

Università degli Studi di Palermo

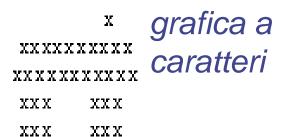
Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali

Anno Accademico 2012/2013

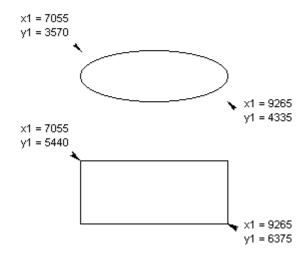
Docente: ing. Salvatore Sorce

Immagini digitali: concetti di base


L'informazione grafica

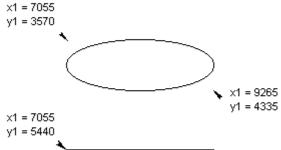
x grafica a gravica a caratteri

XXX XXX



L'informazione grafica

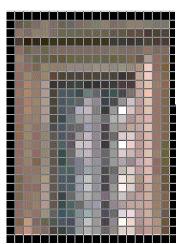
L'informazione grafica


x grafica a xxxxxxxxxx caratteri

xxx xxx

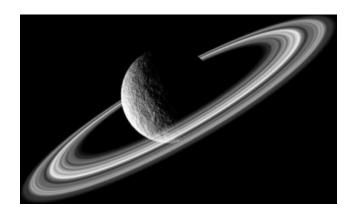
XXX XXX

grafica x1 = 7055 y1 = 1530 vettoriale



x1 = 9265y1 = 6375

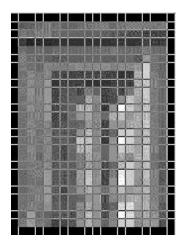
Due grandi categorie

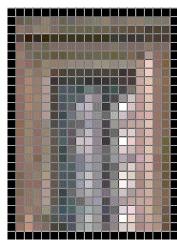

- Immagini reali: acquisite da una scena reale mediante telecamera, scanner, fotocamera, ...
- Immagini artificiali o di sintesi: generate all'interno del calcolatore
 - Non necessariamente oggetti reali
 - Possono simulare scene reali
- Immagini miste: ottenute da combinazioni tra componenti reali e sintetiche



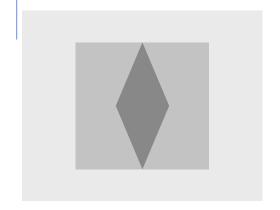
Esempi

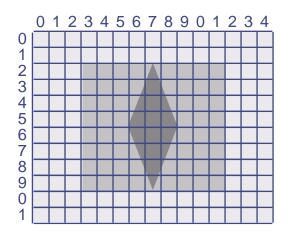
Facoltà di Lettere e Filosofia

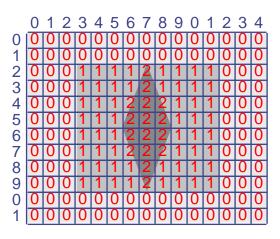



I "punti" dell'immagine

Ogni punto dell'immagine è caratterizzato da intensità luminosa e "colore"


Digitalizzazione


- > L'immagine deve essere tradotta in un insieme di numeri
- > Due fasi
 - Campionamento spaziale
 - Quantizzazione



Esempio di digitalizzazione

Quantizzazione 3 valori {0,1,2}



Immagine originale

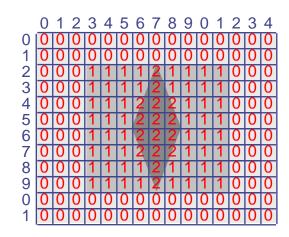


Immagine quantizzata

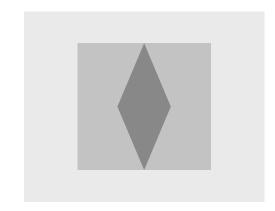


Immagine originale

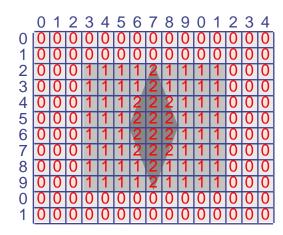


Immagine quantizzata

Bitmap

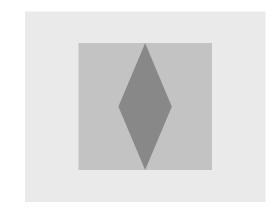


Immagine originale

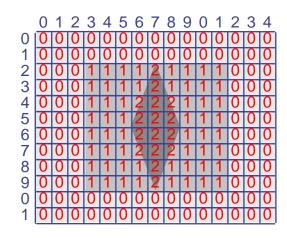


Immagine quantizzata

Bitmap

(In realtà: 00 00 00 00 00 00 ... **01 01 01 01 10 01** 01 01 01 00 00 ...)



Immagine originale

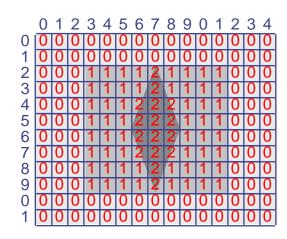
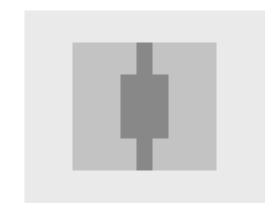
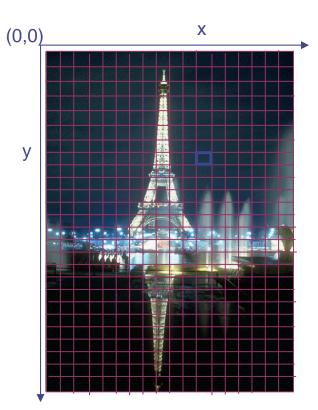



Immagine quantizzata

Bitmap

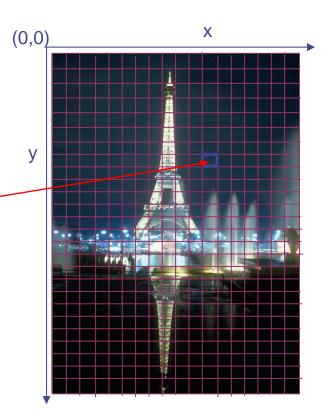
(In realtà: 00 00 00 00 00 00 ... **01 01 01 01 10 01** 01 01 01 00 00 ...)

Rendering (15 x 12)



Campionamento spaziale

- Suddivisione della superficie dell'immagine in un determinato numero di rettangoli
- > Pixel = picture element
- Pixel (x,y)
 - x = numero colonna (orizzontale)
 - y = numero linea (verticale)



Campionamento spaziale

- Suddivisione della superficie dell'immagine in un determinato numero di rettangoli
- > Pixel = picture element
- Pixel (x,y)
 - x = numero colonna (orizzontale)
 - y = numero linea (verticale)

P(11,7)

Aspect ratio di un'immagine

1:1 CCTV 1,33 : 1 (4:3)

NTSC (3:2) PAL (5:4) 1,78 : 1 (16:9) HDTV 2,35 : 1 Panoramico (DVD)

Pixel aspect ratio

- Rapporto larghezza/altezza del pixel
 - pixel rettangolari su alcuni dispositivi
 - pixel 1:1 per elaborazione
- > Con differenti PAR, immagini distorte

Dimensione/risoluzione delle immagini

- Altezza e larghezza di un'immagine bitmap sono espresse in numero di pixel
- Dimensioni sullo schermo =
 - dimensioni in pixel dell'immagine +
 - grandezza del monitor +
 - impostazione del monitor

Dimensione delle immagini: esempio

- ➤ immagine 800 x 600
- > monitor da 15 pollici
- ➤ impostazione 800 x 600

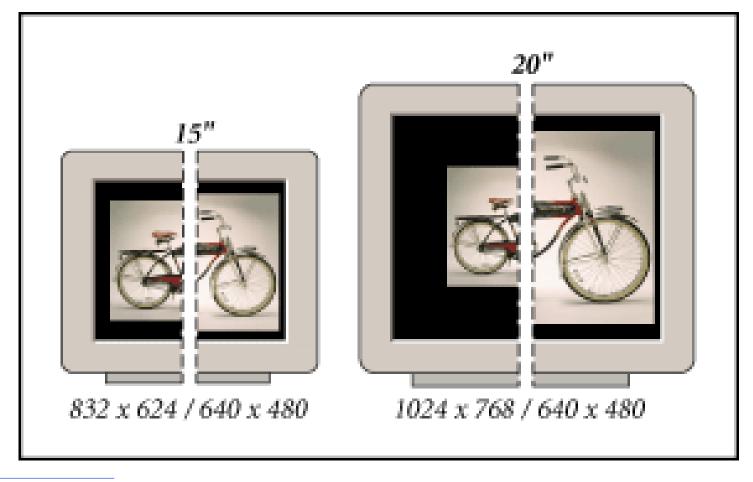
riempie tutto lo schermo

Dimensione delle immagini: esempio

- immagine 800 x 600
- > monitor 20 pollici
- impostazione 800 x 600
- riempie tutto lo schermo
 - singoli pixel dell'immagine più grandi
 - ogni pixel dell'immagine "copre" più punti del monitor (se il monitor ha una risoluzione nativa maggiore)



Dimensione delle immagini: esempio


- immagine 800x600
- > monitor 20 pollici
- > impostazione 1024 x 768
- Occupa una parte dello schermo
 - singoli pixel dell'immagine più piccoli
 - mappatura 1:1 tra pixel e punti (se il monitor ha 1024 x 768 punti)

Esempio: immagine 620 x 400

La risoluzione (?)

- > ... di scansione
- > ... ottica
- > ... delle immagini
- > ... del monitor
- > ... di output finale
- > ... della stampante
- **>** ...

Risoluzione: due misure

- dpi = dots per inch (punti per pollice)
 - per le periferiche (scanner, stampanti, ...)
 - Esempio: risoluzione di scansione
- ppi = pixel per inch (pixel per pollice)
 - misura riferita all'immagine digitale
 - Esempio: risoluzione di immagine pronta per una periferica

Risoluzione di input

- Densità delle info catturate nella digitalizzazione di un'immagine
- > Scanner a letto piano
 - = risoluzione di scansione
- > Fotocamera digitale
 - = numero totale di pixel sulla griglia CCD (es: 8 MegaPixel)

Risoluzione di output

- Densità di info richieste per l'output finale (su più dispositivi di stampa o display)
- > Dipende da ...
 - risoluzione stampante (frequenza di retinatura)
 - risoluzione del monitor

Dimensioni e risoluzione

- ➤ Le *dimensioni in pixel* determinano il livello di dettaglio (es.: 640 x 480 pixel)
- ➤ La *risoluzione* determina la superficie su cui vengono impressi tali pixel (es.: 72 ppi)

Confronto tra due risoluzioni di input

300 ppi

72 ppi

Risoluzione del monitor

- pixel (o punti) visualizzati per ciascuna unità di lunghezza del monitor (unità di misura dpi)
- dipende da grandezza del monitor (in pollici) e dalle impostazioni (es. 1024 x 768)
- > Risoluzioni tipiche: 72 dpi, 96 dpi

Dimensione immagini sul monitor

- Pixel dell'immagine convertiti in pixel del monitor
- Se risoluzione immagine > risoluzione monitor, immagine monitor > immagine stampata
- > Esempio
 - immagine 1x1 pollici, risol. 144 ppi, monitor 72 dpi
 - immagine occupa 2 x 2 pollici sullo schermo
 - immagine occupa 1 x 1 pollici sulla stampa

Risoluzione della stampante

- Il numero di dpi di inchiostro prodotti dalla stampante
- > Tipiche risoluzioni
 - stampanti a getto di inchiostro:
 - supportano risoluzioni di 300 o 600 dpi
 - garantiscono stampa di qualità per risoluzione max 150 ppi
 - stampanti laser: 300 o 600 dpi
 - fotounità: 1200 dpi o superiore (2400 dpi)

Confronto tra dimensioni a parità di risoluzione

160x105 vs 320x210

Facoltà di Lettere e Filosofia

80x52 vs 320x210

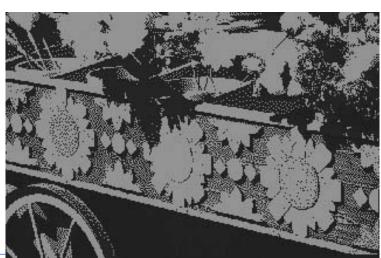
Facoltà di Lettere e Filosofia

40x26 vs 320x210

Quantizzazione

- Occorre assegnare ai pixel valori finiti di intensità luminosa
- ➤ I valori dipendono dal numero di bit: con N bit, 2^N valori

Gamma dinamica (livelli di grigio)



Esempio

8 bit

4 bit

2 bit

Facoltà di Lettere e Filosofia

Errore di quantizzazione

- > Quanto il valore quantizzato differisce dall'intensità reale
- ➤ E' mediamente pari alla metà della regione di quantizzazione

4 bit (16 livelli di grigio)

8 bit (256 livelli di grigio)

Occupazione di memoria di un'immagine

- Stampa 10x15 cm
- > Risoluzione 300 dpi
- > Profondità colore 24 bit

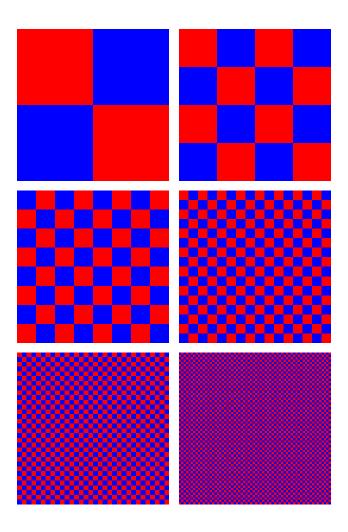
Occupazione di memoria di un'immagine

- Stampa 10x15 cm
- Risoluzione 300 dpi
- Profondità colore 24 bit
- \rightarrow 10 x 15 cm = 3,94 x 5,91 inch
- > (300 x 3,94) x (300 x 5,91) = 1182 x 1773 punti
- \triangleright 2.095.686 pixel x 3 byte = 6.287.058 byte

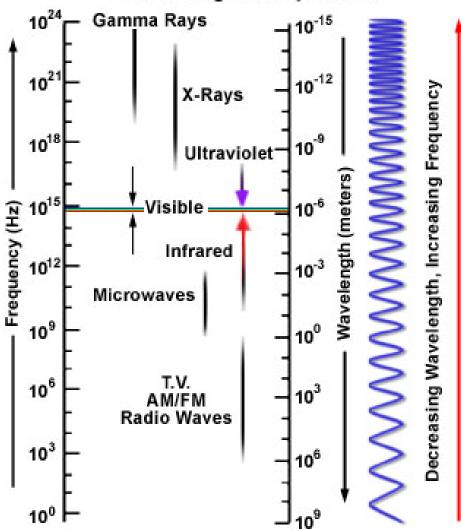
Palette, Tavolozza, Look-Up-Table

0	R_0	G_0	B_0
1	R ₁	G ₁	B ₁
2	R_2	G_2	B ₂
•••	•••	•••	•••
•••	•••	•••	•••
255	R ₂₅₅	G ₂₅₅	B ₂₅₅

Dithering

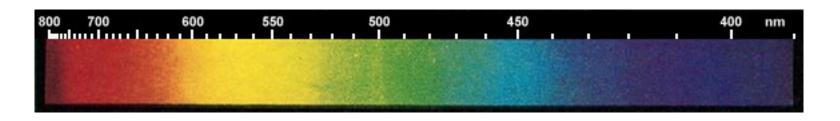


Dithering in rosso e blu



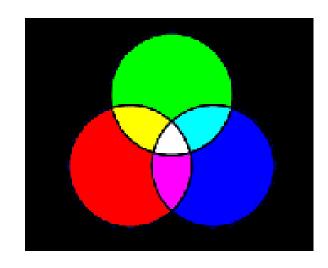
Lo spettro elettromagnetico

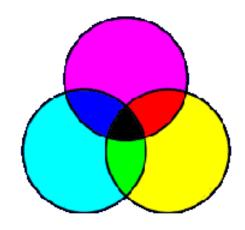
Electromagnetic Spectrum



Lo spettro della luce

- E' una piccola porzione della piccola porzione che arriva sulla Terra
- Lunghezze d'onda dello spettro visibile
 - da 380 nm (10⁻⁹ m), luce violetta
 - a 760 nm, luce rossa


- > Sotto i 380 nm, ultravioletti
- > Sopra i 760 nm, infrarosso
- > Fino a circa 1 mm le percepiamo come calore



Intuitivamente

- Molti colori si possono ottenere mescolando pochi colori di base
- > Si sommano luci, sintesi additiva
- > Si sommano pigmenti, sintesi sottrattiva

Colori complementari

Spazio di colore

- Variabili rappresentate su assi cartesiani (descrivono spazi geometrici)
- Due gruppi
 - Spazi relativi (device dependent)
 - Spazi assoluti (device independent)

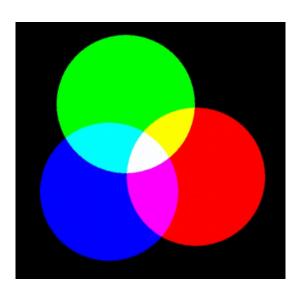
Spazi relativi

RGB

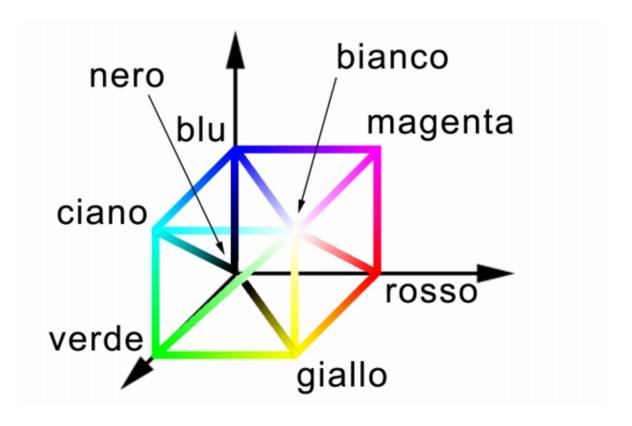
CMY

HS*

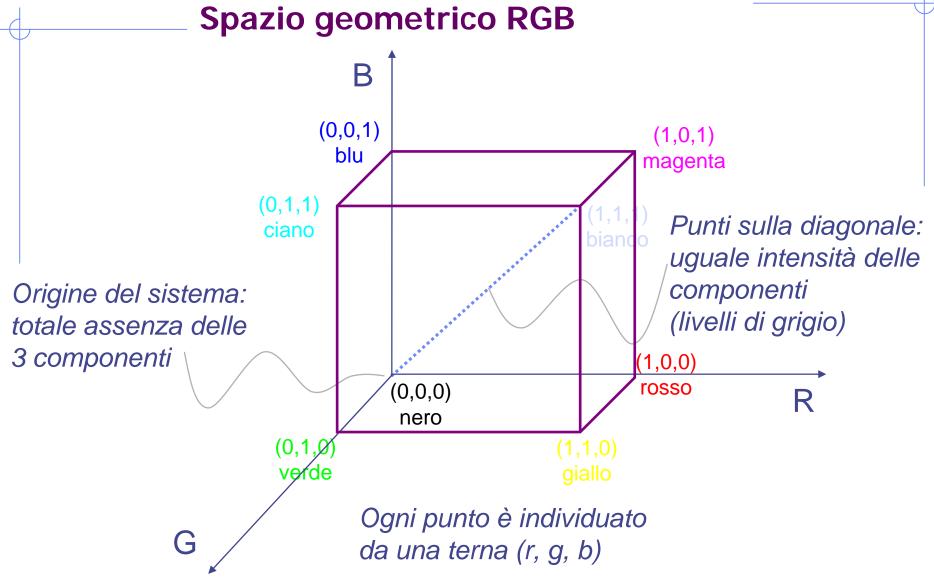
YUV, YIQ, YCbCr


Modelli additivi

- > I colori si creano aggiungendo colori al nero fino al bianco
- Gli ambienti dove viene utilizzato il colore additivo sono quelli ad emissione propria (monitor)


Spazio RGB

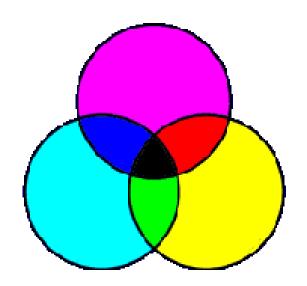
- Modello di tipo additivo: il contributo di ogni colore è sommato per formare il colore finale
- > Base di tre colori: Red, Green, Blue



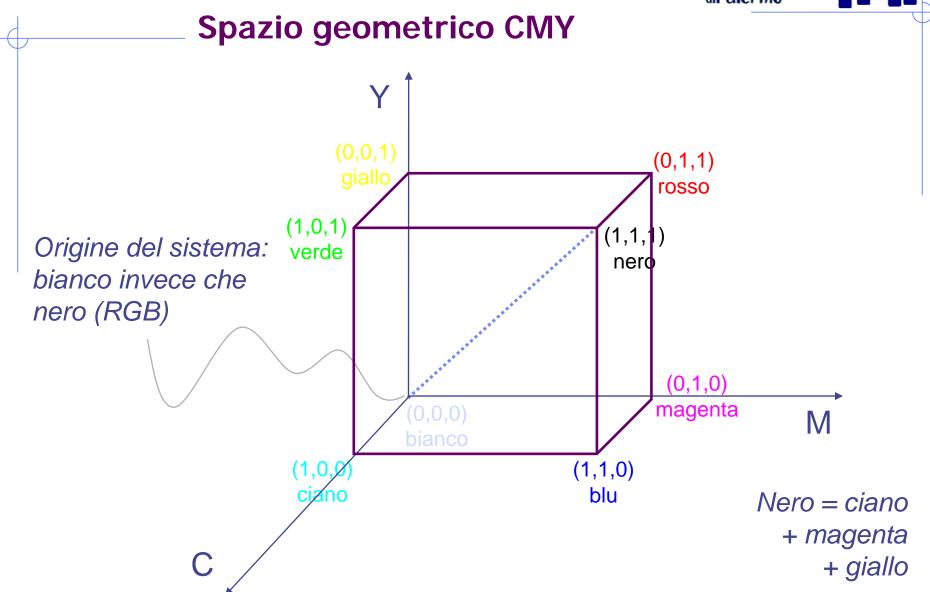
Spazio geometrico RGB

Spazio dei colori nelle immagini digitali

- > Non valori continui per le tre componenti, ma discreti
- \triangleright Esempio: un byte per componente (3 x 8 bit = 24 bit)
- Modalità TrueColor

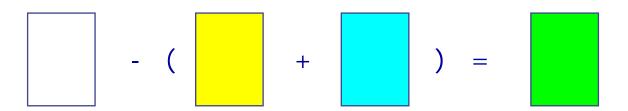

Modelli sottrattivi

- Colori primari sottratti al bianco per ottenere tutti i colori fino al nero
- Gli ambienti sottrattivi sono quelli riflettenti di natura (un'immagine a colori su carta)


Lo spazio CMY

- Modello duale del modello RGB
 - tipo sottrattivo: componenti sottrattive rispetto alla luce bianca
 - stampa (colore di base bianco foglio di carta)
- Ciano, magenta, giallo sono i colori complementari di rosso, verde e blu

Colori duali: ciano - rosso magenta - verde giallo - blu



La stampa

- ➢ Il colore di sfondo è rappresentato dal foglio di carta (in genere il bianco)
- Inchiostri dei vari colori sottraggono componenti alla luce riflessa (C sottrae R, M sottrae G, Y sottrae B)

Esempio: superficie bianca (R+G+B) con strati di colore C e Y assorbirà le componenti R e B lasciando che solo il G (verde) sia riflesso

Relazioni CMY - RGB

> Un vettore indica un certo colore

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} \qquad \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Si può passare da un sistema all'altro: il vettore unitario rappresenta il bianco in RGB

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix} \qquad \begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 255 \\ 255 \\ 255 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 255 \\ 255 \\ 255 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Viceversa (il vettore unitario rappresenta il nero in CMY)

$$\begin{bmatrix}
R \\
G \\
B
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} - \begin{bmatrix}
C \\
M \\
Y
\end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 255 \\ 255 \\ 255 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

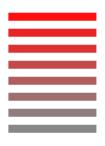
Problemi di RGB e CMY

- Differenza tra colori rappresentabili su monitor e stampante (ma anche tra due monitor differenti)
- ➤ Differenza sulle caratteristiche del supporto della stampa (carta diversa per assorbimento, tessitura, ruvidezza, ...)
- Come si sfuma un colore per passare a un altro?
 - esempio: bianco, celeste, azzurro, blu, blu intenso, nero
- Come si mettono in relazione i sistemi con le proprietà psicofisiche?

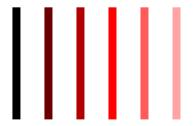
II Modello HSV/L/B

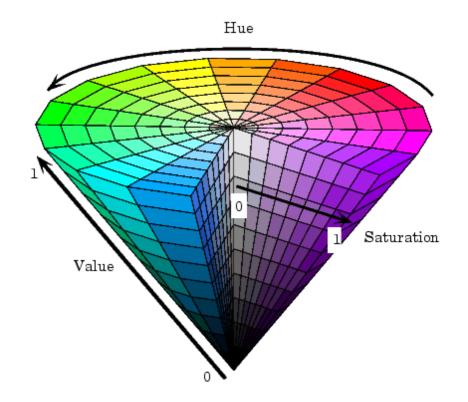
- Modello intuitivo/percettivo dei colori
- > Hue (colore o tinta)
- Saturation (saturazione): quantità di bianco contenuta in un colore
- Value / Luminance / Brightness: misura della luce emessa

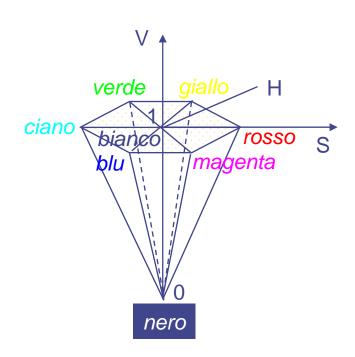
Tinta (hue)


- parametro discriminatore (dimensione) che permette di distinguere il "colore" del colore
- > scala di percezione (parte da e ritorna al rosso)

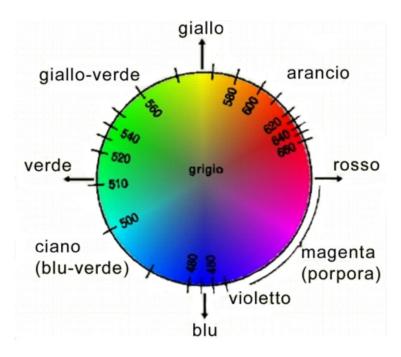
Saturazione (saturation)

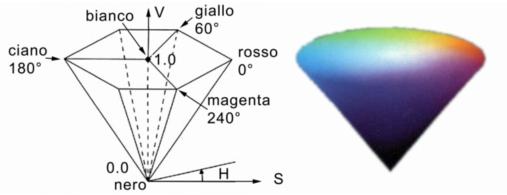

- scala di percezione che indica il grado di distanza di un colore dalla percezione acromatica con la medesima luminosità
- misura del grado di diluizione del colore con il bianco (% colore puro + luce bianca)
- > Esempi:
 - colore puro (rosso) saturato al 100%
 - aggiungendo bianco e nero, la saturazione decresce
 - luce acromatica saturata allo 0%


Luminosità (brightness)


- scala di percezione della somiglianza del colore ad uno di una serie di colori acromatici, livelli di grigio (da molto scuro a molto chiaro)
- luminosità (attributo dell'oggetto riflettente) VS brillantezza (attributo dell'illuminazione in cui viene visto l'oggetto)

II sistema HSV





II sistema HSV

Equivalenza tra RGB, CMY, HSV

Colore	RGB	CMY	HSV
Rosso	255,0,0	0,255,255	0,240,120
Giallo	255,255,0	0,0,255	40,240,120
Verde	0,255,0	255,255,255	80,240,120
Ciano	0,255,255	255,0,0	120,240,120
Blu	0,0,255	255,255,0	160,240,120
Magenta	255,0,255	0,255,0	200,240,120
Nero	0,0,0	255,255,255	160,0,0
Toni di grigio	63,63,63	191,191,191	160,0,59
	127,127,127	127,127,127	160,0,120
	191,191,191	63,63,63	160,0,180
Bianco	255,255,255	0,0,0	160,0,240

Spazi YUV, YIQ, YC_bC_r

- Standard nella trasmissione televisiva a colori
- Motivazione: mantenimento della compatibilità tra sistema a colori e ricevitori in B/N
- Separano info relative alla luminanza (Y) da info relative alla crominanza (U e V, I e Q, C_b e C_r)
- YUV per il sistema PAL, YIQ per il sistema NTSC, YC_bC_r digitale (JPEG con valori solo +)

Il linguaggio dei colori

- Forma di comunicazione particolare: a volte associazione di significati
- Ruolo fondamentale dei colori nella creazione di una videata: focalizzazione e evidenziazione
- Conviene non esagerare con l'utilizzo dei colori: un massimo di 5 per videata

Significati di massima

- Bianco
 - sintesi di tutte le radiazioni, rappresenta la luce
 - purezza fisica e spirituale
 - colore stimolante
- Nero
 - colore della notte, impurezza
 - ottimo per lo sfondo: permette di esaltare gli altri colori
- > Rosso
 - colore forte: passione, eccitazione, ...
 - ma anche pericolo, violenza, ...

Significati di massima

- Verde
 - colore natura, giovinezza, ...
 - colore riposante (posizione nello spettro)
 - permette di cogliere i particolari di un'immagine
- ➤ Blu
 - ricorda il cielo, l'aria, l'acqua, ...
 - colore rilassante
- ➤ Giallo
 - evoca primavera, spensieratezza ... collera, prudenza
 - interpretato rapidamente dall'occhio

Significati di massima

- Viola
 - lutto e malinconia ... ma anche maestosità
 - fisicamente: il colore con la massima energia
- Arancio
 - colore caldo, confortevole simbolo di intuizione
 - induce all'ottimismo