

Università degli Studi di Palermo

Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica

Informatica per la Storia dell'Arte

Anno Accademico 2014/2015

Docente: ing. Salvatore Sorce

Rappresentazione delle informazioni

Considerazioni sui bit

Sull'uso dell'e-mail...

- > **SUBJECT**: < testo significativo>
- > Testo chiaro e conciso
- ➤ Usare l'italiano *esteso* e grammaticalmente corretto
- > Inserire i dati utili per ottenere l'informazione desiderata
- > Firmare sempre il messaggio
 - In mancanza di <u>subject</u> e di <u>firma</u>, il messaggio rimarrà <u>senza</u> <u>risposta!!</u>
- ➤ Altri dettagli nella **sezione F.A.Q.** del mio sito

Notizie

Docente:

Ing. Salvatore Sorce, Ph.D. salvatore.sorce@unipa.it, 09123862609

Lezioni:

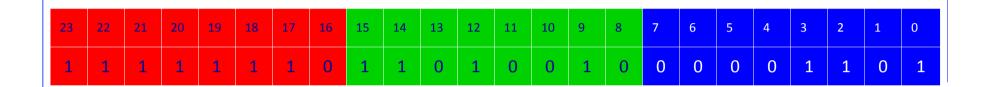
Lunedì, 14-17, aula Multimediale A del Polo Didattico

Ricevimento:

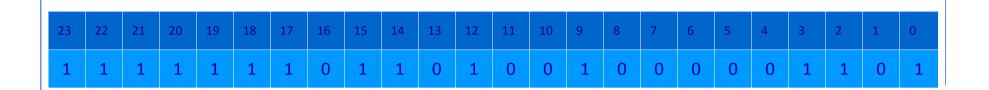
Lunedì, 11-12, @ ex-Dip. Ing. Nucleare, edificio 6, II piano Dopo il corso: per appuntamento

Sito web:

http://www.unipa.it/sorce (LEGGERE LA SEZIONE F.A.Q.)

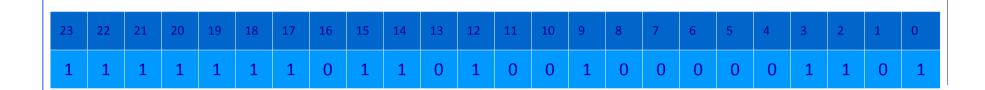

- > Principio del mezzo universale:
 - per mezzo dei bit si può rappresentare ogni sorta di informazione discreta; i bit non hanno un significato intrinseco.
- I bit sono un mezzo universale
 - tutte le cose che possono essere rappresentate possono anche essere manipolate
- ➤ I bit non hanno preferenze
 - il significato dei bit deriva interamente dall'*interpretazione* che ne dà il computer attraverso il programma
- > I bit non rappresentano necessariamente numeri
 - i bit possono essere interpretati come numeri, ma anche no

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	1	1	0	1	0	0	1	0	0	0	0	0	1	1	0	1



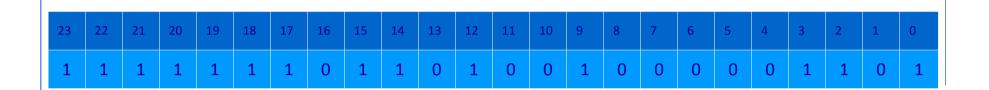
Un colore RGB:

R = 254 G = 210 B = 13



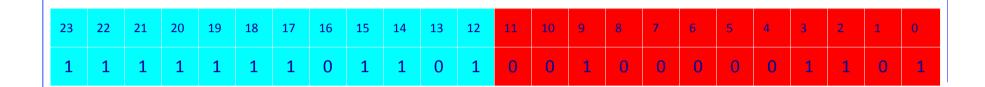
Un numero intero a 24 bit:

16.699.917



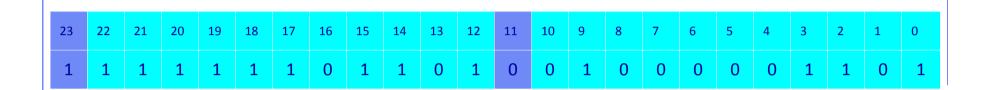
Un numero esadecimale a 6 cifre:

	2	



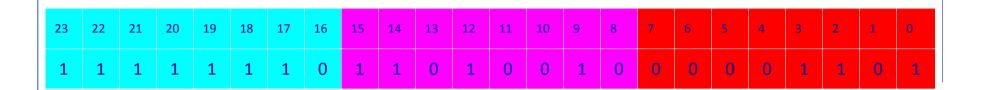
Un'istruzione:

SUM (A,B)



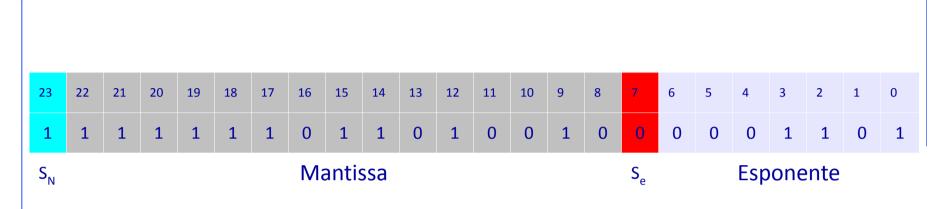
Due campioni di un segnale audio (L+R):

L = -19 R = +525



Il conteggio RLE di due sequenze di bit 1 e 0:

2029 bit 1 525 bit 0



Una sequenza di caratteri ASCII:

$$-0.111111011010010 \times 2^{13} = -11111110110100.10_2 = -8116.5_{10}$$