the notion of coherence and the
property of non dominance, by first examining a single assessment P(X|H) = µ.

Lemma 1. Given any eventH 6= ∅, any finite random quantityX ∈ {x1, . . . , xr}
and any strictly proper continuous and bounded scoring rule σ, the assessment
P(X|H) = µ is coherent if and only if µ is admissible with respect to σ.

Proof. (⇒) Assume that µ is coherent. With no loss of generality, we can suppose
x1 < · · · < xr and AiH 6= ∅ where Ai = (X = xi), i = 1, . . . , r; then coherence of
µ amounts to x1 ≤ µ ≤ xr, so that there exist p1, . . . , pr such that

∑
i pixi = µ,

with
∑
i pi = 1, pi ≥ 0, for every i. Then, for any given µ∗ 6= µ, by recalling (4)

we have
∑
i piσ(xi, µ) <

∑
i piσ(xi, µ

∗), so that σ(xk, µ) < σ(xk, µ
∗) for at least

an index k; hence, µ is not weakly dominated by µ∗.
(⇐) Assume that µ is not coherent; that is µ /∈ [x1, xr]. We consider the random
quantity Y = XH + µHc with possible values: x1, . . . , xr, µ, which are associ-
ated with the r + 1 constituents: A1H, . . . , ArH,H

c. Let P = (p1, p2, . . . , pr+1)
be a probability distribution on Y ; we set P = (p1, p2, . . . , pr). Then, the pre-
vision of the score σ(Y, µ) is s(P , µ). We observe that particular choices of
P are the vectors Wk = (wk1, . . . , wkr, wk r+1), k = 1, 2, . . . , r + 1, with
W1 = (1, 0, . . . , 0), W2 = (0, 1, 0, . . . , 0), . . . ,Wr+1 = (0, . . . , 0, 1). We set W k =
(wk1, . . . , wkr); then s(W k, µ) =

∑r
j=1 wkjσ(xj , µ) + (1 −

∑r
j=1 wkj)σ(µ, µ) =

σ(xk, µ), k = 1, . . . , r, with s(W r+1, µ) = σ(µ, µ). As s(W k, xk) = σ(xk, xk),
k = 1, . . . , r, we obtain Lk = σ(xk, µ) = s(W k, µ)−s(W k, xk)+αk , k = 1, . . . , r,
with αk = σ(xk, xk) and Lr+1 = σ(µ, µ). We set C = [0, 1]r; then, we consider the
function Φ(P ) : C → R, defined as Φ(P ) = −s(P , µ(P )), with P = (p1, . . . , pr),
µ(P ) = p1x1 + . . . + prxr + pr+1µ, pr+1 = 1 −

∑r
j=1 pj . Based on (8), we have

dΦ(P
′
, P ) = s(P

′
, µ(P ))− s(P ′, µ(P

′
)) and, by observing that µ(W k) = xk and

µ(W r+1) = µ, we obtain

Lk = s(W k, µ)− s(W k, xk) + αk = dΦ(W k,W r+1) + αk, k = 1, . . . , r .

Denoting by IW the convex hull of W 1, . . . ,W r, for each P = (p1, . . . , pr) ∈ IW
we have P =

∑r
i=1 piW i, with

∑r
i=1 pi = 1, so that pr+1 = 0. Then µ(P ) ∈

[x1, xr] and, as µ /∈ [x1, xr], we have µ(P ) 6= µ, ∀P ∈ IW . Then, for every Pµ ∈ C
such that µ(Pµ) = µ, it holds that P /∈ IW ; thus, there exists a projection point
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P
∗
µ ∈ IW , with µ(P

∗
µ) = µ∗, such that: dΦ(W k, P

∗
µ)+dΦ(P

∗
µ, Pµ) ≤ dΦ(W k, Pµ),

and, as P
∗
µ 6= Pµ, one has: dΦ(W k, P

∗
µ) < dΦ(W k, Pµ), k = 1, . . . , r, that is

σ(xk, µ
∗) < σ(xk, µ), k = 1, . . . , r. Now, by considering the alternative assess-

ments µ∗ and µ for the prevision of X|H, we have

L∗0 = L0 = 0 and L∗k = σ(xk, µ
∗) < σ(xk, µ) = Lk , k = 1, . . . , r ;

thus, µ is (strictly) dominated by µ∗ with respect to σ. ut

Based on the previous Lemma, given any prevision assessmentMn = (µ1, . . . , µn),
in what follows we can assume µi ∈ [minXi|Hi,maxXi|Hi, ] for every i. We have

Theorem 2. Let M be a prevision assessment on a family K of conditional
random quantities, with µX|H = P(X|H) ∈ [minX|H,maxX|H] for every
X|H ∈ K; moreover, let σ be any bounded strictly proper scoring rule. M
is coherent if and only if M is admissible with respect to σ.

Proof. (⇒) Assuming M coherent, let σ be a bounded proper scoring rule.
Given any subfamily Fn = {X1|H1, . . . , Xn|Hn} of K, let Mn = (µ1, . . . , µn)
be the restriction to Fn of M. Now, given any M∗n = (µ∗1, . . . , µ

∗
n) 6= Mn, we

distinguish two cases:
(a) µ∗i 6= µi, for every i = 1, . . . , n; (b) µ∗i = µi, for at least one index i.
Case (a). We still denote by C0, C1, . . . , Cm, where C0 = Hc

1 ∧ · · · ∧ Hc
n, the

constituents generated by Fn and by Qk = (qk1, . . . , qkn) the point associated
with Ck, k = 1, . . . ,m. With the assessment Mn we associate the loss

L =
∑n
i=1 σ(Xi|Hi, µi) =

∑n
i=1Hiσ(Xi, µi) ,

with L0 = 0 and, recalling (6), Lk =
∑n
i=1 hki

∑ri
j=1 ekijσ(xij , µi) , k = 1, . . . ,m.

Of course, with any other assessment M∗n on Fn we associate the loss

L∗ =
∑n
i=1 σ(Xi|Hi, µ

∗
i ) =

∑n
i=1Hiσ(Xi, µ

∗
i ) ,

with L∗0 = 0 and L∗k =
∑n
i=1 hki

∑ri
j=1 ekijσ(xij , µ

∗
i ) , k = 1, . . . ,m.

As L0 = L∗0 = 0, in what follows we will only refer to the values Lk, L
∗
k, k =

1, . . . ,m. AsMn is coherent, there exists a vector (λ1, . . . , λm), with λk ≥ 0 and∑
k λk = 1, which is a coherent extension of Mn on the family of conditional

events {C1|Hn, . . . , Cm|Hn}, with λh = P (Ch|Hn). We have

P (Hi|Hn) =
∑
Ck⊆Hi

P (Ck|Hn) =
∑
k λkhki ,

with
∑n
i=1 P (Hi|Hn) ≥ P (Hn|Hn) = 1, so that P (Hi|Hn) > 0 for at least an

index i. Moreover

P (AijHi|Hn) =
∑
Ck⊆AijHi

P (Ck|Hn) =
∑
k λkhkiekij = P (Aij |Hi)P (Hi|Hn) .

We set: I ′ = {i :
∑
k λkhki > 0} ⊆ {1, 2, . . . , n}. Of course, I ′ 6= ∅. We set

P (Aij |Hi) = pij ; then, by observing that∑ri
j=1(

∑
k λkhkiekij)xij =

∑ri
j=1 P (AijHi|Hn)xij =

=
∑ri
j=1 P (Aij |Hi)P (Hi|Hn)xij = P (Hi|Hn)

∑ri
j=1 pij xij = µiP (Hi|Hn) ,
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for each i ∈ I ′ it holds∑ri
j=1(

∑
k λkhkiekij)σ(xij , µi) = P (Hi|Hn)

∑ri
j=1 pijσ(xij , µi) <

< P (Hi|Hn)
∑ri
j=1 pijσ(xij , µ

∗
i ) .

It follows:∑
k

λkLk =
∑
k

λk

n∑
i=1

hki

ri∑
j=1

ekijσ(xij , µi) =
∑
i∈I′

ri∑
j=1

(
∑
k

λkhkiekij)σ(xij , µi) =

∑
i∈I′

P (Hi|Hn)

ri∑
j=1

pijσ(xij , µi) <
∑
i∈I′

P (Hi|Hn)

ri∑
j=1

pijσ(xij , µ
∗
i ) =

=
∑
k

λk

n∑
i=1

hki

ri∑
j=1

ekijσ(xij , µ
∗
i ) =

∑
k

λkL
∗
k .

The inequality
∑
k λkLk <

∑
k λkL

∗
k implies that there exists an index k such

that Lk < L∗k; that is L∗ > L in at least one case. HenceMn is admissible. Since
Fn is arbitrary, it follows that M is admissible.
Case (b). Let M∗n 6= Mn, with µ∗i = µi, for at least one index i. We set
J = {i : µ∗i 6= µi} ⊂ Jn = {1, . . . , n}. We denote by MJ (resp., MJn\J) the
subvector ofMn associated with J (resp., Jn \J). Analogously, we can consider
the subvectors M∗J and M∗Jn\J of M∗n. Then, we have

L = LJ + LJn\J , L
∗ = L∗J + L∗Jn\J , LJn\J = L∗Jn\J .

By the same reasoning as in case (a), it holds that L∗J > LJ in at least one case.
Then, by observing that L − L∗ = LJ − L∗J , it is L∗ > L in at least one case;
hence Mn is admissible. Since Fn is arbitrary, M is admissible.
(⇐). We will prove that, given any bounded proper scoring rule σ, if M is
not coherent, then M is not admissible with respect to σ. Assume that M is
not coherent. Then, there exists a subfamily Fn = {X1|H1, . . . , Xn|Hn} ⊆ K
such that, for the restriction Mn = (µ1, . . . , µn) of M to Fn, denoting by In
the associated convex hull, we have Mn /∈ In. For each constituent Ck we set
Γk = {i : Ck ⊆ Hi}, Ik = {i : Ck ⊆ Hc

i } = Jn \ Γk. As for each i it holds
minXi|Hi ≤ µi ≤ maxXi|Hi, with each quantity qki, defined as in (1), we
associate a vector Wki = (wki1, . . . , wkiri) ∈ Vri−1, with

wkij =


1 , Ck ⊆ AijHi ,
0 , Ck ⊆ AcijHi ,
pij , Ck ⊆ Hc

i ,
(9)

where
∑ri
j=1 pijxij = µi,

∑ri
j=1 pij = 1, pij ≥ 0. We denote by W ki the subvector

(wki1, . . . , wki(ri−1)) of Wki. As Wki ∈ Vr−1 it follows W ki ∈ Sr−1. We observe
that, if Ck ⊆ Hi, that is i ∈ Γk, then

s(W ki, qki) =
∑ri−1
j=1 wkijσ(xij , qki) + (1−

∑ri−1
j=1 wkij)σ(xir, qki) = σ(qki, qki) ;

s(W ki, µi) = · · · = σ(qki, µi) .
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If Ck ⊆ Hc
i , that is i ∈ Ik, then:

s(W ki, qki) = s(W ki, µi) =
∑ri−1
j=1 pijσ(xij , µi) + (1−

∑ri−1
j=1 pij)σ(xir, µi) .

Then, by taking into account that
∑
i∈Ik [s(W ki, µi)−s(W ki, qki)] = 0 and defin-

ing W k = (W k1, . . . ,W kn), for the value Lk of the penalty L, we obtain

Lk =
∑n
i=1 hki

∑ri
j=1 ekijσ(xij , µi) =

∑
i∈Γk

σ(qki, µi) =

=
∑
i∈Γk

σ(qki, µi)−
∑
i∈Γk

σ(qki, qki) +
∑
i∈Γk

σ(qki, qki) =

=
∑
i∈Γk

[σ(qki, µi)−σ(qki, qki)] +αk =
∑
i∈Γk

[s(W ki, µi)− s(W ki, qki)] +αk =

=
∑
i∈Γk

[s(W ki, µi)− s(W ki, qki)] +
∑
i∈Ik [s(W ki, µi)− s(W ki, qki)] + αk =

=
∑n
i=1[s(W ki, µi)− s(W ki, qki)] + αk = S(W k,Mn)− S(W k, Qk) + αk,

where αk =
∑
i∈Γk

σ(qki, qki). Then, by applying (8) with P
′

= W k, so that
M′n = Qk, we have

Lk = S(W k,Mn)− S(W k, Qk) + αk = dΦ(W k, P ) + αk . (10)

We recall that for the probability assessment P = (P1, . . . ,Pn) on the familyA =
{Aij |Hi , j = 1, . . . , ri; i ∈ Jn} it holds that

∑ri
j=1 pijxij = µi, i = 1, . . . , n. We

recall that Mn /∈ In; then, denoting by IP the convex hull associated with the
pair (A, P ), where A = {Aij |Hi , j = 1, . . . , (ri − 1); i ∈ Jn}, P = (P1, . . . ,Pn)
and Pi = (pi1, . . . , pi(ri−1)), we have P /∈ IP . Then, by recalling the projection
lemma associated with Bregman divergences ([9], see also [5], Proposition 2), for

the projection P
∗

of P on IP we have

dΦ(W k, P
∗) + dΦ(P

∗
, P ) ≤ dΦ(W k, P ) .

Moreover, as P
∗ 6= P , we have dΦ(P

∗
, P ) > 0; therefore

dΦ(W k, P
∗
) < dΦ(W k, P ) , k = 1, . . . ,m .

Now, with the point P
∗

we associate the probability assessment P ∗ = (P∗1 , . . . ,P∗n),

where P∗i = (p∗i1, . . . , p
∗
i(ri−1), 1−

∑r−1
j=1 p

∗
ij), and the (possibly not coherent) pre-

vision assessmentM∗n = (µ∗1, . . . , µ
∗
n), with

∑ri−1
j=1 p∗ijxij + (1−

∑rj−1
j=1 p∗ij)xiri =

µ∗i , i = 1, . . . , n. For each constituent Ck we consider the vector Q∗k associated
with the pair (Fn,M∗n); moreover, based on (9), with the pair (P ∗, Q∗k) we as-
sociate the vector W ∗k . Then, for the values of the penalty L∗, we have

L∗k = S(W
∗
k,M∗n)− S(W

∗
k, Q

∗
k) + α∗k = dΦ(W

∗
k, P

∗
) + α∗k , k = 1, . . . ,m , (11)

with L∗0 = 0 and α∗k = αk =
∑
i∈Γk

σ(qki, qki). We observe that

W ki = W
∗
ki , qki = q∗ki , ∀ i ∈ Γk , ∀ k = 1, . . . ,m .
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Then, by virtue of the property 2 of the function s(P, z) (which is connected
with condition (a) in Definition 2), for each k = 1, . . . ,m we have

dΦ(W k, P
∗
)− dΦ(W

∗
k, P

∗
) =

= S(W k,M∗n)− S(W k, Qk)− [S(W
∗
k,M∗n)− S(W

∗
k, Q

∗
k)] =

=
∑n
i=1[s(W ki, µ

∗
i )− s(W ki, qki)]−

∑n
i=1[s(W

∗
ki, µ

∗
i )− s(W

∗
ki, q

∗
ki)] =

=
∑n
i=1[s(W ki, µ

∗
i )− s(W

∗
ki, µ

∗
i )]−

∑n
i=1[s(W ki, qki)− s(W

∗
ki, q

∗
ki)] =

=
∑
i∈Ik [s(Pi, µ∗i )− s(P

∗
i , µ
∗
i )]−

∑
i∈Ik [s(Pi, µi)− s(P

∗
i , µ
∗
i )] =

=
∑
i∈Ik [s(Pi, µ∗i )− s(Pi, µi)] ≥ 0 .

Therefore, dΦ(W
∗
k, P

∗
) ≤ dΦ(W k, P

∗
) < dΦ(W k, P ) , for each j = 1, 2, . . . ,m.

Then, recalling (10) and (11), for each k = 1, . . . ,m we obtain

L∗k = dΦ(W
∗
k, P

∗
) + αk < dΦ(W k, P ) + αk = Lk ;

that is,Mn is strongly dominated (and hence weakly dominated) byM∗n; hence
Mn is not admissible. This implies that M is not admissible. ut
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