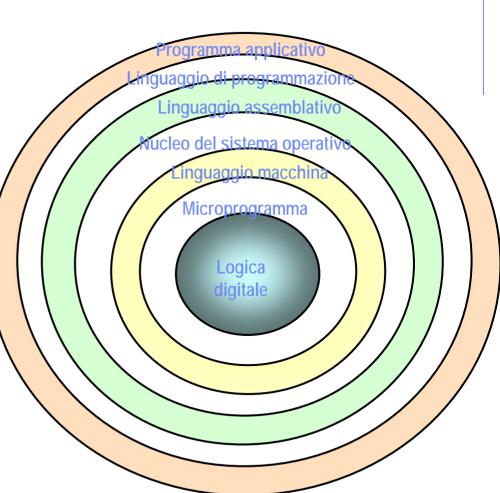


Università degli Studi di Palermo Dipartimento di Ingegneria Informatica

C.I. 1 – "Informatica ed Elementi di Statistica" 2 c.f.u.

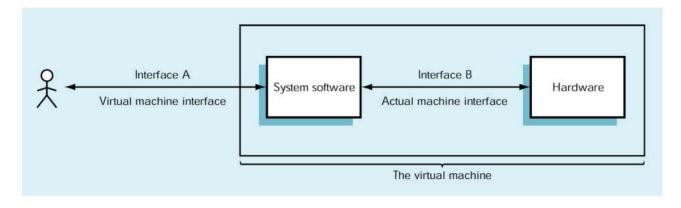
Anno Accademico 2009/2010

Docente: ing. Salvatore Sorce


II Sistema Operativo

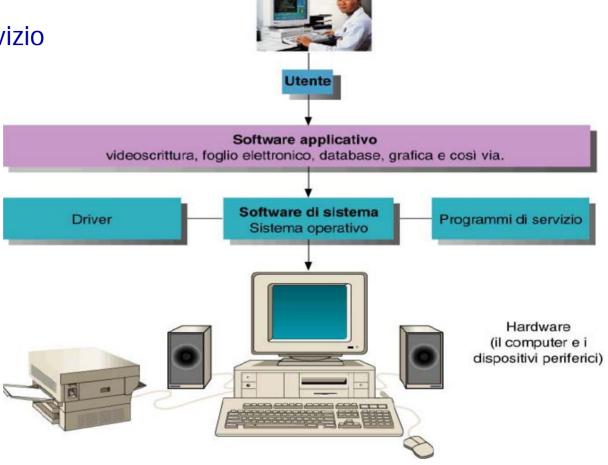
Facoltà di Medicina e Chirurgia

Gerarchia del software


- Sei livelli di astrazione separano l'utente dall'hardware sottostante
- Microprogramma
- Linguaggio macchina
- Sistema operativo
- Linguaggio assemblativo
- Linguaggio di programmazione
- Programma applicativo

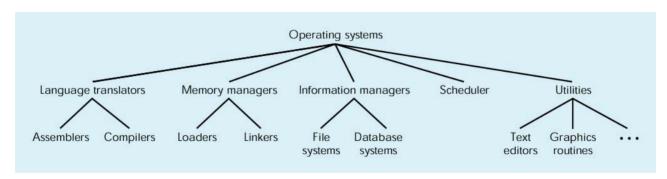
Software di sistema

- Software di sistema
 - Raccolta di programmi per la gestione delle risorse di un calcolatore e della loro accessibilità
 - Agisce da intermediario tra utente e hardware
- Macchina virtuale
 - Insieme dei servizi e delle risorse generate dal sw di sistema
- ➤ Il software di sistema è l'analogo del cruscotto per una macchina di Von Neumann



Software di sistema

- Sistemi operativi
 - Windows, DOS, Unix/Linux, Mac OS
- Driver
- Programmi di servizio


Interfaccia tra hardware e software

- Nascondere all'utente i dettagli non necessari dell'hardware
- Presentare le informazioni
- Consentire all'utente un facile accesso alle risorse macchina disponibili
- Prevenire danni accidentali o intenzionali ad hardware, programmi e/o dati

Classificazione del software di sistema

- > Sistema operativo
 - Programma che supervisiona tutte le operazioni di un calcolatore
 - Comunica con l'ambiente esterno, gestisce l'attivazione di periferiche e altre componenti sw
- Classi di programmi di sistema
 - Traduttori
 - Gestori della memoria
 - File system
 - Schedulatore
 - Programmi di utilità

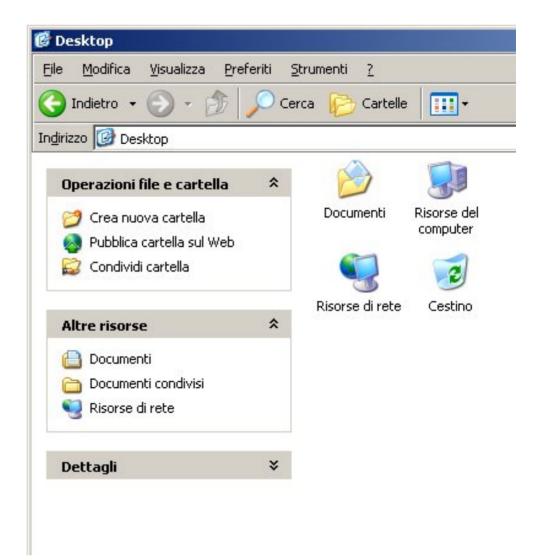
Classificazione del software di sistema

- Traduttori
 - Assemblatori, compilatori ed interpreti
 - Consentono di descrivere algoritmi in un linguaggio orientato all'utente
- Gestori della memoria
 - Riservano spazio in memoria per dati e programmi
 - Caricano in memoria i programmi prima dell'esecuzione
- File system
 - Gestiscono la memorizzazione e il recupero di informazioni sui dispositivi di memoria di massa
- Schedulatore
 - Gestisce l'elenco con priorità dei programmi pronti per l'esecuzione
 - Seleziona il programma prossimo da eseguire (prioritarizzazione)
- > Programmi di utilità
 - Librerie di programmi che forniscono servizi sia all'utente che ad altri programmi

Interfacce utenti

- Implementano i comandi del SO
- Interfacce testuali
 - Uso di un linguaggio di comandi immessi come testo da tastiera

```
Microsoft Windows XP [Versione 5.1.2600]


D:\>
```


Interfacce utenti

- Interfacce grafiche (GUI)
 - Uso di una metafora (desktop)
 - Ai comandi testuali sono sostituiti icone, menu, finestre e le azioni che possono essere eseguite su di essi

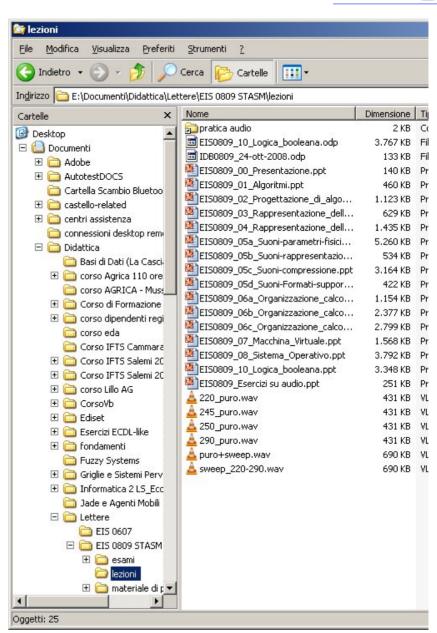
- Esistono diversi tipi di supporti per la memorizzazione permanente delle informazioni: dischi magnetici (floppy disk, hard disk), dischi ottici (cd), nastri magnetici
- ➤ Un *file* è un insieme di byte che rappresentano una certa entità logica (testo, immagine, suono, programma, etc), organizzati secondo un certo formato, memorizzati su supporti di memoria secondaria.

- > Il **File System** è quella parte del S.O. che si occupa di gestire e strutturare le informazioni memorizzate su supporti permanenti
- ➤ Il sistema operativo deve fornire una visione **astratta** (semplificata) dei file su disco e l'utente deve avere la possibilità di:
 - identificare ogni file con un nome (filename) astraendo completamente dalla sua memorizzazione fisica (blocchi su disco rigido e localizzazione dei blocchi)
 - avere un insieme di operazioni per lavorare sui file: creare o rimuovere un file, copiarlo, cambiargli nome, inserire informazioni in un file
 - effettuare l'accesso alle informazioni mediante operazioni ad alto livello, che non tengono conto del tipo di memorizzazione (accedere ad un file memorizzato sul disco rigido oppure su un CD-ROM allo stesso modo)

(segue ...)

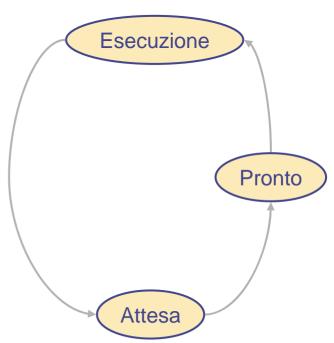
(... segue)

- avere la possibilità di strutturare un insieme di file, organizzandoli in sottoinsiemi secondo le loro caratteristiche, per avere una visione ordinata e strutturata delle informazioni sul disco
- in un sistema multi-utente, inoltre l'utente deve avere meccanismi per proteggere i propri file, ossia per impedire ad altri di leggerli, scriverli o cancellarli
- i moderni sistemi operativi forniscono supporto per queste attività



- ➤ Il file system deve tenere traccia di tutte le caratteristiche di file e sottoinsiemi di file (il nome, la dimensione, quali sono gli indirizzi dei blocchi sui quali sono memorizzati, etc.)
- Dove sono memorizzate queste informazioni?
- Una parte del disco rigido (un sottoinsieme di tracce) è riservato al sistema operativo per questi (ed altri) scopi
- Esempio: FAT (File Allocation Table)
 - Contiene le corrispondenze <nome file> → <blocco di inizio>
 - Settori concatenati: <1° blocco file> → <2° blocco file> → ...
- N.B. Anche una parte della memoria centrale (RAM) è riservata alla memorizzazione del sistema operativo

- Presentazione dei file all'utente
 - Directory (cartelle)
 - Organizzazione gerarchica ad albero
 - Nomi dei files
 - Percorsi



- Esiste una notevole differenza nella velocità di esecuzione di operazioni tra processore e unità di I/O
- Il SO deve assicurare che il processore rimanga inutilizzato il minor tempo possibile
- Tanti programmi in esecuzione, ma un solo processore: quasi parallelismo
- Il SO mantiene una coda di programmi in esecuzione dei quali solo uno è attivo per ogni istante di tempo

- > stati di un programma
 - In esecuzione programma attualmente in esecuzione
 - Pronto
 programmi in memoria e pronti per
 l'esecuzione, ordinati per priorità
 - Attesa
 programmi che non possono essere
 eseguiti perché in attesa del
 completamento di una operazione di I/O

- Quattro programmi, A, B, C, D
 - A in esecuzione
 - B, C, D pronti per passare in esecuzione

Attesa	Pronto	Esecuzione
	В	Α
	С	
	D	

- Quattro programmi, A, B, C, D
 - A in esecuzione
 - B, C, D pronti per passare in esecuzione
- > A inizia una operazione di I/O
 - A passa in attesa e B va in esecuzione

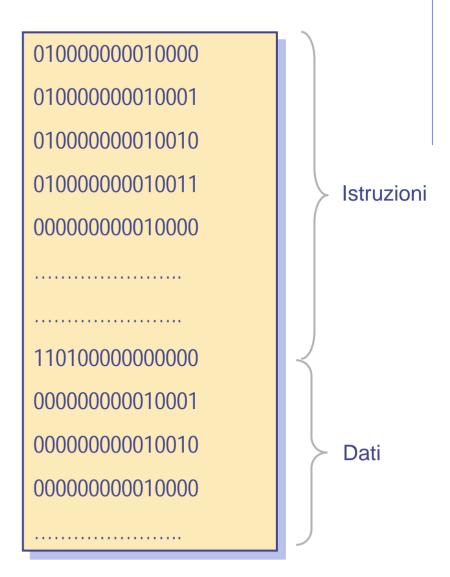
Attesa	Pronto	Esecuzione
Α	С	В
	D	
_		

- Quattro programmi, A, B, C, D
 - A in esecuzione
 - B, C, D pronti per passare in esecuzione
- > A inizia una operazione di I/O
 - A passa in attesa e B va in esecuzione
- B inizia una operazione di I/O
 - B passa in attesa e C va in esecuzione

Attesa	Pronto	Esecuzione
Α	D	С
В		

- Quattro programmi, A, B, C, D
 - A in esecuzione
 - B, C, D pronti per passare in esecuzione
- A inizia una operazione di I/O
 - A passa in attesa e B va in esecuzione
- B inizia una operazione di I/O
 - B passa in attesa e C va in esecuzione
- > A completa l'operazione
 - Passa in pronto. Se ha priorità superiore a D, potrebbe scavalcarlo

Attesa	Pronto	Esecuzione
В	D	С
	Α	
_		


- Quattro programmi, A, B, C, D
 - A in esecuzione
 - B, C, D pronti per passare in esecuzione
- A inizia una operazione di I/O
 - A passa in attesa e B va in esecuzione
- B inizia una operazione di I/O
 - B passa in attesa e C va in esecuzione
- > A completa l'operazione
 - Passa in pronto. Se ha priorità superiore a D, potrebbe scavalcarlo

Attesa	Pronto	Esecuzione
В	/ A 📉	С
	(D /	

II programma

- Il programma è costituito da una sequenza di istruzioni caricate nella memoria centrale sotto forma di sequenze di bit
- Esecuzione di un'istruzione:
 - Fase di acquisizione (Fetch)
 - Interpretazione (Decode)
 - Esecuzione (Execute)

Linguaggio macchina

- > Linguaggio macchina
 - Formato binario. Le istruzioni sono indistinguibili dai dati su cui operano
 - Non consente l'uso di etichette o simboli per indicare locazioni di memoria o istruzioni adibite a compiti specifici
 - Difficile da modificare. Gli indirizzi delle istruzioni si susseguono sequenzialmente a partire dalla prima.
 - Difficile creare dati. I dati possono solo essere rappresentati nel loro formato interno
- ➤ I calcolatori della prima generazione potevano essere programmati soltanto in linguaggio macchina!

Linguaggio assembler

- Linguaggio assembler
 - Orientato sia alla macchina che all'utente
 - Linguaggio di seconda generazione, contrapposto al linguaggio macchina o di prima generazione
- Le istruzioni sono indicate con etichette comprensibili che vengono tradotte nel codice binario corrispondente dal traduttore
- Codici mnemonici
 - ADD addizione
 - SUB sottrazione
 - LOAD, STORE carica da memoria, memorizza in memoria
 - JUMP salta ad istruzione successiva
- Rapporto 1:1 con il linguaggio macchina
 - Ogni istruzione in linguaggio assembler è tradotta esattamente nella sua corrispondente in linguaggio macchina
 - Specifico per una particolare classe di microprocessori

Caratteristiche del linguaggio assembler

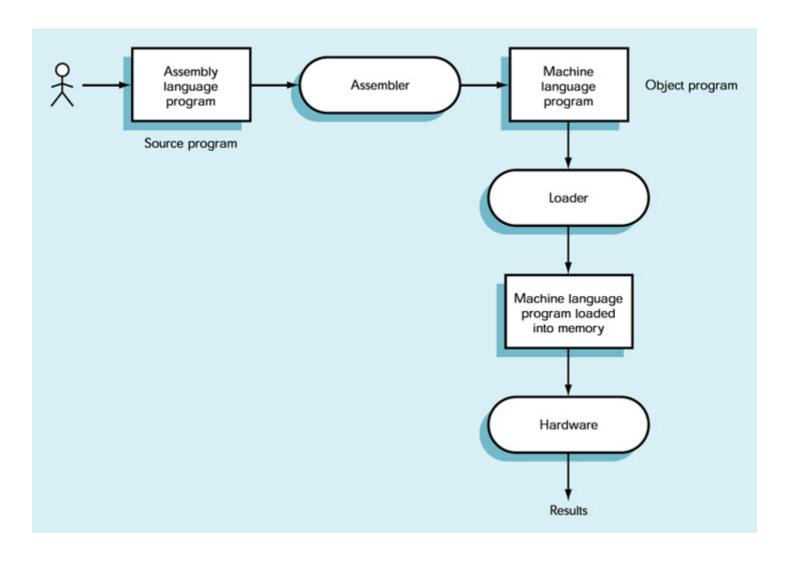
- Vantaggi rispetto al linguaggio macchina
 - Uso di codici operativi simbolici (mnemonici) anziché numerici
 - Uso di indirizzi di memoria simbolici anziché numerici
 - Pseudo-operazioni che forniscono servizi all'utente, come la generazione di dati
- Formato tipico di una istruzione etichetta: mnemonico campo_indirizzo -- commento
- Caratteristiche aggiuntive
 - Chiarezza dei programmi
 - Manutenibilità

Esempio di file oggetto

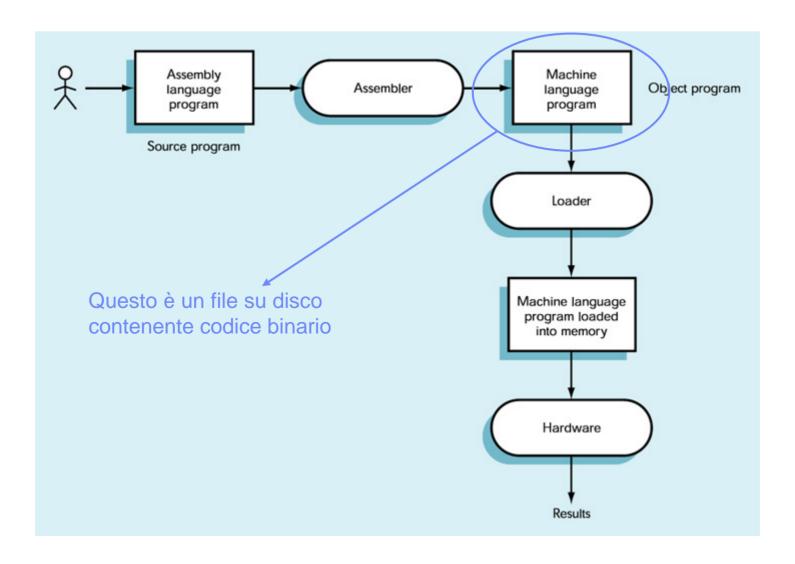
Indirizzo	Opcode data	Significato
0000	1101 000000001001	IN X
0001	1101 000000001010	IN Y
0010	0000 000000001001	LOAD X
0011	0111 000000001010	COMPARE Y
0100	1001 000000000111	JUMPGT DONE
0101	1110 000000001001	OUT X
0110	1000 000000000000	JUMP LOOP
0111	1110 000000001010	OUT Y
1000	1111 0000000000000	HALT
1001	0000 0000000000000	CONST 0
1010	0000 000000000000	CONST Ø

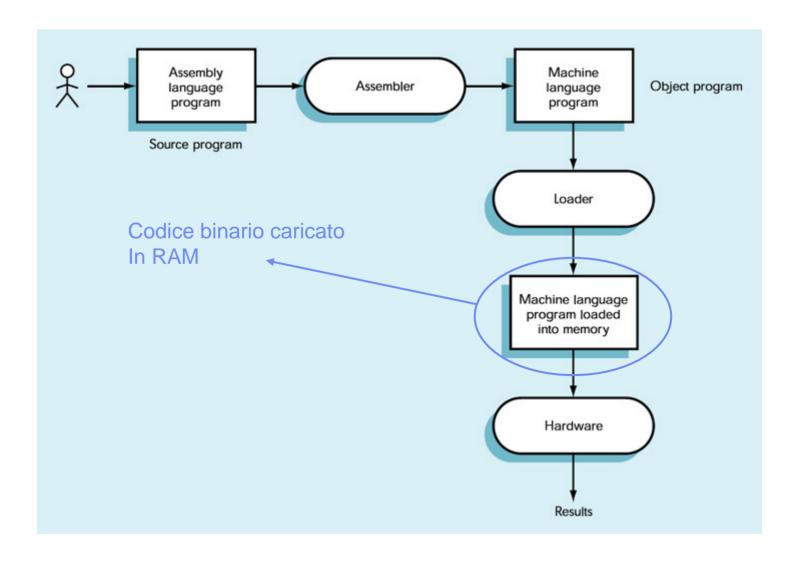
Linguaggio macchina

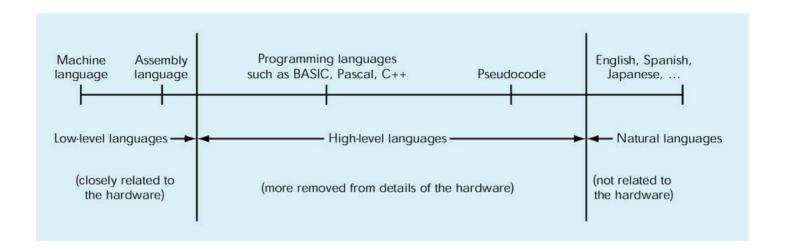
Linguaggio assembler


Applicazione programmi di sistema

- Scrivere un programma, eseguirlo e salvare i risultati
 - Editor di testi
 Scrittura programma in linguaggio ad alto livello
 - 2. File system
 Memorizzare il programma come file di testo su disco fisso
 - Traduttore
 Trasformare il programma dal linguaggio ad alto livello in linguaggio macchina
 - Caricatore (loader)
 Riserva spazio in memoria per il programma, e caricare istruzioni per l'esecuzione
 - Schedulatore Esegue il programma ogni qualvolta è il suo turno
 - File system Memorizza i dati generati
 - 7. Debugger In caso di errori, esegue il programma passo-passo per tracciare l'errore


Traduzione/caricamento/esecuzione


Traduzione/caricamento/esecuzione


Traduzione/caricamento/esecuzione

Evoluzione dei linguaggi di programmazione

- Nascita dei linguaggi ad alto livello (BASIC, Pascal, C++, Java)
 - Orientati all'utente (più vicini al linguaggio naturale)
 - Indipendenti dalla particolare macchina
 - Rapporto 1:N con il linguaggio macchina: una istruzione ad alto livello richiede tipicamente N istruzioni in linguaggio macchina

