

Università degli Studi di Palermo Dipartimento di Ingegneria Informatica

Informatica per la Storia dell'Arte

Anno Accademico 2014/2015

Docente: ing. Salvatore Sorce

Reti di calcolatori

Facoltà di Lettere e Filosofia

Sull'uso dell'e-mail...

- > **SUBJECT**: < testo significativo>
- > Testo chiaro e conciso
- ➤ Usare l'italiano *esteso* e grammaticalmente corretto
- > Inserire i dati utili per ottenere l'informazione desiderata
- > Firmare sempre il messaggio
 - In mancanza di <u>subject</u> e di <u>firma</u>, il messaggio rimarrà <u>senza</u> <u>risposta!!</u>
- ➤ Altri dettagli nella **sezione F.A.Q.** del mio sito

Notizie

Docente:

Ing. Salvatore Sorce, Ph.D. salvatore.sorce@unipa.it, 09123862609

Lezioni:

Lunedì, 14-17, aula Multimediale A del Polo Didattico

Ricevimento:

Lunedì, 11-12, @ ex-Dip. Ing. Nucleare, edificio 6, II piano Dopo il corso: per appuntamento

Sito web:

http://www.unipa.it/sorce (LEGGERE LA SEZIONE F.A.Q.)

Reti di calcolatori

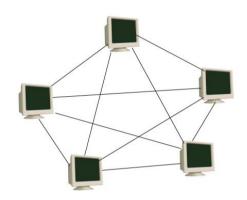
- Insieme di calcolatori, detti nodi o *host*, interconnessi attraverso una struttura di cavi, antenne e dispositivi di vario tipo, che condividono una serie di protocolli di comunicazione.
 - Cavi, antenne, dispositivi -> collegamento fisico tra host.
 - Protocolli -> modo in cui gli host possono individuarsi e "parlarsi"
- Obiettivo: permettere lo scambio o condivisione di dati informativi e risorse (hardware e/o software) tra diversi calcolatori.

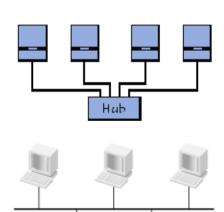
Reti di calcolatori - classificazione

- Sulla base dell'estensione geografica (ordine crescente):
 - BAN (Body Area Network) se la rete si estende intorno al corpo dell'utilizzatore - ordine del metro (Wireless Body Area Network)
 - PAN (Personal Area Network) se la rete si estende intorno all'utilizzatore ordine di alcuni metri
 - LAN (Local Area Network) se la rete si estende all'interno di un edificio o di un comprensorio ordine di alcuni chilometri
 - CAN (Campus Area Network), intendendo tipicamente una LAN interna ad un campus universitario
 - Possibilità di collegamento con mezzi propri senza far ricorso ai servizi di operatori di telecomunicazioni.
 - MAN (Metropolitan Area Network) se la rete si estende all'interno di una città
 - WAN (Wide Area Network) se la rete ricopre un'area geografica molto estesa e che ingloba alcune delle reti precedenti
 - GAN (Global Area Network) se la rete collega calcolatori dislocati in tutto il mondo, anche via satellite

Reti di calcolatori - classificazione

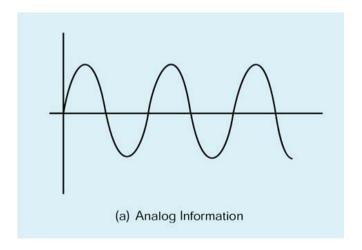
- Sulla base della "proprietà" delle infrastrutture coinvolte:
 - Reti private
 - servono uno o più edifici utilizzati tipicamente da una stessa entità organizzativa
 - realizzazione e gestione autonoma della rete
 - collegamento diretto, sia cablato che wireless, tra gli host coinvolti
 - Velocità dell'ordine dei 100 Mbit/s, 1Gbit/s o superiori (fibra ottica)
 - Reti pubbliche
 - Gestite da operatori del settore sulla base di logiche di mercato
 - Copertura estesa (MAN, WAN, GAN)
 - Basate su infrastrutture di distribuzione multi-scopo (reti elettriche, telefoniche, ...)
 - Necessari dispositivi di "adattamento" per l'accesso
 - Modem (trasmissione su rete analogica)
 - Adattatori (trasmissione su rete digitale progettata per altri scopi, es.: ISDN)
 - Router (trasmissione su rete digitale dedicata, es.: ADSL)
 - Velocità dettata dal tratto più lento della connessione
 - in genere dell'ordine di qualche Mbit/sec effettivi
 - velocità limitata da scelte commerciali

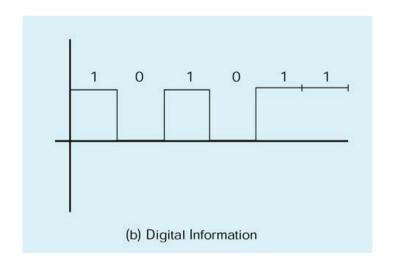



Reti di calcolatori - classificazione

- Sulla base della topologia del collegamento:
 - Reti punto-a-punto
 - insieme di collegamenti tra coppie di elaboratori
 - per passare da una sorgente ad una destinazione, l'informazione deve attraversare diversi elaboratori intermedi
 - Affidabilità e scalabilità basse

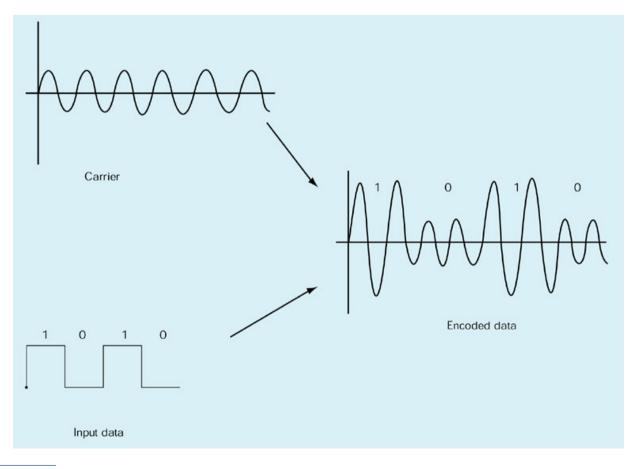
- connessione tramite lo stesso supporto trasmissivo condiviso tra gli host
- i messaggi inviati da un elaboratore vengono ricevuti da tutti gli altri
- i messaggi contengono l'indirizzo del destinatario, in modo che tutte le altre macchine in ascolto possano scartare il messaggio in arrivo
- alta velocità possibile
- alta scalabilità e tolleranza ai guasti
- Per la protezione dei dati sono necessarie soluzioni software
 - esempio: Ethernet





Concetti di base

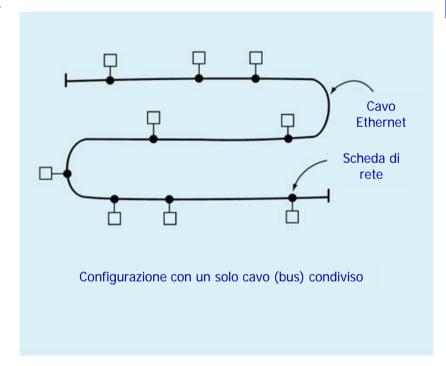
- ➤ Le prime reti di interconnessione usavano le linee telefoniche analogiche per trasmettere informazioni digitali
- MoDem: modulatore/demodulatore
 - Dispositivo atto a inserire/estrarre informazioni digitali su un segnale base analogico, detto portante



Modem

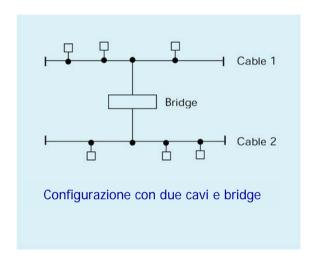
➤ II modem modifica le caratteristiche della portante (ampiezza e/o frequenza) in modo da inserire l'informazione digitale

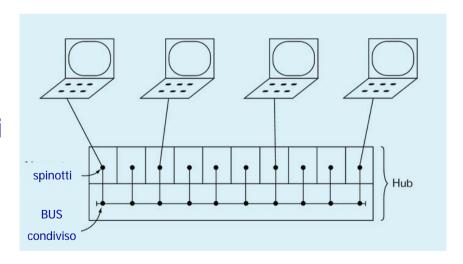
Linee di collegamento


- Caratteristica principale: l'ampiezza di banda
 - Capacità di trasmissione in bit al secondo (bps)
- Prime linee usate erano quelle telefoniche
 - 1200, 2400, 4800 bps
 - Le ultime linee telefoniche commutate consentono ampiezza di banda maggiore
 - Fino a 56000 bps
- Linee digitali
 - ADSL
 - Fibra Ottica

Tipo di linea	Velocità (bps)	Tempo trasmissione Immagine 1000x1000x16 bit
Telefonica a composizione	33.6 K	7.9 min
ADSL	160-2000 K	100÷8 sec
T1 dedicata	1.544 M	10.4 sec
T3 dedicata	44.736 M	0.36 sec
Fibra ottica OC-3	155.5 M	0.1 sec
Fibra ottica OC-12	622 M	0.026 sec
Fibra Gigabit OC-48	2.488 G	0.006 sec

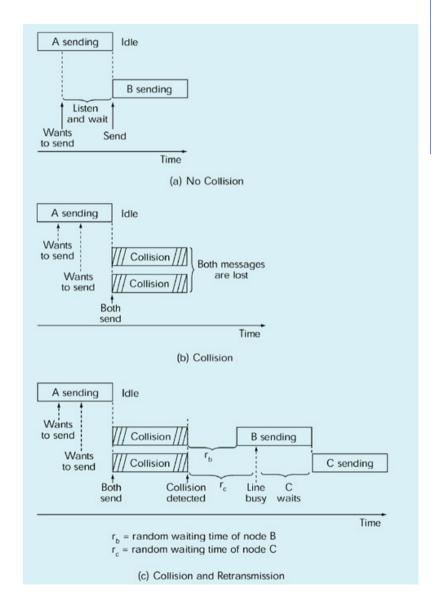
Reti locali (LAN – Local Area Network)


- Insieme di risorse (calcolo, stampa, file, etc) connesse in un'area fisicamente limitata
- Tipicamente basate su modello Ethernet
 - 10 Mbps su cavo coassiale
 - FastEthernet: 100 Mbps GigaEthernet: 1Gbps
 - Entrambi su cavo a 4 doppini
- Gli host sono connessi a un cavo condiviso (BUS) a mezzo di transceiver (la "scheda di rete")

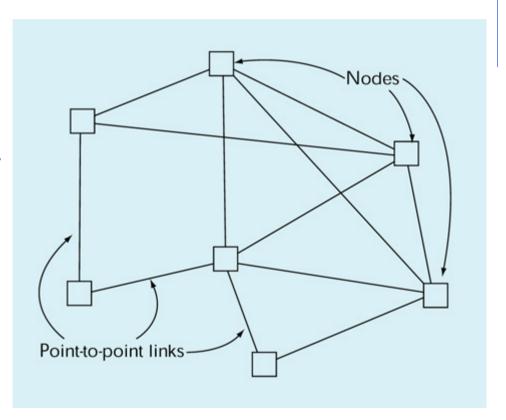


Bridge e hub

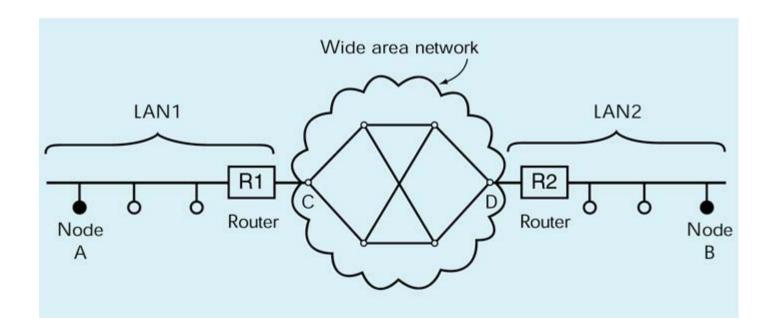
- Limiti fisici alla lunghezza del cavo rendono necessario l'uso di bridge
 - Ponte di collegamento tra due sezioni separate di una LAN
- In alternativa ad un cavo steso viene utilizzato un hub, in cui il cavo condiviso è sostanzialmente rinchiuso nel contenitore
- ➤ Lo **switch** svolge lo stesso compito dell'hub, ma ritrasmette i messaggi solo agli effettivi destinatari



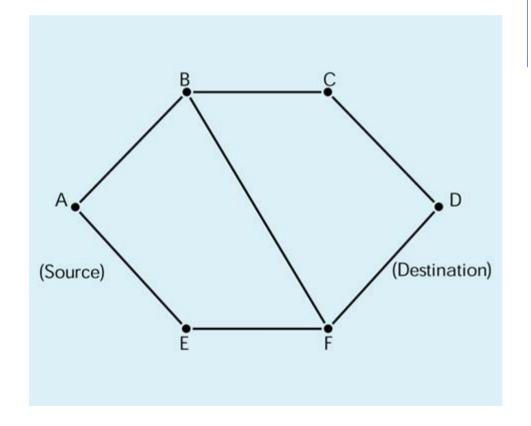
Trasmissione su rete Ethernet


- Viene usato un protocollo di trasmissione
 - Si pensi allo scambio di messaggi all'inizio di una telefonata
 - Perché si dice Pronto?
- Il protocollo Ethernet è basato sul concetto di contesa
- I messaggi sono inviati in broadcast, ovvero a tutti i nodi nella rete.
 - Tutti i nodi leggono l'indirizzo
 - Solo il destinatario legge il messaggio
- Il messaggio da inviare contiene l'indirizzo del nodo destinatario
- Monitoraggio linea
- 3. Se libera trasmetti, altrimenti riprova
- Se collisione, aspetta un tempo casuale e ritrasmetti
- Ethernet adotta un protocollo di controllo distribuito
 - Altamente affidabile perché non dipende da un singolo nodo specializzato

Reti geografiche (WAN – Wide Area Network)


- Connette dispositivi geograficamente distanti
- Tipicamente connessioni puntoa-punto
- Utilizza tecnica a commutazione di pacchetto, con meccanismo di memoria e inoltro (store and forward)
- I messaggi sono suddivisi in pacchetti di lunghezza fissa che vengono trasmessi separatamente
- Alla destinazione, i pacchetti sono riassemblati nell'ordine corretto e passati al client

Configurazione LAN/WAN

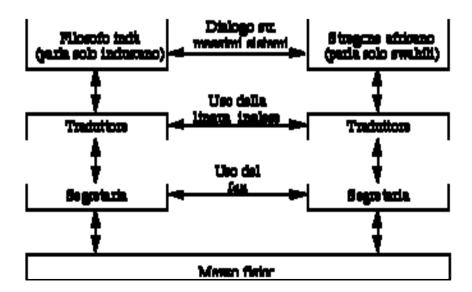

- LAN diverse sono connesse tra loro attraverso le WAN
- Una LAN si interfaccia alla WAN a mezzo di un router (o dispositivo di instradamento
- ➤ Il router è l'unico nodo della LAN preposto all'invio di messaggi al di fuori della LAN stessa

Algoritmi di routing

- Ricerca del percorso più breve
- Ricerca di un percorso che non passi da un dato nodo
- > Risposte a problemi tipo
 - Caduta di rete
 - Modifica topologia

Internet

- INTERconnected NETworks ("reti interconnesse")
- > rete di reti di computer ad accesso pubblico che offre all'utente una vasta serie di contenuti potenzialmente informativi e servizi
 - Internet è HARDWARE
- ➤ interconnessione tra reti informatiche di natura ed estensione diversa, resa possibile da una suite di protocolli di rete comune chiamata "TCP/IP"
- ➤ i protocolli costituiscono la "lingua" comune con cui i computer connessi ad Internet (gli host) sono interconnessi e comunicano tra loro ad un livello superiore indipendentemente dalla loro sottostante architettura hardware e software, garantendo così l'interoperabilità tra sistemi e sottoreti fisiche diverse
 - Internet sta alla rete telefonica come i protocolli stanno alle telefonate


Internet

- Nasce da un'idea proposta da Licklider al MIT e dall'NPL Research Lab (UK) nel 1960
 - Con Larry Roberts e Leo Kleinrock svilupparono i fondamenti teorici (protocolli, commutazione di pacchetto, routing) delle WAN
- Nel 1966 Roberts propone ARPANET, la rete militare finanziata dall'Advanced Research Projects Agency (ARPA) del DoD
- Indirizzamento
 - Identificazione univoca di ogni computer sulla rete
 - indirizzo IP ←→ numero di telefono
 - Schema globale di indirizzamento gerarchico per indirizzi simbolici
 - DNS Domain Name System ←→ rubrica telefonica
- Nasce nel 1972 la Killer Application: la posta elettronica
 - La posta elettronica è SOFTWARE

TCP/IP - protocollo a "strati"

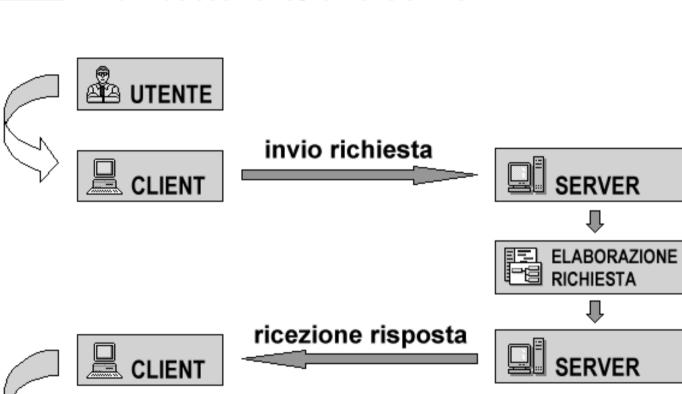
- TCP/IP (Trasmission Control Protocol / Internet Protocol)
 - Indipendenza dalla rete fisica
 - Sfruttamento ottimale delle risorse
 - Indirizzamento efficiente di milioni di computer
 - Garanzia che la comunicazione sia andata a buon fine
- Esempio: conversazione tra filosofi di lingua diversa residenti in nazioni diverse

Servizi di rete

- ➤ La comunicazione sulla rete Internet si basa sul paradigma client-server.
- ➤ Il server (software) risponde alle richieste di servizio del client (software).
- ➤ Il termine *server* riferito ad una macchina hardware è relativo al fatto che quella macchina ospita uno o più server software relativi a diversi servizi di rete.

Servizi di rete

- > I servizi di rete sono gestiti attraverso il protocollo TCP
- ➤ All'interno della stessa macchina, server diversi possono coesistere rispondendo attraverso canali di comunicazione distinti che sono gestiti da TCP usando degli identificativi numerici detti porte.
- Ogni servizio gestisce le proprie comunicazioni per mezzo di un apposito protocollo applicativo.
- N.B.: su una stessa macchina possono coesistere server e client. In quel caso, il dialogo avviene sempre secondo i protocolli TCP/IP, ma le risorse sono *locali* e non *remote*
 - non ho bisogno di essere realmente collegato ad una rete
 - La velocità di "dialogo" è molto elevata (non passo da una rete)
 - Difficoltà di aggiornamento
 - Unica fonte di dati


Servizi di rete

- > E-mail
 - Server SMTP (Simple Mail Transfer Protocol) porta 25
 - Server POP3 (Post Office Protocol ver. 3) porta 110
- > Web
 - Server HTTP (Hyper-Text Transfer Protocol) porta 80
- > Trasferimento file
 - Server FTP (File Transfer Protocol) porta 20 upload / 21 download
- > Terminale remoto
 - Server Telnet porta 23

UTENTE

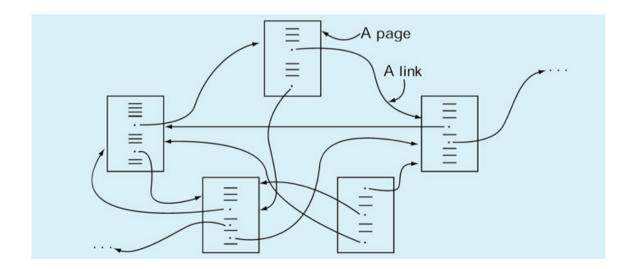
Architettura client-server

Indirizzamento sulla rete

- Indipendentemente dalla tipologia di rete, i calcolatori possono essere raggiunti perché dotati di un indirizzo.
- ➤ Il protocollo utilizzato per indirizzare i calcolatori sulla rete Internet è il protocollo IP (Internet Protocol).
- ➤ Un indirizzo IP è un numero di 4 byte e si rappresenta in forma testuale come una sequenza di 4 numeri separati dal "."
- > Esempio: 147.163.1.26

DNS

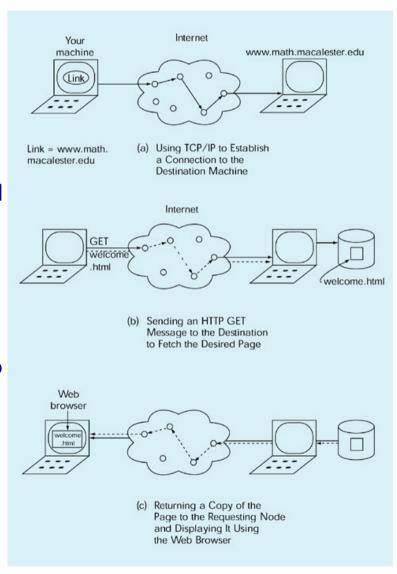
- Un indirizzo IP non è facile da ricordare: si usano, invece degli indirizzi mnemonici.
- Nasce la necessità di tradurli in formato numerico perché solo così si può ottenere la comunicazione sulla rete.
- Il DNS (Domain Name System) è il sistema di traduzione degli indirizzi.
- Un indirizzo mnemonico ha la forma <calcolatore>.<dominio>
- Esempio: www.unipa.it


DNS

- Qualunque comunicazione di rete, in genere, inizia con una richiesta di traduzione dell'indirizzo che abbiamo specificato ad un calcolatore vicino a noi sulla rete (server DNS) il quale fornisce tale servizio.
- ➤ Il server DNS agisce su base dominio: esso consulta un file in cui sono riportate le coppie nome-numero dei calcolatori dello stesso dominio.
- Inoltre, il server possiede gli indirizzi di riferimento di altri server DNS, responsabili di domini più grandi, a cui girare la richiesta nel caso in cui la coppia cercata non sia nella sua tabella locale.
- ➤ N.B.: l'indirizzo del server DNS *deve* essere noto nella sua forma numerica (devo sapere come accedere alla rubrica)

World Wide Web (WWW)

- Tim Berners-Lee, CERN, concepì per primo l'idea del WWW nel 1989
- Obiettivo era favorire la disseminazione dei risultati della ricerca scientifica, già disponibili in qualche forma in archivi elettronici
- Ideò un sistema ipertestuale per la condivisione delle informazioni
 - Link e URL (Uniform Resource Locator)
 - Pagine HTML (HyperText Markup Language)
- ➤ II World Wide Web *non è* Internet!!
 - II WWW è un'applicazione pensata "sopra" l'infrastruttura-Internet
 - II WWW è SOFTWARE



Modus operandi nel www

Basato sul protocollo HTTP (HyperText Transfer Protocol)

- Esempio di sessione tipica
- Click su un link: http://www.unipa.it/sorce/didattica/index.htm
- 2. Il browser determina l'indirizzo del PC su cui risiede il server Web: www.unipa.it
- 3. Attraverso TCP/IP contatta il [pc su cui risede il server] DNS per ottenerne l'indirizzo IP
- 4. attiva la connessione tra il [pc su cui risede il] client e il [pc su cui risede il] server, usando Internet
- 5. A connessione fatta, il browser (client) avvia il dialogo con il server mediante il protocollo http
 - GET /sorce/didattica/index.htm
- 6. Il server remoto trova il file richiesto all'interno del suo file system e lo trasmette al [pc su cui risede il] client che lo ha richiesto usando il suo indirizzo IP
- 7. Il browser riceve la pagina e la visualizza

URL

- Uniform Resource Locator
- Struttura unificata di accesso alle risorse di rete: protocollo><indirizzo><percorso>
- http://www.unipa.it/sorce/didattica/eis0809/index.htm
- > mailto:salvatore.sorce@unipa.it
- ftp://ftp.unina.it/pub/linux/redhat/

Connessione a Internet

- Tre condizioni affinché un computer sia collegato alla rete Internet
 - predisposizione di una infrastruttura fisica di collegamento e dei relativi dispositivi;
 - installazione e configurazione dei software che implementano i protocolli TCP/IP;
 - installazione e configurazione dei software client e server per i servizi di rete a cui si desidera accedere o che si intende fornire.

Tipi di collegamento

> Diretto

- Linee di trasmissione dedicate
- La connessione diretta ad Internet implica dei costi di investimento iniziali e di gestione piuttosto alti, in genere non alla portata del singolo utente, e interessa normalmente enti e aziende che vogliono entrare in rete come fornitori di informazioni e servizi.

> Temporaneo

- Linee di trasmissione commutate o digitali fornite dai providers
- Le connessioni temporanee sono meno costose, e vengono di norma utilizzate da tutti quegli utenti che utilizzano la rete per periodi limitati e solo come ricettori di informazioni. In questo ambito l'ultimo decennio ha visto una vera e propria rivoluzione.

Configurazione accesso TCP/IP

- Per poter utilizzare i servizi disponibili su Internet tramite i relativi protocolli TCP/IP, è necessario definire la configurazione di rete specificando:
 - il proprio indirizzo
 - il proprio dominio
 - l'indirizzo del server DNS
 - l'indirizzo del gateway (il router di connessione verso l'esterno)
- > Nelle connessioni tramite rete pubblica, la configurazione viene eseguita automaticamente (grazie ad un apposito protocollo)