
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process
Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 5: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Alternative Approaches

5.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To present the concept of process synchronization.

 To introduce the critical-section problem, whose solutions
can be used to ensure the consistency of shared data

 To present both software and hardware solutions of the
critical-section problem

 To examine several classical process-synchronization
problems

 To explore several tools that are used to solve process
synchronization problems

5.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing
execution

 Concurrent access to shared data may result in data
inconsistency

 Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

 Illustration of the problem:
Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We can
do so by having an integer counter that keeps track of the
number of full buffers. Initially, counter is set to 0. It is
incremented by the producer after it produces a new buffer
and is decremented by the consumer after it consumes a
buffer.

5.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

5.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

5.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other may be in its
critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

5.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

 General structure of process Pi

5.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

while (turn == j);

critical section

turn = j;

remainder section

} while (true);

5.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n
processes

5.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or non-
preemptive

 Preemptive – allows preemption of process when running
in kernel mode

 Non-preemptive – runs until exits kernel mode, blocks, or
voluntarily yields CPU

Essentially free of race conditions in kernel mode

5.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

 Good algorithmic description of solving the problem
 Two process solution

 Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:
 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section

 The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

5.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

5.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

5.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking
 Protecting critical regions via locks

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible
 Either test memory word and set value
 Or swap contents of two memory words

5.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

5.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.

5.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Solution:

do {
while (test_and_set(&lock)); /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

5.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

swap Instruction
Definition:

void swap(boolean *a, boolean *b) {

boolean temp = *a;

*a = *b;

*b = temp;

}

1. Executed atomically
2. Swaps the two Boolean values “a” and “b”

5.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution using swap

 Shared boolean “lock” initialized to FALSE;
 Solution:

do {

key = true;

while (key==true)

swap(&lock, &key);

/* critical section */

lock = false;

/* remainder section */

} while (true);

5.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with test_and_set

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

/* remainder section */

} while (true);

