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Abstract: The refinement axiom for entropy has been provocative in providing foundations of
information theory, recognised as thoughtworthy in the writings of both Shannon and Jaynes.
A resolution to their concerns has been provided recently by the discovery that the entropy measure of
a probability distribution has a dual measure, a complementary companion designated as “extropy”.
We report here the main results that identify this fact, specifying the dual equations and exhibiting
some of their structure. The duality extends beyond a simple assessment of entropy, to the formulation
of relative entropy and the Kullback symmetric distance between two forecasting distributions. This is
defined by the sum of a pair of directed divergences. Examining the defining equation, we notice that
this symmetric measure can be generated by two other explicable pairs of functions as well, neither of
which is a Bregman divergence. The Kullback information complex is constituted by the symmetric
measure of entropy/extropy along with one of each of these three function pairs. It is intimately
related to the total logarithmic score of two distinct forecasting distributions for a quantity under
consideration, this being a complete proper score. The information complex is isomorphic to the
expectations that the two forecasting distributions assess for their achieved scores, each for its own
score and for the score achieved by the other. Analysis of the scoring problem exposes a Pareto
optimal exchange of the forecasters’ scores that both are willing to engage. Both would support its
evaluation for assessing the relative quality of the information they provide regarding the observation
of an unknown quantity of interest. We present our results without proofs, as these appear in source
articles that are referenced. The focus here is on their content, unhindered. The mathematical syntax
of probability we employ relies upon the operational subjective constructions of Bruno de Finetti.

Keywords: entropy; extropy; relative entropy/extropy; prevision; duality; Fermi–Dirac entropy;
Kullback symmetric divergence; total logarithmic scoring rule; Pareto optimal exchange

1. Introduction

After some seventy years of extensive theoretical and applied research on the conception and
application of entropy in myriad fields of science, informatics, and engineering, it may be surprising to
find that there is another substantive dimension to the concept that has only recently been exposed.
In a word, the entropy measure of disorder in a probability distribution is formally entwined with
a complementary dual measure that we have designated as extropy. In assessing the probability of an
event with only two possible outcomes, the entropy and extropy are identical. However, the measures
bifurcate when the number of possibly observable values of a quantity is three or more, assessed with
a probability mass function. As companions, these two measures relate as do the positive and negative
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images of a photographic film, and they contribute together to characterizing the information in a
distribution in much the same way. In the present exposition, we shall merely report the main results
discursively without proofs. Proofs appear in three published articles [1–3] which also supply relevant
motivation, thoughtful discussion, and complete development in a matter of some sixty pages all told.
Since the topics we cover are extensive, the summary provided here will necessarily be cryptic in places.

We begin by identifying the dual equations that entwine entropy/extropy as a bifurcating measure,
and by displaying contours of iso-entropy and iso-extropy probability mass vectors (pmvs) within the
triangular unit-simplex appropriate to a problem with three measurement possibilities. In this context,
we also portray the alternative refinement axioms that support the duality. Furthermore, the notion of
relative entropy was originally envisaged in order to provide for invariance of a continuous entropy
measure with respect to monotonic transformations of the measurement scale. We show how the
measurement of relative extropy completes this notion in a natural way. A unified understanding of
the dual measures is provided within the larger scheme of general Bregman divergences.

An examination of Kullback’s symmetric distance measure between two pmvs then reveals that
it can be generated equivalently by three distinct paired measures of them. It becomes evident that
the computation of Kullback’s distance needs to be supplemented with computed values of all three
generators in order to portray the information content of the two forecasting pmvs. The practical
value of this four-dimensional measure is found in its relevance to the evaluation of alternative
forecasts via the theory of proper scoring rules. Our results identify an isomorphism between the
Kullback information complex so defined and the two forecasters’ expectations of their achieved total
logarithmic score evaluations, each for its own and for the other’s.

The concluding exposition concerns the related discovery of a desirable method for evaluating
the quality of alternative forecasts, which avoids an arbitrariness inherent in the mere comparison of
achieved proper score evaluations. The consequences of the forecasters’ differing expectations of their
scores supports a Pareto optimal exchange of their achieved scores that they both would embrace as a
fair assessment of their comparative forecasting performances.

Our presentation proceeds in the context of the operational subjective theory of probability,
deriving from the mathematical and foundational constructions of Bruno de Finetti in the twentieth
century. Notable expositions appear in his publications [4,5]. The differences between this
understanding and what is considered standard statistical practice are fundamental, even allowing for
Bayesian procedures. Probability distributions are not considered to be unobservable generators of
random data observations, requiring estimation. Instead, they are numerically codified assertions of
uncertain scientists/engineers/designers regarding unknown but observable quantities, to be used in
guiding practical decisions. Even the mathematical semantics of probability itself are recognizably
different from standard usage. For example, an event is not characterised as a set but as a number,
either zero or one, whose value is unknown to the proponent of a probability. Notationally, an event
may be denoted by a parenthetic indicator expression such as (X = xi) when the quantity X has
several possible values. In such a case, the parenthetic expression is meant to indicate one (1) if the
interior expression is observed to be true, and zero (0) if false. Otherwise, the syntax is fairly natural.
In some places, we shall defer to common practice, as in denoting an expectation operator by Ep(.)

rather than using prevision Pp(.), which would be natural to a subjectivist. This is an operator that
unifies expectation and probability in de Finetti’s formulation, treating expectation as the primitive
notion of uncertainty specification. A pedagogical introduction to operational subjective methods and
their motivation can be found in the controversial text of Lad [6].

Inspiration for discovering the dual complementarity of entropy/extropy arose from our interest
in the use of proper scoring rules for assessing the quality of alternative probability distributions asserted
as forecasts of observable quantities of interest. These are introduced in the aforementioned text,
having been formalised in the final technical contribution of Savage in [7]. From the subjectivist
perspective, the use of proper scoring rules is meant to completely replace the entire construct
of hypothesis testing. This is recognised as a meaningless endeavor of searching for non-existent
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probabilistic generators of supposedly random phenomena. An extensive literature review appeared
in [8] with a slightly different emphasis. However, the duality of entropy/extropy is a formal
mathematical property of the pair of functions. We expect it to be relevant to most all fields in
which the concept of entropy has proved useful.

2. Results

Consider a measurable quantity X with a finite discrete realm of N possible instantiations,
R (X) = {x1, x2, ..., xN}. Our analysis concerns the character of two different asserted probability mass
vectors (pmvs) for these possible outcomes: pN = (p1, . . . , pN) and qN = (q1, . . . , qN), along with two
other relevant pmvs to be denoted by sN = (s1, . . . , sN) and tN = (t1, . . . , tN). Each component of
vectors such as pN is a probability: pi = P(X = xi), i = 1, . . . , N.

2.1. Complementary Duality

The well-known entropy measure of a pmv is specified by the function value H(pN) ≡
− ∑N

i=1 pi log(pi). This measure has a complementary dual in the measure defined by J(pN) ≡
−∑N

i=1(1− pi) log(1− pi), which we designate as extropy.
It should be evident that, when N = 2, the entropy H(p2) and extropy J(p2) are identical.

However, when N > 2, the measure bifurcates to yield distinct paired measurements [H(pN), J(pN)].
The dual equations relating these two measures are

J(pN) = ∑N
i=1 H(pi, 1− pi) − H(pN)

and symmetrically,
H(pN) = ∑N

i=1 J(pi, 1− pi) − J(pN).

Replacing the function names H by J in either of these equations while simultaneously replacing
J by H yields the other equation. Formally, this is the source of the duality.

This equation pair arises from the feature that H(pN) + J(pN) = ∑N
i=1 H(pi, 1− pi). While the

sum on the left has been known as Fermi–Dirac entropy, the duality of the summands has been
long unrecognised. The dual does not constitute an involution, which would mean that the dual of a
dual function constitutes the original function. Instead, extropy is a complementary dual of entropy.
This arises from the fact that the extropy of a pmv pN equals a linearly rescaled measure of entropy of
its complementary pmv sN ≡ (N− 1)−1(1N − pN). That is, J(pN) = (N− 1) [H(sN)− log(N− 1)] .

The transformation of the pmv pN to its complement sN is a contraction.
A visual display of the dual functions H(.) and J(.) appears in Figure 1. It exhibits equal-entropy

contours and equal-extropy contours for pmvs p3 in the two-dimensional unit simplex.
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Figure 1. On the left are equal-entropy contours of distributions within the 2D unit-simplex, S2. On the
right are equal-extropy contours of distributions. The inscribed equilateral triangles exhibit sequential
contractions of the range of the complementary transformation from p3 vectors to their complements
q3, and then in turn from these q3 vectors to their complements, and so on. The fixed point of all
contraction mappings is the uniform distribution (pmv).
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2.2. Axiomatic Construction of Entropy and Extropy

Shannon had initially characterised the entropy function as the unique function that satisfies three
axioms [9]. However, the third axiom puzzled him. It concerns the gain in entropy incurred when a
component probability of a pmv is refined to specify probabilities for two constituents:

H(tp, (1− t)p, 1− p) = H(p, 1− p) + p H(t, 1− t) forany(p, t) ∈ (0, 1)2 .

Shannon recognised the usefulness of the theory this axiom supports, particularly in identifying
the entropy in the joint pmv for a pair of quantities as H(X, Y) = H(X) + P[H(Y|X = xo)], where xo

is the observed value of X. However, he expressed some concern that he could not provide salient
motivation for it. Jaynes wondered aloud in his text ([10], p. 351) some years later whether the axiom
might be proved somehow to be uniquely satisfactory in characterising a measure of information,
or whether it could be sensibly replaced. Our realisation of the complementarity of extropy with
entropy provides the alternative axiom supporting the dual measure for which Jaynes was searching:

J(tp, (1− t)p, 1− p) = J(p, 1− p) + 4(p, t) forany(p, t) ∈ (0, 1)2 ,

where4(p, t) = (1− p)log(1− p) − (1− tp)log(1− tp) − {1− (1− t)p}log{1− (1− t)p}.
The algebraic detail is less important here than is the content. This is exhibited graphically in

Figure 2. Whereas the entropy gain is linear in the size of the probability p that is refined, at a rate
depending only on the entropy of the partitioning fraction t, the extropy gain also increases with the
size of p but at a rate that increases with the size of the refined p as well. Details are best studied in [1].
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Figure 2. The entropies (at left) and extropies (at right) for refined distributions [tp, (1− t)p, (1− p)]
equal the entropy/extropy for the base probabilities, H(p, 1− p) = J(p, 1− p), plus an additional
component. This component is linear in p at the constant rate H(t, 1− t) for entropy, and non-linear in
p for extropy at a rate that increases with the size of p.

2.3. Relative Entropy and Its Complementary Dual

Shannon’s development provided an intuitive suggestion for a representation of entropy as
applied to a continuous density function. Recognised by Kolmogorov [11] as lacking invariance
with respect to monotonic transformations of the variable quantity under consideration, the theory
was completed by recourse to the Kullback divergence in the classic text [12]. In a discrete context,
the entropy in a mass function pN relative to to another, qN , was identified as the relative entropy
function D(pN‖qN) ≡ ∑N

i=1 pi log( pi
qi
), which is also known as the Kullback divergence between pN

and qN . We have found that this measure too has a complementary dual that we identify as relative
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extropy: Dc(pN‖qN) ≡ ∑N
i=1 (1− pi) log( 1−pi

1−qi
). The dual equations are found to be

Dc(pN‖qN) =
N

∑
i=1

D[(pi, 1− pi)‖(qi, 1− qi)]− D(pN‖qN),

and symmetrically,

D(pN‖qN) =
N

∑
i=1

Dc[(pi, 1− pi)‖(qi, 1− qi)]− Dc(pN‖qN).

The complementarity is seen in the result that

Dc(pN‖qN) = (N − 1) D(sN‖tN),

where sN and tN are the pmvs complementary to pN and qN . That is, sN = (N − 1)−1(1N − pN) and
tN = (N− 1)−1(1N − qN). This result mimics the simple complementary duality of J(pN) with H(sN)

for the complementary pmvs pN and sN .

2.4. Unification via Bregman Divergences: The Continuous Situation

The structure of Bregman divergences both unifies our understanding of the (entropy, extropy)
duality, and provides a basis for characterising the duality of these measures for density functions.
We report here only some results, using standard notation. Readers unfamiliar with these divergences
will find an introduction in [13]. In a discrete context, it is well known that the Kullback directed
distance measure between two vectors, D(pN‖qN), is a Bregman divergence with respect to the
separable Bregman function Φ(pN) = −H(pN). See [14,15] for example. This is commonly
denoted by writing dΦ(pN , qN) = D(pN‖qN) ≥ 0, with equality applying if and only if pN = qN .
The same is true of the complementary distance: Dc(pN‖qN) is a Bregman divergence with respect
to the separable Bregman function Φc(pN) = −J(pN). Specifically, dΦc(pN , qN) = Dc(pN‖qN),
again non-negative. We shall also have reason to address the cross-entropy and cross-extropy functions:
CH(pN‖pN) ≡ ∑N

i=1 pi log qi, and CJ(pN‖pN) ≡ ∑N
i=1(1− pi) log (1− qi).

In a continuous context, the relative entropy between two density functions f and g
defined over an interval [x1, xN ] can be identified as a Bregman divergence with respect either

to the function φ( f ) = f log( f ) or φ( f ) = f log( f ) + (1 − f ). This is typically denoted by

writing d( f ‖g) = Bφ( f , g) =
∫ xN

x1
f (x)log

(
f (x)
g(x)

)
dx. We have found that its complementary dual

specifies the relative extropy between f and g as a Bregman divergence as well, with respect
either to the function θ( f ) = 1

2 f 2 or θ( f ) = − f + 1
2 f 2. In explicit notation, we write

dc( f ‖g) = Bθ( f , g) = 1
2

∫ xN
x1

[ f (x)− g(x)]2dx. The Kullback divergence and one-half of the L2 metric
are thus recognised as complementary duals.

N.B. We shall presume in what follows that the size of all vectors is N, omitting it as a subscript in
vector notation. For example, the divergence D(pN‖qN) will now be written more simply as D(p‖q).

2.5. The Kullback Information Complex

Since the Kullback divergence D(p‖q) is not symmetric, a symmetric distance ( which still does
not satisfies the triangle inequality property) is defined by a sum of the two directed divergences
(see [12,16]): D(p‖q) ≡ D(p‖q) + D(q‖p). However, two alternative generations of the symmetric
divergences can be recognised by viewing Figure 3.

Algebraically, this scheme can be described by the three equivalent equations:

D(p‖q) ≡ D(p‖q) + D(q‖p)
= ∆(p‖q) + ∆(q‖p)
= CH(p‖q) − 1

2 [CH(p‖p) + CH(q‖q)] ≥ 0,
(1)
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where ∆(p‖q) ≡ ∑N
i=1 (pi − qi) log(pi), and CH(p‖q) ≡ CH(p‖q) + CH(q‖p).

D(p‖q)

D(p‖q)

∆(p‖q)

∑N
i=1 pi log pi − ∑N

i=1 pi log qi − ∑N
i=1 qi log pi + ∑N

i=1 qi log qi

CH(p‖q)

Figure 3. Schematic display of the symmetric Kullback divergence D(p‖q), which shows that it can
be generated equivalently by three distinct pairs of summands. These are specified by the directed
divergence D(p‖q), by an alternative difference ∆(p‖q), and by the cross-entropy sum CH(p‖q).

We observe that D(p‖q) = 0 if and only if p = q. While the directed divergence D(.‖.) is
non-symmetric, it specifies a self-divergence of zero for D(p‖p) and D(q‖q). The same is true of
the directed measure ∆(.‖.). In contrast, the cross-entropy sum CH(p‖q) ≡ CH(p‖q) + CH(q‖p)
is already symmetric: CH(p‖q) = CH(q‖p), while the self measures CH(p‖p) and CH(q‖q) are
non-zero. These equal 2 H(p) and 2 H(q), respectively.

We can build on the awareness that these equations provide by defining a vectorial complex of
information measures that supplement the symmetric divergence. Motivation will be found in its
relation to four fundamental previsions that are relevant to the evaluation of a total logarithmic score,
and in concerns cited in [17]. To begin, we define the Kullback information complex for the pmvs (p, q)
as the vector [D(p‖q), D(p‖q), ∆(p‖q), CH(p‖q)]. Correspondingly, we define the complementary
Kullback information complex as the vector [D c(p‖q), Dc(p‖q), ∆c(p‖q), CJ(p‖q)] on the basis of
complementary functions that we should now expect:

D c(p‖q) ≡ Dc(p‖q) + Dc(q‖p),

∆c(p‖q) ≡
N

∑
i=1

(1− pi) log(1− pi)−
N

∑
i=1

(1− qi) log(1− pi) , and

CJ(p‖q) ≡ −
N

∑
i=1

(1− pi) log(1− qi) , along with

CJ(p‖q) ≡ CJ(p‖q) + CJ(q‖p).

The function CJ(p‖q) denotes cross-extropy. Using these functions, a display replicating Figure 3
can be produced for the complementary symmetric divergence D c(p‖q). In each instance where
the probability pi or qi appears, it would be replaced by its complement, 1− pi or 1− qi. See [2].
The functions Dc(p‖q), ∆c(p‖q), and the sum CH(p‖q) would each designate once again two selected
summands of D c(p‖q). This would substantiate three parallel generating functions of D c(p‖q)
appropriate to duality.

Finally, by summing the Kullback information complex and its complement, we obtain the total
Kullback information complex:

[D(p‖q) +D c(p‖q), D(p‖q) + Dc(p‖q), ∆(p‖q) + ∆c(p‖q), CH(p‖q) + CJ(p‖q)]

We are now prepared to identify the contribution of entropy/extropy measures for the use of
proper scoring rules for evaluating the comparative quality of alternative forecasting distributions.
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2.6. Connections with Proper Scoring Rules: The Total Logarithmic Score

The operational subjective theory of probability supports the comparative evaluation of alternative
probabilistic forecasts of measurable quantities via proper scoring rules. The total logarithmic score for p
(denoted by STL) on the basis of the observation of X is specified as

STL(p, X) ≡
N

∑
i=1

(X = xi) log(pi) +
N

∑
i=1

(X 6= xi) log(1− pi) .

Here, the parenthetic expressions surrounding equations denote the indicator 1 if the equation is
observed to be true, and 0 if it is false. Thus, when X is observed to equal xo, say, the first summand
reduces to log[P(X = xo)] because all the other parenthetic expressions (X = xi) indicate a value
of zero (0). The second summand then reduces to the sum of the logs for all other probabilities
assessed for events that indicate (X 6= xi) for all the other measurement possibilities. Thus, when
X is observed to equal xo, then STL(p, X) = logpo + ∑N

i=1 log(1 − pi) − log(1 − po), where po =

P(X = xo). This scoring rule provides a complete score of a pmv, complete in the sense that every
asserted component of this pmv is involved in determining the score. No assertion component avoids
assessment. The observation of X = xo is relevant to each of them. When two alternative forecasting
distributions are asserted via the pmvs p and q, we are interested in an assessment of their quality
provided by four fundamental previsions: the two forecasters’ expectations of their total scores, each
for one’s own score and for the score to be achieved by the other:

Ep[STL(p, X)] = ∑N
i=1 pi log(pi) + ∑N

i=1(1− pi) log(1− pi) = −[H(p) + J(p)] , and

Ep[STL(q, X)] = ∑N
i=1 pi log(qi) + ∑N

i=1(1− pi) log(1− qi) = −[CH(p‖q) + CJ(p‖q)] ,

Eq[STL(q, X)] = ∑N
i=1 qi log(qi) + ∑N

i=1(1− qi) log(1− qi) = −[H(q) + J(q)] , and

Eq[STL(p, X)] = ∑N
i=1 qi log(pi) + ∑N

i=1(1− qi) log(1− pi) = −[CH(q‖p) + CJ(q‖p)] .

2.7. The Isomorphism of the Total Kullback Complex with Four Fundamental Previsions

Each of the four components of a total Kullback complex is a different linear combination of the
various entropies, extropies, cross entropies and cross extropies that constitute these four fundamental
previsions. These combinations happen to be ordered in such a way that the two four-dimensional
vector functions are isomorphic, related by the linear equations

D(p‖q) +D c(p‖q)
D(p‖q) + Dc(p‖q)
∆(p‖q) + ∆c(p‖q)

CH(p‖q) + CJ(p‖q)

 =


1 −1 1 −1
1 −1 0 0
1 0 0 −1
0 −1 0 −1

×


Ep[S(X, p)]
Ep[S(X, q)]
Eq[S(X, q)]
Eq[S(X, p)]

 .

The inverse transformation is
Ep[S(X, p)]
Ep[S(X, q)]
Eq[S(X, q)]
Eq[S(X, p)]

 =


0 0.5 0.5 −0.5
0 −0.5 0.5 −0.5
1 −0.5 −0.5 −0.5
0 0.5 −0.5 −0.5

×


D(p‖q) +D c(p‖q)
D(p‖q) + Dc(p‖q)
∆(p‖q) + ∆c(p‖q)

CH(p‖q) + CJ(p‖q)

 .

Each of the three directed distance function pairs composing the total Kullback complex measures
a distinct information source for understanding the full content of Kullback’s symmetric distance.
The symmetric distance measure is incomplete on its own: it needs to be supplemented by three
more components if it is to represent the information content of the pmv assertions p and q. On its
own, the symmetric distance measure confounds distinct information characteristics in the summed
cross-entropies/extropies less the summed own-entropies/extropies of the two distributions. The three
companion generating measures in the complex allow the dissection of this amalgam in a way that



Entropy 2018, 20, 593 8 of 11

illuminates the contributions of each forecasting distribution to its composition. The linear relation of
the complex to the four fundamental previsions exposes the meaningful content of the dual measure.

2.8. Pareto Optimal Exchange of Achieved Proper Scores

Long honoured empirical scoring of comparative forecast distributions on the basis of computed
proper scores suffers from a challenging puzzle. We can resolve it in a novel way. For purposes of
discussion here, we shall consider again the context provided by the Total Log scoring rule, supposing
the forecaster p asserts a pmv p for the observable X, while forecaster q asserts q. While the language of
“forecasting” may suggest weather forecasts or forecasts of economic indicators, the sense of the theory
is applicable to any type of unknown measurement whatever. For examples, the theory of quantum
mechanics specifies probabilistic forecasts of the experimental polarization behaviour (reflection or
absorption) of a photon when engaging a polarizing material at a various angles; and the theory
of genetics specifies probabilistic forecasts regarding the corpulent status of a living organism that
embodies a particular genetic code.

No assertion of a probabilistic forecasting distribution can be considered to be “wrong”. For when
one asserts a probability distribution over possible measurement values of a quantity, one is merely
expressing one’s uncertain opinions in a precise prescribed fashion. There is nothing wrong about
being uncertain. Nonetheless, it is useful for many reasons to gauge the quality of a forecaster’s
probability assertions in terms of the quantity actually observed.

A proper scoring function is designed both to promote honesty and accuracy in the assessment of
one’s personal probability distribution, and also to allow an evaluation of the quality of the forecast in
light of the observation that is eventually made. The scoring function for the pmv p on the basis of
the observation of X is denoted by S(p, X). The person p who asserts p is uncertain both about the
value of X itself and also about the score that will be obtained when X is observed. The scoring rule is
said to be proper if p’s expected value of the score to be awarded to p exceeds p’s expectation of the
score to be awarded to any other pmv. There can be no gain expected by strategically proffering as
one’s own a pmv different from the probabilities to which one actually subscribes. There are many
functions that qualify as proper scoring functions. Each one of them is associated with a different
manner of utility valuation for experiencing the various possible values of X while assessing their
probabilities as p. The total logarithmic score which we have been entertaining heretofore is one of
them that has many desirable properties. The enigma we shall now address would pertain to any
of them, however. It pertains to the use of such a scoring rule in comparing the quality of different
forecasting distributions. How should we compare the relative qualities of different probabilistic
forecasts on the basis of accumulating proper scores of their pronouncements regarding a sequence of
data observations?

In current applications, the routine award of the score S(p, X) to forecaster p for comparison
with an award of S(q, X) to forecaster q begs an interesting question. The assertion of p, for example,
implies an indifference to a Net Gain score characterised by NG(p, X) ≡ S(p, X) − Ep[S(p, X)].
Clearly Ep[NG(p, X)] = 0. From p’s point of view, it would be an arbitrary determination to be
awarded S(p, X) or to be awarded Ep[S(p, X)] for comparison with an award to forecaster q, for both
of these are valued identically by p. The same consideration would apply to forecaster q who would
regard an award of S(q, X) as opposed to Eq[S(q, X)] as arbitrary, for q assesses each of these with the
same expectation. Should these two forecasters trust a comparison of their expertise on the basis of
their accumulated proper score values?

Our answer is “No!”. The novel resolution we propose to this enigma arises from considering
each of the forecasters’ expectations of the scores to be achieved by the other, for, in contrast, forecaster
p does not assert an expectation of the Net Gain score to be achieved by q as equal to 0, but rather some
number either greater or smaller: Ep[NG(q, X)] 6= 0. Thus, p would be happy to trade the value of
NG(p, X) with q in return for NG(q, X), either its positive or negative value according to the sign of
Ep[NG(q, X)], should such an exchange be on offer. As is the case, forecaster q would also be eager to
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offer NG(q, X) to p in return for NG(p, X) (again either its positive or negative value, appropriately).
Both parties would be happy to make such an exchange of their Net Gain scores, as both of them
expect to make a positive gain from such a trade. In economic lore, such an exchange between two
parties is said to be a “Pareto optimal exchange”. In other types of exchanges, either or both of the
traders may assess their utilities as diminished by a trade. This Pareto exchange would allow a
comparative evaluation of the quality of the two forecasting distributions that both p and q would be
happy to engage. Rather than accumulating the values of their own raw proper scores on the basis of
the observation sequence, we have identified that the appropriate accumulation for each is the net
gain that is achieved by the other! Neither of them would consider there to be anything arbitrary
about it. A final qualification is that a scaling of the two sides of the exchange could ensure that both
forecasters would assess the net gain offered with the same variance as the net gain received in return.
Details appear in (Section 3, [2]).

We have not yet completed the analysis of a full application. However, we can provide here an
alluring glimpse of a partial graphical result in Figure 4. This displays how different an assessment
of two sequential forecast densities can be when based upon their accumulating direct proper scores
and when based upon their Pareto exchanged scores. Details of the data and the theoretical scientific
issues involved must await a complete report. On the left side of the figure are portrayed the simple
accumulating logarithmic scores of two sequential forecasting densities over a data sequence of some
8000 observations. The one labeled Forecast f (xt+1|xt) is a mixture-Gaussian distribution sequence.
The one labeled Forecast g(xt+1|xt) is a mixture-Exponential-power distribution, designed to exhibit
fat tails relative to the mixture-Gaussian. The fairly regular gain observed in the accumulating score of
the forecasting scheme g(.|.) relative to f (.|.) seems to support a conclusion that g(.|.) provides a more
accurately informative forecast. In contrast, on the right side, the comparative accumulating Pareto
exchanged log scores for the same two sequences of forecasting distributions appear. The results are
strikingly different. Not only do these accumulated exchange scores favour the mixture f (xt+1|xt)

over the fat-tailed density g(xt+1|xt) by the end of the data series, but the sequential scoring identifies
regular changes of fortune in the assessments of the two forecasting schemes throughout the study
period. This is the full extent of results we are able to display at the moment, but it motivates us to
conclude at least that examination of the Pareto exchange of scores is meritorious.
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Figure 4. Comparative results of accumulating Direct Scores and Pareto exchanged Scores for the same
two forecasting distributions and data sequence.
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3. Conclusions

This presentation has been designed to promote recognition of the duality of a paired measure
of probability distributions, entropy/extropy. Publications cited herein provide extensive discussion,
motivation, and proofs of the results we have mentioned. It is hoped that readers involved in the many
applications of entropy to the assessment of uncertainty may be intrigued to consider the relevance of
extropy to their deliberations. One such application to methods of automatic speech recognition has
already appeared in [18]. Several implications for the analysis of order statistics have been discussed
in [19–21].
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