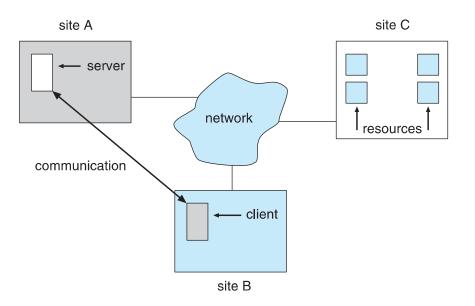

Chapter 17: Distributed Systems

Chapter 17: Distributed Systems


- Advantages of Distributed Systems
- Types of Network-Based Operating Systems
- Network Structure
- Communication Structure
- Communication Protocols
- An Example: TCP/IP
- Robustness
- Design Issues
- Distributed File System

- n **Distributed system** is collection of loosely coupled processors interconnected by a communications network
- n Processors variously called *nodes, computers, machines, hosts*
 - Site is location of the processor
 - Generally a *server* is a resource a *client* node at a different site wants to use

Reasons for Distributed Systems

- Reasons for distributed systems
 - Resource sharing
 - Sharing and printing files at remote sites
 - Processing information in a distributed database
 - Using remote specialized hardware devices
 - Computation speedup load sharing or job migration
 - Reliability detect and recover from site failure, function transfer, reintegrate failed site
 - Communication message passing
 - All higher-level functions of a standalone system can be expanded to encompass a distributed system
 - Computers can be downsized, more flexibility, better user interfaces and easier maintenance by moving from large system to multiple smaller systems performing distributed computing

Types of Distributed Operating Systems

- Network Operating Systems
- Distributed Operating Systems

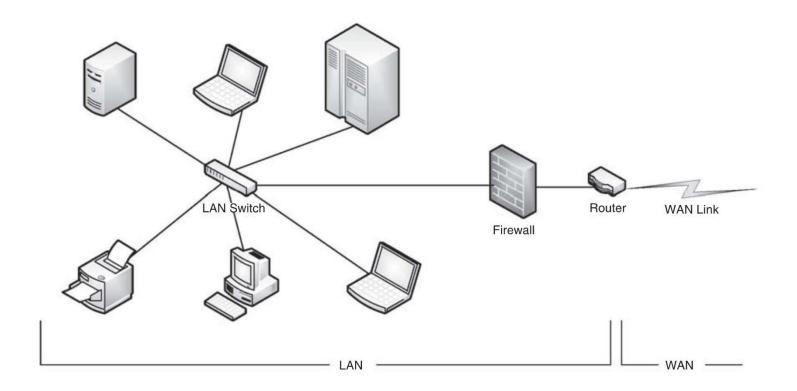


- Users are aware of multiplicity of machines
- Access to resources of various machines is done explicitly by:
 - Remote logging into the appropriate remote machine (telnet, ssh)
 - Remote Desktop (Microsoft Windows)
 - Transferring data from remote machines to local machines, via the File Transfer Protocol (FTP) mechanism
- Users must change paradigms establish a session, give network-based commands
 - More difficult for users

- Users not aware of multiplicity of machines
 - Access to remote resources similar to access to local resources
- Data Migration transfer data by transferring entire file, or transferring only those portions of the file necessary for the immediate task
- Computation Migration transfer the computation, rather than the data, across the system
 - Via remote procedure calls (RPCs)
 - or via messaging system

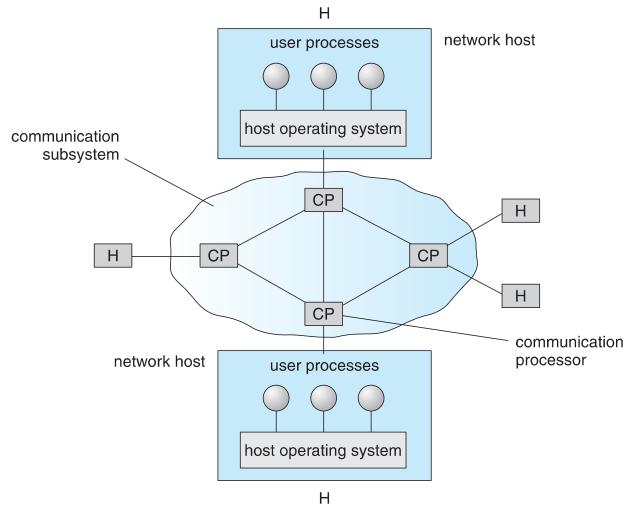
17.7

- Process Migration execute an entire process, or parts of it, at different sites
 - Load balancing distribute processes across network to even the workload
 - Computation speedup subprocesses can run concurrently on different sites
 - Hardware preference process execution may require specialized processor
 - **Software preference** required software may be available at only a particular site
 - Data access run process remotely, rather than transfer all data locally



- Local-Area Network (LAN) designed to cover small geographical area
 - Multiple topologies like star, ring, shared bus
 - Speeds from 1Mb per second (Appletalk, bluetooth) to 40 Gbps for fastest Ethernet over twisted pair copper or optical fibre
 - Consists of multiple computers (mainframes through mobile devices), peripherals (printers, storage arrays), routers (specialized network communication processors) providing access to other networks
 - Ethernet most common way to construct LANs
 - Multiaccess bus-based
 - Defined by standard IEEE 802.3
 - Wireless spectrum (WiFi) increasingly used for networking
 - I.e. IEEE 802.11g standard implemented at 54 Mbps

Local-area Network



- Wide-Area Network (WAN) links geographically separated sites
 - Point-to-point connections over long-haul lines (often leased from a phone company)
 - Implemented via connection processors known as routers
 - Internet WAN enables hosts world wide to communicate
 - Hosts differ in all dimensions but WAN allows communications
 - Speeds
 - > T1 link is 1.544 Megabits per second
 - T3 is 28 x T1s = 45 Mbps
 - OC-12 is 622 Mbps
 - WANs and LANs interconnect, similar to cell phone network:
 - Cell phones use radio waves to cell towers
 - Towers connect to other towers and hubs

Communication Processors in a Wide-Area Network

Silberschatz, Galvin and Gagne ©2013

Communication Structure

The design of a communication network must address four basic issues:

- Naming and name resolution How do two processes locate each other to communicate?
- Routing strategies How are messages sent through the network?
- Connection strategies How do two processes send a sequence of messages?
- Contention The network is a shared resource, so how do we resolve conflicting demands for its use?

Naming and Name Resolution

- Name systems in the network
- Address messages with the process-id
- Identify processes on remote systems by

<host-name, identifier> pair

Domain name system (DNS) – specifies the naming structure of the hosts, as well as name to address resolution (Internet)

Routing Strategies

- Fixed routing A path from A to B is specified in advance; path changes only if a hardware failure disables it
 - Since the shortest path is usually chosen, communication costs are minimized
 - Fixed routing cannot adapt to load changes
 - Ensures that messages will be delivered in the order in which they were sent
- Virtual routing- A path from A to B is fixed for the duration of one session. Different sessions involving messages from A to B may have different paths
 - Partial remedy to adapting to load changes
 - Ensures that messages will be delivered in the order in which they were sent

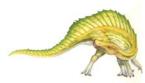
Routing Strategies (Cont.)

- Dynamic routing The path used to send a message form site A to site B is chosen only when a message is sent
 - Usually a site sends a message to another site on the link least used at that particular time
 - Adapts to load changes by avoiding routing messages on heavily used path
 - Messages may arrive out of order
 - This problem can be remedied by appending a sequence number to each message
 - Most complex to set up
- Tradeoffs mean all methods are used
 - UNIX provides ability to mix fixed and dynamic
 - Hosts may have fixed routes and gateways connecting networks together may have dynamic routes

Routing Strategies (Cont.)

- Router is communications processor responsible for routing messages
- Must have at least 2 network connections
- Maybe special purpose or just function running on host
- Checks its tables to determine where destination host is, where to send messages
 - Static routing table only changed manually
 - Dynamic routing table changed via routing protocol

Routing Strategies (Cont.)


- More recently, routing managed by intelligent software more intelligently than routing protocols
 - OpenFlow is device-independent, allowing developers to introduce network efficiencies by decoupling data-routing decisions from underlying network devices
- Messages vary in length simplified design breaks them into packets (or frames, or datagrams)

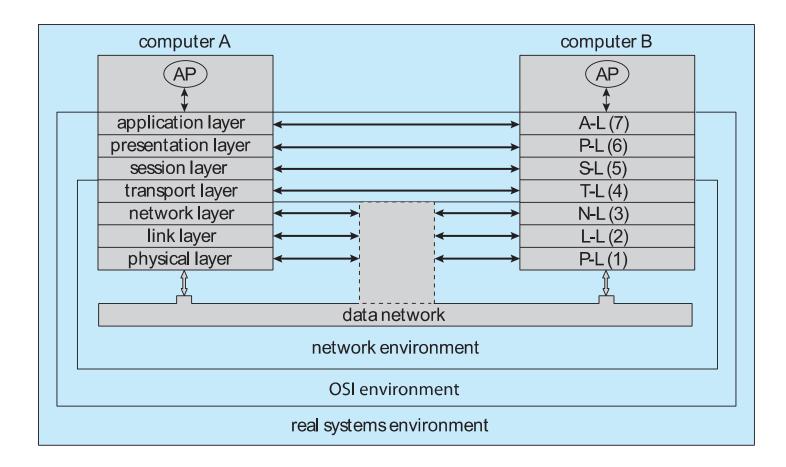
Connection Strategies

- Circuit switching A permanent physical link is established for the duration of the communication (i.e., telephone system)
- Message switching A temporary link is established for the duration of one message transfer (i.e., post-office mailing system)
- Packet switching Messages of variable length are divided into fixed-length packets which are sent to the destination
 - Each packet may take a different path through the network
 - The packets must be reassembled into messages as they arrive
- Circuit switching requires setup time, but incurs less overhead for shipping each message, and may waste network bandwidth
 - Message and packet switching require less setup time, but incur more overhead per message

Communication Protocol

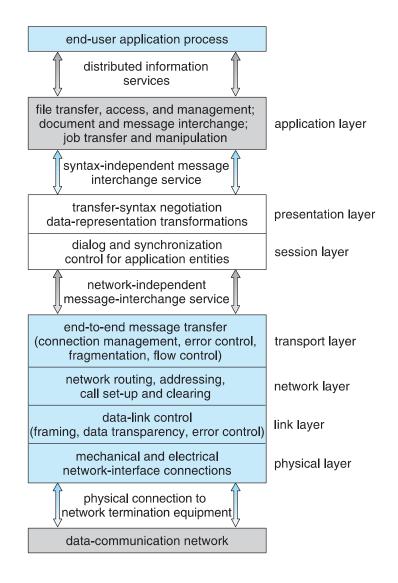
The communication network is partitioned into the following multiple layers:

- Layer 1: Physical layer handles the mechanical and electrical details of the physical transmission of a bit stream
- Layer 2: Data-link layer handles the *frames*, or fixedlength parts of packets, including any error detection and recovery that occurred in the physical layer
- Layer 3: Network layer provides connections and routes packets in the communication network, including handling the address of outgoing packets, decoding the address of incoming packets, and maintaining routing information for proper response to changing load levels

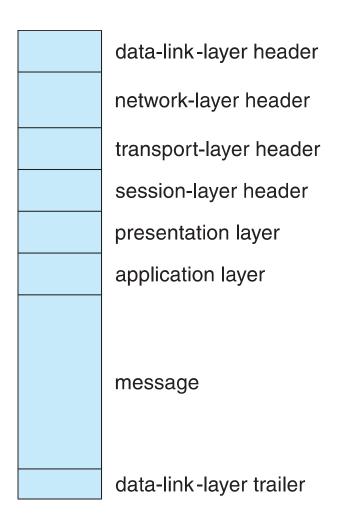


Communication Protocol (Cont.)

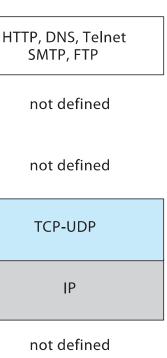
- Layer 4: Transport layer responsible for low-level network access and for message transfer between clients, including partitioning messages into packets, maintaining packet order, controlling flow, and generating physical addresses
- Layer 5: Session layer implements sessions, or process-toprocess communications protocols
- Layer 6: Presentation layer resolves the differences in formats among the various sites in the network, including character conversions, and half duplex/full duplex (echoing)
- Layer 7: Application layer interacts directly with the users, deals with file transfer, remote-login protocols and electronic mail, as well as schemas for distributed databases



Communication Via ISO Network Model



The ISO Network Message



The TCP/IP Protocol Layers

OSI TCP/IP HTTP, DNS, Telnet application SMTP, FTP not defined presentation not defined session transport TCP-UDP IP network data link not defined physical not defined

Example: TCP/IP

- The transmission of a network packet between hosts on an Ethernet network
- Every host has a unique IP address and a corresponding Ethernet Media Access Control (MAC) address
- Communication requires both addresses
- Domain Name Service (DNS) can be used to acquire IP addresses
- Address Resolution Protocol (ARP) is used to map MAC addresses to IP addresses
 - Broadcast to all other systems on the Ethernet network
- If the hosts are on the same network, ARP can be used
 - If the hosts are on different networks, the sending host will send the packet to a router which routes the packet to the destination network

An Ethernet Packet

bytes		
7	preamble—start of packet	each byte pattern 10101010
1	start of frame delimiter	pattern 10101011
2 or 6	destination address	Ethernet address or broadcast
2 or 6	source address	Ethernet address
2	length of data section	length in bytes
0–1500	data	message data
0–46	pad (optional)	message must be > 63 bytes long
4	frame checksum	for error detection

- Failure detection
- Reconfiguration

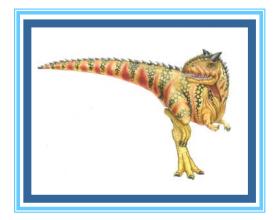
Failure Detection

- Detecting hardware failure is difficult
- To detect a link failure, a heartbeat protocol can be used
- Assume Site A and Site B have established a link
 - At fixed intervals, each site will exchange an *I-am-up* message indicating that they are up and running
- If Site A does not receive a message within the fixed interval, it assumes either (a) the other site is not up or (b) the message was lost
- Site A can now send an *Are-you-up?* message to Site B
- If Site A does not receive a reply, it can repeat the message or try an alternate route to Site B

Failure Detection (Cont.)

- If Site A does not ultimately receive a reply from Site B, it concludes some type of failure has occurred
- Types of failures:
 - Site B is down
 - The direct link between A and B is down
 - The alternate link from A to B is down
 - The message has been lost
- However, Site A cannot determine exactly why the failure has occurred

- When Site A determines a failure has occurred, it must reconfigure the system:
 - 1. If the link from A to B has failed, this must be broadcast to every site in the system
 - 2. If a site has failed, every other site must also be notified indicating that the services offered by the failed site are no longer available
- When the link or the site becomes available again, this information must again be broadcast to all other sites



- Transparency the distributed system should appear as a conventional, centralized system to the user
- Fault tolerance the distributed system should continue to function in the face of failure
- Scalability as demands increase, the system should easily accept the addition of new resources to accommodate the increased demand
- Clusters a collection of semi-autonomous machines that acts as a single system

End of Chapter 17

