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Abstract. We consider conditional random quantities (c.r.q.’s) in the
setting of coherence. Given a numerical r.q. X and a non impossible
event H, based on betting scheme we represent the c.r.q. X|H as the un-
conditional r.q. XH + µHc, where µ is the prevision assessed for X|H.
We develop some elements for an algebra of c.r.q.’s, by giving a condition
under which two c.r.q.’s X|H and Y |K coincide. We show that X|HK
coincides with a suitable c.r.q. Y |K and we apply this representation to
Bayesian updating of probabilities, by also deepening some aspects of
Bayes’ formula. Then, we introduce a notion of iterated c.r.q. (X|H)|K,
by analyzing its relationship with X|HK. Our notion of iterated condi-
tional cannot formalize Bayesian updating but has an economic rationale.
Finally, we define the coherence for prevision assessments on iterated
c.r.q.’s and we give an illustrative example.

Keywords: Coherence, betting scheme, conditional random quantities,
conditional previsions, Bayesian updating, iterated conditioning.

1 Introduction

Probabilistic reasoning under coherence allows a consistent treatment of un-
certainty in many applications of statistical analysis, economy, decision theory,
fuzzy set theory, psychology and artificial intelligence. This probabilistic ap-
proach allows to manage incomplete probabilistic assignments in a situation of
vague or partial knowledge, see e.g. [9, 11, 13–15, 32]; see also [18, 21, 22, 24–28,
36] where a flexible probabilistic approach to inference rules in nonmonotonic
reasoning and to the psychology of uncertain reasoning is developed. Based on
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coherence, we can develop a numerical approach to conditional events consis-
tent with the three-valued logic proposed in the pioneering paper [16] by de
Finetti; in this work we extend the approach to conditional random quantities
(c.r.q.’s). Based on the betting scheme ([17], see also [31]), if for a numerical r.q.
X we evaluate µ its prevision P(X), then we agree to pay (resp., to receive) an
amount µ and to receive (resp., to pay) the random amount X. Analogously,
given any non impossible event H, if we assess P(X|H) = µ for the prevision
of X conditional onH, then we agree to pay (resp., to receive) µ and to receive
(resp., to pay) an amount, denoted X|H, which coincides with X, or µ, accord-
ing to whether H is true, or false, i.e. H = 1, or H = 0 (in terms of indicators);
then, operatively, X|H = XH + µ(1 − H). Thus, one of the values of X|H is
the prevision P(X|H) = µ, which is subjectively evaluated. In particular, if for
a conditional event A|H we assess P (A|H) = p, then (the indicator of) A|H
is the r.q. AH + p(1 −H), with set of possible values {1, 0, p}. The problem of
suitably defining the third value for (the indicators of) conditional events has
been studied in some works by Coletti and Scozzafava (see, e.g., [13]).
We point out that, differently from other authors (see, e.g., ([37]; see also [34]),
in our approach a c.r.q. X|H is explicitly managed as an ’unconditional object’
which among its possible values admits (the conditional prevision) µ. We also
observe that the generalization of our results to imprecise conditional prevision
assessments is out of the scope of the paper.
By exploiting this representation of c.r.q.’s, we obtain some basic results which
concern an algebra of c.r.q.’s. Among other things, given any events H,K and
any r.q.’s X,Y , we examine the condition under which X|H and Y |K coin-
cide; in particular, we show that X|HK can be represented as a suitable c.r.q.
Y |K. Then, we use this representation in the context of Bayesian updating of
probabilities and we deepen some aspects of Bayes’ formula in the setting of
coherence. As a natural consequence, we introduce the iterated c.r.q. (X|H)|K,
which is defined as a suitable c.r.q. Y |K; then, we analyze its relationship with
X|HK. However, the Bayesian updating for the probability of any hypothesis H
cannot be formalized by our notion of iterated conditioning. Finally, we define
the coherence for prevision assessments on iterated c.r.q.’s and we illustrate this
notion by an example.

2 Preliminary Notions and Results

In our approach an event A represents an uncertain fact described by a (non
ambiguous) logical proposition; hence we look at A as a two-valued logical
entity which can be true (T ), or false (F ). The indicator of A, denoted by the
same symbol, is a two-valued numerical quantity which is 1, or 0, according to
whether A is true, or false. The sure event is denoted by Ω and the impossible
event is denoted by ∅. Moreover, we denote by A ∧B (resp., A ∨B) the logical
conjunction (resp., logical disjunction). In many cases we simply denote the
conjunction between A and B as the product AB. By the symbol Ac we denote
the negation of A. Given any events A and B, we simply write A ⊆ B to denote



that A logically implies B, i.e. ABc = ∅. We recall that n events are logically
independent when the number of atoms, or constituents, generated by them is
2n. In case of some logical dependencies among the events, the number of atoms
is less than 2n. Given any events A and B, with A 6= ∅, the conditional event
B|A is looked at as a three-valued logical entity which is true (T), or false (F),
or void (V), according to whether AB is true, or ABc is true, or Ac is true.
Given an event H 6= ∅ and a r.q. X, we denote by VH , the set of possible
values of X restricted to H and, if X is finite, we set VH = {x1, x2, . . . , xr}.
In the setting of coherence, agreeing to the betting metaphor the prevision of
′′X conditional on H ′′ (also named ′′X given H ′′), P(X|H), is defined as the
amount µ you agree to pay (resp., to receive), by knowing that you will receive
(resp., to pay) the amount X if H is true, or you will receive back (resp.,
to pay back) the amount µ if H is false (bet called off). Agreeing with the
operational subjective approach given in [31], we denote by X|H the amount
that you receive when a conditional bet is stipulated on ′′X given H ′′. Then,
it holds that X|H = XH + µHc, where µ = P(X|H), so that operatively we
can look at the c.r.q. X|H as the unconditional r.q. XH + µHc. If X is finite
and µ /∈ VH , then X|H ∈ {x1, x2, . . . , xr, µ}. Moreover, denoting by Ai the
event (X = xi), i ∈ Jr, the family {A1H, . . . , ArH,H

c} is a partition of Ω and
we have X|H = XH + µHc = x1A1H + · · · + xrArH + µHc. In particular,
when X is an event A, the prevision of X|H is the probability of A|H and,
if you assess P (A|H) = p, then for the indicator of A|H, denoted by the
same symbol, we have A|H = AH + pHc ∈ {1, 0, p}. The choice of p as the
third value of A|H has been proposed in some previous works, see e.g. [13, 19, 31].

Coherence for Conditional Prevision Assessments.
Given a prevision function P defined on an arbitrary family K of c.r.q.’s, let
Fn = {Xi|Hi, i ∈ Jn} be any finite subfamily of K; we set Mn = (µi, i ∈ Jn),
where µi = P(Xi|Hi). With the pair (Fn,Mn) we associate the random gain
G =

∑
i∈Jn

siHi(Xi − µi); moreover, we set Hn = H1 ∨ · · · ∨ Hn and we
denote by GHn

the set of values of G restricted to the disjunction Hn of the
conditioning events H1, . . . ,Hn. Then, by de Finetti’s betting scheme, we have

Definition 1. The function P defined on a finite family K is coherent if and only
if, ∀n ≥ 1, ∀Fn ⊆ K, ∀ s1, . . . , sn ∈ R, it holds that: inf GHn

≤ 0 ≤ supGHn
.

When K is infinite, we say that P is coherent if its restriction Mn on Fn is
coherent, for every Fn ⊂ K.

Remark 1. Given a finite c.r.q. X|H, with P(X|H) = µ and VH = {x1, . . . , xr},
we have that µ is coherent if and only if minVH ≤ µ ≤ maxVH . In particular,
if VH = {c}, then X|H = cH + µHc; in this case µ is coherent if and only if
µ = c. Of course, for X = H (resp. X = Hc) it holds that µ = 1 (resp. µ = 0)
and hence H|H = 1, Hc|H = 0.

Checking of Coherence for Conditional Prevision Assessments.
Given a family of n finite c.r.q.’s Fn = {X1|H1, . . . , Xn|Hn}, for each i ∈ Jn we
denote by {xi1, . . . , xiri} the set of possible values for the restriction of Xi to



Hi; then, for each i ∈ Jn and j = 1, . . . , ri, we set Aij = (Xi = xij). Of course,
for each i ∈ Jn, the family {Hc

i , AijHi , j = 1, . . . , ri} is a partition of the sure
event Ω. Then, the constituents generated by the family Fn are (the elements
of the partition of Ω) obtained by expanding the expression

∧
i∈Jn

(Ai1Hi ∨
· · · ∨ AiriHi ∨ Hc

i ). We set C0 = Hc
1 · · ·Hc

n (it may be C0 = ∅); moreover, we
denote by C1, . . . , Cm the constituents contained in Hn = H1 ∨ · · · ∨Hn. Hence∧

i∈Jn
(Ai1Hi∨· · ·∨AiriHi∨Hc

i ) =
∨m

h=0 Ch. With each Ch, h ∈ Jm, we associate
a vector Qh = (qh1, . . . , qhn), where

qhi = xij , if Ch ⊆ AijHi , j = 1, . . . , ri; qhi = µi, if Ch ⊆ Hc
i .

In more explicit terms, for each j ∈ {1, . . . , ri} the condition Ch ⊆ AijHi

amounts to Ch ⊆ Ac
i1 · · ·Ac

i,j−1AijA
c
i,j+1 · · ·Ac

irA
c
iri
Hi. We observe that the vec-

tor Qh = (qh1, . . . , qhn) is the value of the random vector (X1|H1, . . . , Xn|Hn)
when Ch is true; moreover, if C0 is true, then the value of such a random
vector is Mn = (µ1, . . . , µn). Denoting by In the convex hull of Q1, . . . , Qm,
the condition Mn ∈ In amounts to the existence of a vector (λ1, . . . , λm) such
that:

∑
h∈Jm

λhQh = Mn ,
∑

h∈Jm
λh = 1 , λh ≥ 0 , ∀h; in other words,

Mn ∈ In is equivalent to solvability of the following system Σ associated with
the pair (Fn,Mn), in the nonnegative unknowns λ1, . . . , λm,

Σ :
∑

h∈Jm
λhqhi = µi , i ∈ Jn ;

∑
h∈Jm

λh = 1 ; λh ≥ 0 , h ∈ Jm . (1)

Given a subset J ⊆ Jn, we set FJ = {Xi|Hi , i ∈ J} , MJ = (µi , i ∈ J) ; then,
we denote by ΣJ , where ΣJn

= Σ, the system like (1) associated with the pair
(FJ ,MJ). Then, it can be proved the following ([7])

Theorem 1. [Characterization of coherence]. Given a family of n finite c.r.q.’s
Fn = {X1|H1, . . . , Xn|Hn} and a vector Mn = (µ1, . . . , µn), the conditional
prevision assessment P(X1|H1) = µ1, . . ., P(Xn|Hn) = µn is coherent if and only
if, for every subset J ⊆ Jn, defining FJ = {Xi|Hi , i ∈ J}, MJ = (µi , i ∈ J),
the system ΣJ associated with the pair (FJ ,MJ) is solvable.

A characterization of coherence of conditional prevision assessments by non dom-
inance with respect to proper scoring rules has been given in [8].

3 Deepenings on Conditional Random Quantities and
Bayes Theorem

In this section, by exploiting the representation X|H = XH + µHc, where
µ = P(X|H), we develop some elements of an algebra of c.r.q.’s. In particular,
we recall a result which also concerns the general compound prevision theorem;
then, we give some comments on the Bayesian updating of probabilities. We have

Theorem 2. Given any real quantities a1, . . . , an, any event H 6= ∅, any
random quantities X1, . . . , Xn and any coherent assessment (µ1, . . . , µn, ν) on
{X1|H, . . . ,Xn|H, (

∑n
i=1 aiXi)|H}, we have:

∑n
i=1 ai(Xi|H) = (

∑n
i=1 aiXi)|H.



Proof. We have (
∑n

i=1 aiXi)|H = (
∑n

i=1 aiXi)H+νHc; moreover, it holds that
P[(
∑n

i=1 aiXi)|H] =
∑n

i=1 aiP(Xi|H); that is ν =
∑n

i=1 aiµi. Then

n∑
i=1

ai(Xi|H) =

n∑
i=1

ai(XiH + µiH
c) =

( n∑
i=1

aiXi

)
H + νHc =

( n∑
i=1

aiXi

)
|H .

In particular: a(X|H) = (aX)|H = aX|H.

Theorem 3. Given any c.r.q.’s X1|H1, . . . , Xn|Hn, with P(Xi|Hi) = µi, ∀ i,
and with (µ1, . . . , µn) coherent, we have: P(

∑n
i=1Xi|Hi) =

∑n
i=1 P(Xi|Hi).

Proof. By linearity of prevision, we have

P
( n∑

i=1

Xi|Hi

)
= P

[ n∑
i=1

(XiHi+µiH
c
i )
]

=

n∑
i=1

P
(
XiHi+µiH

c
i

)
=

n∑
i=1

P(Xi|Hi) .

We now consider the following questions:
(a) given two r.q. X|H,Y |K, with H 6= K, may it happen that X|H = Y |K ?
(b) given any events H,K, with HK 6= ∅, and any r.q. X, with P(X|HK) = µ,
does there exist a r.q. Y such that X|HK = Y |K ?
We recall two results ([23, Theorems 7 and 9]) which show that the answers to
both questions are positive. Concerning question (a) we have

Theorem 4. Given two c.r.q.’s X|H,Y |K, let (µ, ν) be a coherent prevision
assessment on {X|H,Y |K}, with P(X|H) = µ, P(Y |K) = ν. Moreover, assume
that X|H = Y |K when the disjunction H ∨K is true. Then X|H = Y |K.

The answer to question (b) is given in condition (i) of the result below, where
(by Theorem 4) it is shown that X|HK = Y |K, where Y = XH + yHc and
y = P(X|HK). The condition (ii), i.e. the general compound prevision theorem,
is directly obtained by condition (i), by exploiting the linearity of prevision.

Theorem 5. Given two events H 6= ∅,K 6= ∅ and a r.q. X, let (x, y, z) be a
coherent prevision assessment on {H|K,X|HK,XH|K}. Then:
(i) X|HK = (XH + yHc)|K;
(ii) z = xy; that is: P(XH|K) = P (H|K)P(X|HK).

In the next subsection, condition (i) of Theorem 5 will be applied to Bayesian
updating of conditional probabilities.

3.1 An Application to Bayesian Inference

Given a hypothesis H, with P (H) = p0, and a sequence of evidences E1, . . . , En,
we set: E1 · · ·Ek = Ak , P (H|Ak) = pk , Yk = HAk−1 + pkA

c
k−1 , k = 1, . . . , n.

By applying condition (i) of Theorem 5, with X,H, K replaced respectively by
H,Ak−1, and Ek, we obtain

H|E1 · · ·Ek = H|Ak−1Ek = Yk|Ek = (HAk−1 + pkA
c
k−1)|Ek , k = 1, . . . , n .



We can verify that, in the previous equality, the prevision on the right-hand
side coincides with that one on the left-hand side, which is the probability
P (H|E1 · · ·Ek) = pk. Indeed, we have

P(Yk|Ek) = P[(HAk−1 + pkA
c
k−1)|Ek] = P (HAk−1|Ek) + pkP (Ac

k−1|Ek) =
= pkP (Ak−1|Ek) + pkP (Ac

k−1|Ek) = pk , k = 1, . . . , n .

As we can see, the updating of the probability of H, on the basis of evidences
E1, . . . , En, consists at each step in replacing a probability by the next one in the
following sequence: P (H) , P (H|E1) , P (H|E1E2) , · · · , P (H|E1 · · ·Ek) , · · ·;
that is, using the Bayesian mechanism, at each step we replace P (H|Ak−1) =
pk−1 by P (H|Ak) = pk when the new evidence Ek is obtained. Of course, in
order to compute pk by Bayes’ formula

pk = P (H|Ak) = P (H|Ak−1Ek) =
P (Ek|Ak−1H)P (H|Ak−1)

P (Ek|Ak−1)
,

all the needed probabilities must be assigned and P (Ek|Ak−1) must be positive.
If P (Ek|Ak−1) = 0, by the methods of coherence, e.g. by using the Algorithm 1
in [2], or the zero-layers procedure in [13], it easily follows pk ∈ [0, 1]. More in
general, if some of the values in Bayes’ formula are not specified, then pk is not
uniquely determined and for its lower and upper bounds, l, u, there are different
cases considered in the next subsection.

3.2 Lower/Upper Bounds on the Probability of H|Ak

We assume H,Ak−1, Ek logically independent and we set Ak−1 = A,Ek = E;
then {H|Ak−1, Ek|Ak−1, Ek|Ak−1H,H|Ak−1Ek} = {H|A,E|A,E|AH,H|AE}.
As a preliminary remark we note that, given any sub-family Γ = {E1|H1, E2|H2}
of the family {H|A,E|A,E|AH,H|AE}, it can be verified that the set of coher-
ent assessments (x, y) on Γ coincides with the unit square [0, 1]2. Then, if we
assign only one of the quantities P (E|A), or P (E|AH), or P (H|A), and we want
to propagate it to H|AE, it holds that each value z = P (H|AE) ∈ [0, 1] is a
coherent extension of the given assignment; that is l = 0, u = 1.
We now consider the cases where we assign only two of the quantities P (E|A),
P (E|AH), P (H|A), by giving the lower/upper bounds on P (H|AE). We have
three cases (which, due to the lack of space, are discussed without proof):
(i) only x = P (E|A) and y = P (E|AH) are assigned; then, the assessment
P = (x, y, z) on F = {E|A,E|AH,H|AE} is coherent if and only if z ∈ [0, u],

with u = y(1−x)
x(1−y) , or u = 1, according to whether y < x, or y ≥ x.

(ii) only x = P (H|A) and y = P (E|AH) are assigned; then, the assessment
P = (x, y, z) on F = {H|A,E|AH,H|AE} is coherent if and only if z ∈ [l, 1],
with l = 0, or l = xy

1−x+xy , according to whether (x, y) = (1, 0), or (x, y) 6= (1, 0).

(iii) only x = P (H|A) and y = P (E|A) are assigned; then, based on the prob-
abilistic analysis of the CM rule given in [20], the assessment P = (x, y, z) on
F = {H|A,E|A,H|AE} is coherent if and only if l ≤ z ≤ u, with

l =

{ x+y−1
y , if x+ y > 1 ,

0 , if x+ y ≤ 1 ,
u =

{ x
y , if x < y ,

1 , if x ≥ y .



Remark 2. Given n logically independent events E1, . . . , En−1, H, and any as-
sessment P = (x1, . . . , xn−1, p0) on the family F = {E1, . . . , En−1, H}, the ex-
tension pn−1 = P (H|E1 · · ·En−1) is coherent if and only if: l ≤ pn−1 ≤ u, where

l =

{
max

{
0, x1+···+xn−1+p0−(n−1)

x1+···+xn−1−(n−2)

}
, if x1 + · · ·+ xn−1 > n− 2 ,

0 , if x1 + · · ·+ xn−1 ≤ n− 2 ;

u =

{
min

{
1, p0

x1+···+xn−1−(n−2)

}
, if x1 + · · ·+ xn−1 > n− 2 ,

1 , if x1 + · · ·+ xn−1 ≤ n− 2 .

The previous formulas are obtained from (and better represent) the lower and
upper bounds, l and u, given for the generalized Cautious Monotonicity rule in
[21]; indeed, the representation of the probability bounds given in [21, Theorem
11] only concerns the case where the condition x1+· · ·+xn−1 > n−2 is satisfied.
A similar comment applies to [21, Theorem 10].

Other aspects of Bayes’ theorem have been analyzed in [13] and [39]. Theoreti-
cal aspects and algorithms concerning the set of probability assessments which
are compatible with given initial ones have been studied in several fields, such
as probabilistic reasoning under coherence, model-theoretic probabilistic logic,
probabilistic satisfiability, credal networks, and others; see, e.g., [2–6, 9, 10, 13,
29, 35, 38]. In the next section we give some results on iterated conditioning and
we make a critical comparison with Bayesian updating.

4 Iterated Conditioning

The basic intuition for our notion of iterated c.r.q. follows by the representation
X|H = XH + µHc, where µ = P(X|H). After the definition we briefly discuss
the meaning of the ’new object’ (X|H)|K; then we give some results.

Definition 2. Given any events H,K, with H 6= ∅,K 6= ∅, and a finite r.q. X,
with P(X|H) = µ, we define (X|H)|K = (XH + µHc)|K 3.

From the previous definition, as Hc|H = 0, it follows:
(X|H)|H = (XH + µHc)|H = XH|H + µHc|H = XH|H = X|H; then, if we
set Y = X|H = XH + µHc, from (X|H)|H = X|H it follows Y |H = Y .

Remark 3. Does there exist a reasonable justification for Definition 2 ?
We can provide a rationale for Definition 2, by imagining a decision problem
involving two prevision assessments:
1) an agent evaluates P(X|H) = µ, by accepting then any transaction where, by
paying an amount µ, one receives the uncertain amount Y = X|H = XH+µHc;
2) the same agent evaluates P(Y |K) = ν, with Y = X|H, by accepting then a
transaction where, by paying ν, one receives the uncertain amount Y |K.

3 This notion of iterated conditioning for c.r.q.’s is consistent with that one given for
conditional events in [26].



Then, operatively: ν = P(Y |K) = P[(XH + µHc)|K] = P[(X|H)|K]; that is,
to evaluate the prevision of Y |K amounts to evaluate the prevision of the iter-
ated c.r.q. (X|H)|K. We point out that our notion of iterated conditioning does
not concern those situations, typical of Bayesian updating, where a collection of
pieces of evidence is synthesized by their conjunction and managed in a coherent
way. Clearly, coherence plays a basic role also in our approach; for instance, con-
cerning the discussion above, the agent must check coherence of the assessment
(µ, ν) on {X|H, (X|H)|K}. This aspect will be considered in Section 5.
In the next result we show that (X|H)|K may coincide with X|H, or X|K.

Proposition 1. Given any r.q. X and any nonimpossible events H,K, we have:
(i) (X|H)|K 6= (X|K)|H; (ii) (X|H)|K 6= X|HK; (iii) if H ⊆ K, or K ⊆ H,
then (X|K)|H = (X|H)|K = X|HK.

Proof. (i) The assertion follows by Definition 2.
(ii) Defining P(X|H) = µ,P(X|HK) = η, in general it holds that µ 6= η; thus,
by condition (i) of Theorem 5, we have

X|HK = (XH + ηHc)|K 6= (XH + µHc)|K = (X|H)|K .

(iii.a) If H ⊆ K, defining P(X|H) = µ,P(X|K) = z,P(X|HK) = η, we have
X|HK = X|H and η = µ; then (by condition (i) of Theorem 5) we obtain
(X|H)|K = (XH + µHc)|K = (XH + ηHc)|K = X|HK = X|H. Moreover,
H ⊆ K implies XKc|H = zKc|H = 0; hence XK|H = X(K + Kc)|H = X|H.
Then (X|K)|H = (XK + zKc)|H = XK|H = X|H = X|HK.
(iii.b) If K ⊆ H, the assertion follows by a symmetric reasoning .

Remark 4. Note that, by condition (iii) in Proposition 1, X|H = (X|H)|(H∨K);
then P(X|H) = P[(X|H)|(H ∨ K)]. Indeed, defining P(X|H) = µ, we have
P[(X|H)|(H∨K)] = P[(XH+µHc)|(H∨K)] = P(XH|H∨K)+P(µHc|H∨K) =
= P(X|H)P (H|H ∨K) + µP (Hc|H ∨K) = µ.

The next result shows that the sum X|H + Y |K of two c.r.q.’s, with different
conditioning events H,K, can be represented as a suitable c.r.q. Z|(H ∨K).

Proposition 2. Given a coherent prevision assessment (µ, η) on {X|H,Y |K},
it holds that: X|H + Y |K = Z|(H ∨K), where Z = XH + µHc + Y K + ηKc

and P[Z|(H ∨K)] = µ+ η.

Proof. We observe that H ⊆ (H ∨K),K ⊆ (H ∨K); then, from condition (iii)
in Proposition 1, we have X|H = (X|H)|(H ∨ K) = (XH + µHc)|(H ∨ K),
Y |K = (Y |K)|(H ∨K) = (Y K+ηKc)|(H ∨K). Then, by Theorem 2, we obtain
X|H + Y |K = (XH + µHc + Y K + ηKc)|(H ∨K) = Z|(H ∨K). Moreover,
by Theorem 3 (see also Remark 4), P[Z|(H ∨K)] = µ+ η.

We observe that, given any events A,H,K, if H ⊆ K, or K ⊆ H, then
(A|K)|H = (A|H)|K = A|HK, and the Import-Export Principle ([33]) would
be valid. But, in general we have (A|H)|K 6= (A|K)|H, (A|H)|K 6= A|HK,
(A|K)|H 6= A|HK; that is, in agreement with other authors (see, e.g., [1, 30]),
the Import-Export Principle does not hold, as illustrated by the example below.



Example 1. Given any events A,H,K, with HK = ∅, we denote by p the prob-
ability of A|H, P (A|H), and by α the prevision of (A|H)|K, P[(A|H)|K]. By
Definition 2, (A|H)|K = (AH + pHc)|K = AHK + pHcK +αKc = pK +αKc;
moreover, conditionally on K being true the r.q. AH+pHc is constant and equal
to p; then, by Remark 1, α = P[(AH + pHc)|K] = p. Therefore, from HK = ∅
it follows: (A|H)|K = p (more in general, given any r.q. X, with P(X|H) = µ,
if HK = ∅, then (X|H)|K = µ). If the Import-Export Principle were valid, we
would have (A|H)|K = A|HK = A|∅, which makes no sense; indeed, in Bayesian
updating it is absurd to consider two logically incompatible evidences H,K.

In the framework of Bayesian inference, given any uncertain hypothesis H and
any evidences E1, E2, . . . , En, we iteratively compute P (H|E1), P (H|E1E2), · · ·,
P (H|E1 · · ·En); this amounts to synthesizing the sequence E1, . . . , En by the
conjunction E1 · · ·En. If iterated conditioning were defined in agreement with
the Import-Export Principle, it would be H|E1E2 = (H|E1)|E2, and so on; then

P (H|E1E2) = P [(H|E1)|E2] , P (H|E1E2E3) = P [((H|E1)|E2)|E3] , . . . .

But, in our approach we have (H|E1)|E2 6= H|E1E2, and so on; thus, Bayesian
updating cannot be formalized by our iterated conditioning. For instance, we
cannot look at the prevision P[(H|E1)|E2] as the probability P (H|E1E2). In-
deed, defining P (H|E1) = p1, P (H|E1E2) = p2, by condition (i) of Theorem 5
we have H|E1E2 = (HE1 + p2E

c
1)|E2 6= (HE1 + p1E

c
1)|E2 = (H|E1)|E2.

As discussed in Remark 3, our notion of iterated conditioning is useful for ap-
plications different from Bayesian updating.

5 Coherent Prevision Assessments for Iterated
Conditional Random Quantities

In this section we introduce the notion of coherent prevision assessments on
iterated c.r.q.’s, like

P[(X1|H1)|K1] = ν1 , P[(X2|H2)|K2] = ν2 , · · · , P[(Xn|Hn)|Kn] = νn ;

then, we will discuss a simple example. We observe that the iterated condi-
tional random quantities (X1|H1)|K1, · · · , (Xn|Hn)|Kn involve the assessment
(µ1, . . . , µn) on {X1|H1, . . . , Xn|Hn}; then, in the definition of coherence we
must consider the global assessment (µ1, . . . , µn, ν1, . . . , νn). We have

Definition 3. Given any random quantities X1, . . . , Xn and any events H1, . . .,
Hn,K1, . . . ,Kn, with Hi 6= ∅,Ki 6= ∅, i = 1, . . . , n, the prevision assessment
(µ1, . . . , µn, ν1, . . . , νn) on F = {X1|H1, . . . , Xn|Hn, Y1|K1, · · · , Yn|Kn}, where
Y1 = X1|H1, . . . , Yn = Xn|Hn, is coherent if and only if, for every subfamily
S ⊆ F , defining H =

∨
i:Xi|Hi∈S Hi, K =

∨
i:Yi|Ki∈S Ki, and denoting by GH∨K

the set of possible values of the random gain

G =
∑

i:Xi|Hi∈S siHi(Xi − µi) +
∑

i:Yi|Ki∈S τiKi(XiHi + µiH
c
i − νi)

restricted to H ∨ K, with si, τi arbitrary real numbers for every i, it holds that
inf GH∨K ≤ 0 ≤ supGH∨K.



We observe that Definition 3 is nothing but Definition 1 applied to the family
{Xi|Hi, Yi|Ki, i = 1, . . . , n}, where Yi = Xi|Hi = XiHi + µiH

c
i , ∀ i; hence the

value g0 = 0 of the random gain G, associated with the atom Hc
1 · · ·Hc

nK
c
1 · · ·Kc

n

(all the bets on Xi|Hi, (Xi|Hi)|Ki, i = 1, . . . , n, called off), is discarded
when defining coherence of the prevision assessment (µ1, . . . , µn, ν1, . . . , νn) on
the family {X1|H1, . . . , Xn|Hn, (X1|H1)|K1, · · · , (Xn|Hn)|Kn}. Moreover, the
checking for coherence can be made by the usual methods already existing in
literature (see, e.g., [7, 12, 13]). Based on the geometrical approach related to
Theorem 1, we illustrate Definition 3 by the example below.

Example 2. Given a r.q. X ∈ {1, 2, . . . , 10}, we set K = (X ∈ {2, 4, . . . , 10}),
H = (X ≤ 6), P(X|H) = µ, P[(X|H)|K] = ν, M1 = (µ), S1 = {X|H},
M2 = (ν), S2 = {Y |K}, M3 = (µ, ν), S3 = {X|H,Y |K}, where Y = X|H =
XH + µHc.
As shown below, the set Π of coherent assessments (µ, ν) on {X|H, (X|H)|K} is
the (non convex) polygon whose boundary is the closed polygonal with vertices
the points (1, 1), (2, 2), (5, 2), (5, 5), (6, 6), (1, 6). We observe that Π is the union
of the triangle T1, with vertices the points (1, 1), (6, 6), (1, 6), and the triangle
T2, with vertices the points (2, 2), (5, 2), (5, 5).
We denote by Ij the convex hull associated with the pair (Sj ,Mj), j = 1, 2, 3.
From a geometrical point of view, the coherence of (µ, ν) amounts to conditions
Mj ∈ Ij , j = 1, 2, 3. Of course, M1 ∈ I1 if and only if 1 ≤ µ ≤ 6. If 2 ≤ µ ≤ 6,
then M2 ∈ I2 is satisfied for every ν ∈ [2, 6]; if µ < 2, then M2 ∈ I2 for every
ν ∈ [µ, 6]. To check if M3 ∈ I3, we determine the set of constituents contained
in H∨K, i.e. different from HcKc, which are obtained by expanding the expres-
sion (HK ∨HKc ∨HcK) ∧ (A1 ∨ · · · ∨A10), where Ai = (X = i), i = 1, . . . , 10.
These constituents are A2, A4, A6, A1, A3, A5, A8, A10; the associated points
Qh’s, for the pair (S3,M3), are (2, 2), (4, 4), (6, 6), (1, ν), (3, ν), (5, ν), (µ, µ),
where with A8 and A10 it is associated the same point (µ, µ).
We distinguish two cases: (i) µ ≥ 2; (ii) µ < 2.
Case (i). For the convex hull it is enough to consider the points (2, 2), (6, 6), (1, ν),
(5, ν). If µ ≤ 5 then (µ, ν) belongs to the segment with vertices (1, ν), (5, ν), so
that the condition M3 ∈ I3 is satisfied and we have to continue by considering
the condition M2 ∈ I2. If K is true, then Y |K ∈ {2, 4, 6, µ}; hence, it must
be ν ∈ [2, 6]. If µ > 5, then (µ, ν) belongs to the convex hull if and only if
µ ≤ ν ≤ 6. In fact in this case (µ, ν) belongs to the triangle with vertices the
points (2, 2), (6, 6), (1, ν). Of course, the condition ν ∈ [2, 6] is satisfied too.
Case (ii). For the convex hull it is enough to consider the points (µ, µ),
(6, 6), (1, ν), (5, ν). Condition M3 ∈ I3 is satisfied because (µ, ν) belongs to
the segment with vertices (1, ν), (5, ν). Condition M1 ∈ I1 is satisfied because
1 ≤ µ < 2; finally, the condition M2 ∈ I2 is satisfied for every ν ∈ [µ, 6].

6 Conclusions

Based on betting scheme of de Finetti, we represented a c.r.q. as a suitable
unconditional r.q., for which the assessed conditional prevision is one of the



possible values. We obtained some results on basic operations among c.r.q.’s,
by examining in particular a condition for the equality of two c.r.q.’s X|H
and Y |K. Then, we represented a c.r.q. X|HK as a suitable c.r.q. Y |K and
we considered an application to Bayesian updating, by also deepening some
aspects of Bayes’ formula. We introduced a notion of iterated c.r.q. (X|H)|K,
defined as a suitable c.r.q. Y |K, and we analyzed the relationship between
(X|H)|K and X|HK. Even if Bayesian updating cannot be formalized in our
approach, we showed that our notion of iterated conditioning has an economic
rationale. We discussed Bayesian updating in terms of iterated conditioning
under the Import-Export Principle. But, such a principle is not valid in general
and does not work in applications where our iterated conditioning does. Finally,
we defined the notion of coherence for prevision assessments on iterated c.r.q.’s,
by also giving an example. Future work should concern the extension of our
results to the case of imprecise conditional prevision assessments.
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