Argonne°

NATIONAL LABORATORY

Introduction to MPI

Slides Available at http://www.mcs.anl.gov/~balaji/permalinks/argonnel4 mpi.php

Rajeev Thakur Pavan Balaji
Argonne National Laboratory Argonne National Laboratory
Email: thakur@mcs.anl.qov Email: balaji@anl.qgov
Web: http://www.mcs.anl.gov/~thakur Web: http://www.mcs.anl.gov/~balaji
Ken Raffenetti Wesley Bland
Argonne National Laboratory Argonne National Laboratory
Email: raffenet@mcs.anl.gov Email: wbland@mcs.anl.gov
Web: http://www.mcs.anl.qgov/~raffenet Web: http://www.mcs.anl.gov/~wbland
Xin Zhao

University of Illlinois, Urbana-Champaign
Email: xinzhao3@illinois.edu
Web: http://web.engr.illinois.edu/~xinzhao3

What we will cover in this tutorial

= Whatis MPI?
* How to write a simple program in MPI
* Running your application with MPICH

= Slightly more advanced topics:

— Non-blocking communication in MPI
— Group (collective) communication in MPI

— MPI Datatypes

= Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014)

The switch from sequential to parallel computing

= Moore’s law continues to be true, but...

— Processor speeds no longer double every 18-24 months

— Number of processing units double, instead

e Multi-core chips (dual-core, quad-core)

— No more automatic increase in speed for software

= Parallelism is the norm

— Lots of processors connected over a network and coordinating to
solve large problems
— Used every where!
e By USPS for tracking and minimizing fuel routes
e By automobile companies for car crash simulations

e By airline industry to build newer models of flights

Introduction to MPI, Argonne (06/06/2014)

Sample Parallel Programming Models

= Shared Memory Programming

— Processes share memory address space (threads model)

— Application ensures no data corruption (Lock/Unlock)
* Transparent Parallelization

— Compiler works magic on sequential programs
= Directive-based Parallelization

— Compiler needs help (e.g., OpenMP)
= Message Passing

— Explicit communication between processes (like sending and receiving
emails)

Introduction to MPI, Argonne (06/06/2014)

The Message-Passing Model

= A process is (traditionally) a program counter and address
space.

" Processes may have multiple threads (program counters and
associated stacks) sharing a single address space. MPI is for
communication among processes, which have separate
address spaces.

" |nter-process communication consists of
— synchronization

— movement of data from one process’s address space to another’s.

MPI

»
»

Process Process

<

MPI

Introduction to MPI, Argonne (06/06/2014)

The Message-Passing Model (an example)

= Each process has to send/receive data to/from other processes

= Example: Sorting Integers

Process1 I

I
Process1 \ Process2

O(N/2 log N/2) / O(N/2 log N/2)

Process1

i Introduction to MPI, Argonne (06/06/2014) 6

Standardizing Message-Passing Models with MPI

= Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were
not portable (or very capable)

= Early portable systems (PVM, p4, TCGMSG, Chameleon) were
mainly research efforts

— Did not address the full spectrum of message-passing issues
— Lacked vendor support

— Were not implemented at the most efficient level

= The MPI Forum was a collection of vendors, portability writers and
users that wanted to standardize all these efforts

Introduction to MPI, Argonne (06/06/2014)

What is MPI?

MPI: Message Passing Interface

— The MPI Forum organized in 1992 with broad participation by:
e Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
e Portability library writers: PVM, p4
e Users: application scientists and library writers
e MPI-1 finished in 18 months
— Incorporates the best ideas in a “standard” way
e Each function takes fixed arguments
e Each function has fixed semantics

— Standardizes what the MPIl implementation provides and what the
application can and cannot expect

— Each system can implement it differently as long as the semantics match

MPI is not...

— alanguage or compiler specification

— a specific implementation or product

Introduction to MPI, Argonne (06/06/2014) 8

Applications (Science and Engineering)

= MPI is widely used in large scale parallel applications in
science and engineering
— Atmosphere, Earth, Environment

— Physics - applied, nuclear, particle, condensed matter, high pressure,
fusion, photonics

— Bioscience, Biotechnology, Genetics

— Chemistry, Molecular Sciences

— Geology, Seismology

— Mechanical Engineering - from prosthetics to spacecraft
— Electrical Engineering, Circuit Design, Microelectronics

— Computer Science, Mathematics

Introduction to MPI, Argonne (06/06/2014)

application

Drilling application Astrophysics application

Introduction to MPI, Argonne (06/06/2014) 10

Reasons for Using MPI

Standardization - MPI is the only message passing library which can be
considered a standard. It is supported on virtually all HPC platforms.
Practically, it has replaced all previous message passing libraries

Portability - There is no need to modify your source code when you port
your application to a different platform that supports (and is compliant
with) the MPI standard

Performance Opportunities - Vendor implementations should be able to
exploit native hardware features to optimize performance

Functionality — Rich set of features

Availability - A variety of implementations are available, both vendor and
public domain

— MPICH is a popular open-source and free implementation of MPI

— Vendors and other collaborators take MPICH and add support for their systems
e Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX

Introduction to MPI, Argonne (06/06/2014)

11

Important considerations while using MPI

= All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs

Introduction to MPI, Argonne (06/06/2014) 12

What we will cover in this tutorial

= How to write a simple program in MPI
* Running your application with MPICH

= Slightly more advanced topics:

— Non-blocking communication in MPI
— Group (collective) communication in MPI

— MPI Datatypes

= Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 13

MPI Basic Send/Recelve

= Simple communication model

Process O

Send(data) ~—_

= Application needs to specify to the MPIl implementation:

Process 1

T Receive(data)

1. How do you compile and run an MPI application?

2. How will processes be identified?

3. How will “data” be described?

Introduction to MPI, Argonne (06/06/2014)

14

Compiling and Running MPI applications (more
details later)

= MPIlis a library

— Applications can be written in C, C++ or Fortran and appropriate calls
to MPI can be added where required

= Compilation:
— Regular applications:
e gcc test.c -o test
— MPI applications

e mpicc test.c -o test

= Execution:

— Regular applications
« ./test

— MPI applications (running with 16 processes)

e mpiexec -n 16 ./test

Introduction to MPI, Argonne (06/06/2014)

15

Process Ildentification

= MPI processes can be collected into groups
— Each group can have multiple colors (some times called context)
— Group + color == communicator (it is like a name for the group)

— When an MPI application starts, the group of all processes is initially
given a predefined name called MPI_COMM_ WORLD

= The same group can have many names, but simple programs do not

have to worry about multiple names

= A process is identified by a unique number within each

communicator, called rank

— For two different communicators, the same process can have two
different ranks: so the meaning of a “rank” is only defined when you

specify the communicator

Introduction to MPI, Argonne (06/06/2014)

16

Simple MPI Program Identifying Processes

#include <mpi.h> S

~

~
#include <stdio.h> TN ~al
N~~~~
NN~~~~~
int main(int argc, char ** argv) R NNy
N~~

{ ~~‘s~~

int rank, size;

MPI_ Init(&argc, &argv); <---""_ s

MPI_Comm_rank (MPI_COMM_WORLD, &ranky;

”

MPI_Comm;size(MPI_COMM_WORLD,’ﬁsize);

printf ("I am %d of %d\n",,réﬁk + 1, size);
L e

’/
s
’/
s

MPI Finalize(); L7

return 0;

Introduction to MPI, Argonne (06/06/2014)

Code Example

= jntro-hello.c

Introduction to MPI, Argonne (06/06/2014)

18

Data Communication

= Data communication in MPl is like email exchange

— One process sends a copy of the data to another process (or a group
of processes), and the other process receives it

= Communication requires the following information:

— Sender has to know:
e Whom to send the data to (receiver’s process rank)
e What kind of data to send (100 integers or 200 characters, etc)

e A user-defined “tag” for the message (think of it as an email subject;
allows the receiver to understand what type of data is being received)

— Receiver “might” have to know:

e Who is sending the data (OK if the receiver does not know; in this case
sender rank will be MPTI_ANY SOURCE, meaning anyone can send)

e What kind of data is being received (partial information is OK: | might
receive up to 1000 integers)

e What the user-defined “tag” of the message is (OK if the receiver does
not know; in this case tag will be MPI_ANY TAG)

Introduction to MPI, Argonne (06/06/2014) 19

More Details on Describing Data for Communication

= MPI Datatype is very similar to a C or Fortran datatype
— int - MPI_INT
— double - MPI_DOUBLE
— char - MPI_CHAR

= More complex datatypes are also possible:

— E.g., you can create a structure datatype that comprises of other
datatypes = a char, an int and a double.

— Or, a vector datatype for the columns of a matrix

"= The “count” in MPI_sEND and MPI_RECV refers to how many
datatype elements should be communicated

Introduction to MPI, Argonne (06/06/2014)

20

MPI Basic (Blocking) Send

MPI SEND(buf, count, datatype, dest, tag, comm)

* The message buffer is described by (buf, count, datatype).

"= The target process is specified by dest and comm.

— dest is the rank of the target process in the communicator specified by

comimn.
= tag is a user-defined “type” for the message

= When this function returns, the data has been delivered to the
system and the buffer can be reused.

— The message may not have been received by the target process.

Introduction to MPI, Argonne (06/06/2014) 21

MPI Basic (Blocking) Receive

MPI RECV(buf, count, datatype, source, tag, comm, status)

" Waits until a matching (on source, tag, comm) message is received
from the system, and the buffer can be used.

= source iSrankincommunicator comm, or MPI_ANY SOURCE.

= Receiving fewer than count occurrences of datatype is OK, but
receiving more is an error.

= status contains further information:

— Who sent the message (can be used if you used MPI_ANY SOURCE)

— How much data was actually received

— What tag was used with the message (can be used if you used MPI_ANY TAG)
— MPI_STATUS_IGNORE can be used if we don’t need any additional information

Introduction to MPI, Argonne (06/06/2014) 22

Simple Communication in MPI

#include <mpi.h>
#include <stdio.h>

int main(int argc, char ** argv)

{
int rank, data[l100];

MPI Init (&argc, &argv);
MPI Comm rank(MPI COMM WORLD, &rank):;
if (rank == 0)
MPI Send(data, 100, MPI INT, 1, 0, MPI COMM WORLD):;
else 1f (rank == 1)
MPI Recv(data, 100, MPI INT, O, 0, MPI COMM WORLD,

MPI_STATUS_IGNORE) ;

MPI Finalize();
return 0;

Introduction to MPI, Argonne (06/06/2014)

23

Code Example

= jntro-sendrecv.c

Introduction to MPI, Argonne (06/06/2014)

24

Parallel Sort using MPI Send/Recv

Rank 0 I

O(N log N)

|
Rank 0 ' \ Rank 1

Rank 0 I

l O(N)
Rank 0

i Introduction to MPI, Argonne (06/06/2014) 25
dSESS————,,,,

Parallel Sort using MPI Send/Recv (contd.)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char ** argv)

{

int rank, a[l1000], b[500];

MPI Init (&argc, &argv):;
MPI Comm_ rank (MPI_COMM WORLD, &rank):;
if (rank == 0) {
MPI Send(&a[500], 500, MPI INT, 1, 0, MPI COMM WORLD);
sort(a, 500);
MPI_ Recv(b, 500, MPI INT, 1, 0, MPI_COMM WORLD,
MPI_STATUS_IGNORE) ;

/* Serial: Merge array b and sorted part of array a */
}
else if (rank == 1) {

MPI Recv(b, 500, MPI INT, 0, 0, MPI COMM WORLD,

MPI_STATUS_ IGNORE) ;

sort (b, 500);

MPI Send(b, 500, MPI INT, O, 0, MPI COMM WORLD);
}

MPI Finalize(); return 0;

Introduction to MPI, Argonne (06/06/2014)

26

Status Object

= The status object is used after completion of a receive to find the
actual length, source, and tag of a message

= Status object is MPIl-defined type and provides information about:
— The source process for the message (status.MPI_SOURCE)
— The message tag (status .MPI_TAG)

— Error status (status .MPI_ERROR)

= The number of elements received is given by:
MPI Get count (MPI_Status *status, MPI Datatype datatype, int *count)

status return status of receive operation (status)
datatype datatype of each receive buffer element (handle)
count number of received elements (integer)(OUT)

Introduction to MPI, Argonne (06/06/2014) 27

Using the ““status” field

Task 1 Task 2

= Each “worker process” computes some task (maximum 100
elements) and sends it to the “master” process together with
its group number: the “tag” field can be used to represent the

task
— Data count is not fixed (maximum 100 elements)

— Order in which workers send output to master is not fixed (different
workers = different source ranks, and different tasks = different tags)

Introduction to MPI, Argonne (06/06/2014) 28

Using the ““status” field (contd.)

#include <mpi.h>
#include <stdio.h>

int main(int argc, char ** argv)

{

[...snip...]

if (rank != 0) /* worker process */
MPI Send(data, rand() % 100, MPI INT, 0, group id,
MPI COMM_ WORLD) ;
else { /* master process */
for (1 = 0; 1 < size - 1; i++) {
MPI Recv(data, 100, MPI INT, MPI ANY SOURCE,
MPI ANY TAG, MPI COMM WORLD, &status):;
MPI Get_count (&status, MPI_ INT, &count):;
printf (“worker ID: %d; task ID: %d; count: %d\n”,
status.MPI_ SOURCE, status.MPI TAG, count);

}

[...snip...]

Introduction to MPI, Argonne (06/06/2014) 29

MPI is Simple

= Many parallel programs can be written using just these six functions, only

two of which are non-trivial:

MPI INIT — initialize the MPI library (must be the
first routine called)

MPI COMM SIZE - get the size of a communicator

MPI COMM RANK — get the rank of the calling process
in the communicator

MPI SEND — send a message to another process
MPI RECV — send a message to another process

MPI FINALIZE — clean up all MPI state (must be the
last MPI function called by a process)

= For performance, however, you need to use other MPI features

Introduction to MPI, Argonne (06/06/2014)

30

What we will cover in this tutorial

= Running your application with MPICH

= Slightly more advanced topics:

— Non-blocking communication in MPI
— Group (collective) communication in MPI

— MPI Datatypes

= Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 31

What is MPICH

MPICH is a high-performance and widely portable open-
source implementation of MPI

= |t provides all features of MPI that have been defined so far
(including MPI-1, MPI-2.0, MPI-2.1, MPI-2.2, and MPI-3.0)

= Active development lead by Argonne National Laboratory and
University of Illinois at Urbana-Champaign

— Several close collaborators who contribute many features, bug fixes,
testing for quality assurance, etc.

e |[BM, Microsoft, Cray, Intel, Ohio State University, Queen’s University,
Myricom and many others

= Current release is MPICH-3.1.1

Introduction to MPI, Argonne (06/06/2014) 32

Getting Started with MPICH

= Download MPICH

— Go to http://www.mpich.org and follow the downloads link

— The download will be a zipped tarball

= Build MPICH
— Unzip/untar the tarball

- tar -xzvf mpich-3.l.l.tar.gz

- cd mpich-3.1.1

- ./configure --prefix=/where/to/install/mpich |& tee c.log
- make |& tee m.log

- make install |& tee mi.log

— Add /where/to/install/mpich/bin to your PATH

Introduction to MPI, Argonne (06/06/2014)

33

Compiling MPI programs with MPICH

= Compilation Wrappers
— For Cprograms: mpicc test.c -o test
— For C++ programs: mpicxx test.cpp -o test
— For Fortran 77 programs: mpif77 test.f -o test
— For Fortran 90 programs: mpif90 test.f90 -o test
" You can link other libraries are required too

— Tolink to a math library: mpicc test.c -o test -1m

" You can just assume that “mpicc” and friends have replaced
your regular compilers (gcc, gfortran, etc.)

Introduction to MPI, Argonne (06/06/2014)

34

Running MPI programs with MPICH

"= Launch 16 processes on the local node:

— mpiexec -n 16 ./test

= Launch 16 processes on 4 nodes (each has 4 cores)
— mpiexec -hosts hl:4,h2:4,h3:4,h4:4 -n 16 ./test
e Runs the first four processes on h1, the next four on h2, etc.
— mpiexec -hosts hl,h2,h3,h4 -n 16 ./test
e Runs the first process on hl, the second on h2, etc., and wraps around
e So, h1 will have the 1st, 5th, 9th and 13% processes
= |f there are many nodes, it might be easier to create a host file
— cat hf
hl:4
h2:2
— mpiexec -hostfile hf -n 16 ./test

Introduction to MPI, Argonne (06/06/2014) 35

Trying some example programs

MPICH comes packaged with several example programs using
almost ALL of MPICH’s functionality

A simple program to try out is the Pl example written in C
(cpi.c) — calculates the value of Pl in parallel (available in the
examples directory when you build MPICH)

— mpiexec -n 16 ./examples/cpi
The output will show how many processes are running, and
the error in calculating Pl

Next, try it with multiple hosts
— mpiexec -hosts hl:2,h2:4 -n 16 ./examples/cpi

If things don’t work as expected, send an email to
discuss@mpich.org

Introduction to MPI, Argonne (06/06/2014) 36

Interaction with Resource Managers

Resource managers such as SGE, PBS, SLURM or Loadleveler
are common in many managed clusters
— MPICH automatically detects them and interoperates with them

For example with PBS, you can create a script such as:
#! /bin/bash

cd $PBS O WORKDIR
No need to provide -np or -hostfile options
mpiexec ./test

Job can be submitted as: gsub -1 nodes=2:ppn=2 test.sub

— “mpiexec” will automatically know that the system has PBS, and ask
PBS for the number of cores allocated (4 in this case), and which
nodes have been allocated

The usage is similar for other resource managers

Introduction to MPI, Argonne (06/06/2014)

37

Debugging MPI programs

= Parallel debugging is trickier than debugging serial programs

— Many processes computing; getting the state of one failed process is
usually hard

— MPICH provides in-built support for debugging

e |t natively interoperates with commercial parallel debuggers such as
Totalview and DDT

= Using MPICH with totalview:

— totalview —-a mpiexec -n 6 ./test

= Using MPICH with ddd (or gdb) on one process:
— mpiexec -n 4 ./test : -n 1 ddd ./test : -n 1 ./test

— Launches the 5% process under “ddd” and all other processes normally

Introduction to MPI, Argonne (06/06/2014) 38

What we will cover in this tutorial

= Slightly more advanced topics:

— Non-blocking communication in MPI
— Group (collective) communication in MPI

— MPI Datatypes

= Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 39

Blocking vs. Non-blocking Communication

= MPI_SEND/MPI_RECV are blocking communication calls

Return of the routine implies completion

When these calls return the memory locations used in the message
transfer can be safely accessed for reuse

For “send” completion implies variable sent can be reused/modified
Modifications will not affect data intended for the receiver

For “receive” variable received can be read

= MPI_ISEND/MPI_IRECV are non-blocking variants

Routine returns immediately — completion has to be separately tested for

These are primarily used to overlap computation and communication to
improve performance

Introduction to MPI, Argonne (06/06/2014) 40

Blocking Communication

In blocking communication.

— MPI__SEND does not return until buffer is empty (available for reuse)

— MPI_RECYV does not return until buffer is full (available for use)
= A process sending data will be blocked until data in the send buffer is emptied
= A process receiving data will be blocked until the receive buffer is filled

= Exact completion semantics of communication generally depends on the
message size and the system buffer size

= Blocking communication is simple to use but can be prone to deadlocks
if (rank ==0) {
MPI_SEND(..to rank 1..)
MPI_ RECV(..from rank 1..)
Usually deadlocks 2> else if (rank ==1) {
MPI SEND(..to rank 0..) < reverse send/recv
MPI_RECV(..from rank 0..)

Introduction to MPI, Argonne (06/06/2014) 41

Blocking Send-Receive Diagram

TO: MPI Recv

Oncerecerve

T1:MPI Send is called @ TO,

butter unavailable
to user

sender | time
returns T2

N —

buffer can T3: Transfer Complete
be reused

T4 Recerve

returns (@ T4,
v buffer filled

Internal completion is soon !
followed by return of MPl_Recv

send side recerve side

Introduction to MPI, Argonne (06/06/2014) 42

Non-Blocking Communication

Non-blocking (asynchronous) operations return (immediately) “request

handles” that can be waited on and queried

— MPI ISEND(buf, count, datatype, dest, tag, comm, request)
— MPI_IRECV(buf, count, datatype, src, tag, comm, request)

— MPI WAIT(request, status)
Non-blocking operations allow overlapping computation and communication
One can also test without waiting using MPI_TEST

— MPIL_TEST(request, flag, status)

Anywhere you use MPI_SEND or MPI_RECV, you can use the pair of
MPI_ISEND/MPI_WAIT or MPI_IRECV/MPI_WAIT

Introduction to MPI, Argonne (06/06/2014)

43

Multiple Completions

= |t is sometimes desirable to wait on multiple requests:
— MPI Waitall (count, array of requests, array of statuses)
— MPI Waitany(count, array of requests, &index, &status)
— MPI_Waitsome (incount, array_ of_requests, outcount,

array of indices, array of statuses)

= There are corresponding versions of TEST for each of these

Introduction to MPI, Argonne (06/06/2014) 44

\ |
Non-Blocking Send-Receive Diagram

High Performance Implementations
Offer Low Overhead for Non-blocking Calls

TO: MPI_Irecv

T2: MPI Isend T1: Returns

sender T% —_—
returns (@ T3 7~
bufter unavailable

sender
completes @ T35 TS \ —
buffer available]
after MPI_ Wait T6 \
T ' — T7: transfer finish
T6: MPI_Wait Zan transfer tinishes

. v T8
T9: Wait returns
MPI_Wait, returns @ T8
here. recerve butter filled

time

Internal completion is soon

. followed by return of MPI_Wait v
send side receive side

Introduction to MPI, Argonne (06/06/2014) 45

Message Completion and Buffering

= For a communication to succeed:

— Sender must specify a valid destination rank

— Receiver must specify a valid source rank (including MPI_ANY_SOURCE)

— The communicator must be the same

— Tags must match

— Receiver’s buffer must be large enough

= Asend has completed when the user supplied buffer can be reused

*buf =3;
MPI Send(buf, 1, MPI INT ..)

buf = 4; / OK, receiver will always

receive 3 */

*buf =3;

MPI Isend(buf, 1, MPI_ INT ..)

*buf = 4; /*Not certain if receiver
gets 3 or 4 or anything else */

MPI Wait(..):;

= Just because the send completes does not mean that the receive has

completed

— Message may be buffered by the system

— Message may still be in transit

Introduction to MPI, Argonne (06/06/2014)

46

A Non-Blocking communication example

o [
l Blocking
Communication
o LT
o
Non-blocking
vV Vv Communication
o L LT T T]

Introduction to MPI, Argonne (06/06/2014) 47

A Non-Blocking communication example

int main(int argc, char ** argv)

{
[...snip...]
if (rank == 0) {
for (i=0; i< 100; i++) {
/* Compute each data element and send it out */
datal[i] = compute(i);
MPI Isend(&data[i]l, 1, MPI INT, 1, 0, MPI COMM WORLD,
&request[i]l);
}
MPI Waitall (100, request, MPI STATUSES IGNORE)
}
else {
for (i = 0; i < 100; i++)
MPI Recv(&data[i], 1, MPI INT, O, 0, MPI COMM WORLD,
MPI_STATUS_ IGNORE) ;
}
[...snip...]

Introduction to MPI, Argonne (06/06/2014)

48

2D Poisson Problem

Introduction to MPI, Argonne (06/06/2014)

49

Regular Mesh Algorithms

Many scientific applications involve the solution of partial
differential equations (PDEs)

Many algorithms for approximating the solution of PDEs
rely on forming a set of difference equations

— Finite difference, finite elements, finite volume

The exact form of the differential equations depends on
the particular method

— From the point of view of parallel programming for these
algorithms, the operations are the same

Five-point stencil is a popular approximation solution

Introduction to MPI, Argonne (06/06/2014) 50

Necessary Data Transfers

Introduction to MPI, Argonne (06/06/2014)

51

Necessary Data Transfers

Introduction to MPI, Argonne (06/06/2014)

52

Necessary Data Transfers

Provide access to remote data through a halo exchange (5 point stencil)

=3

Introduction to MPI, Argonne (06/06/2014)

53

Understanding Performance: Unexpected Hot Spots

Basic performance analysis looks at two-party exchanges
Real applications involve many simultaneous communications

Performance problems can arise even in common grid exchange

patterns

Message passing illustrates problems present even in shared
memory

— Blocking operations may cause unavoidable memory stalls

Introduction to MPI, Argonne (06/06/2014) 54

Mesh Exchange

= Exchange data on a mesh

ﬁ_ Introduction to MPI, Argonne (06/06/2014)

55

Sample Code

for (i=0; i < n_neighbors; i++) {
MPI Send(edge, len, MPI DOUBLE, nbr[i], tag, comm);

}
for (i=0; i < n_neighbors; i++) {

MPI Recv(edge, len, MPI DOUBLE, nbr[i], tag, comm, status);

= What is wrong with this code?

Introduction to MPI, Argonne (06/06/2014) 56

Deadlocks!

= All of the sends may block, waiting for a matching receive (will
for large enough messages)

= The variation of
if (has up nbr)

MPI Recv(.. up ..)

if (has down nbr)

MPI Send(.. down ..)

sequentializes (all except the bottom process blocks)

Introduction to MPI, Argonne (06/06/2014) 57

Fix 1: Use lrecv

for (1 = 0; 1 < n_neighbors; 1i++) {
MPI Irecv(edge, len, MPI DOUBLE, nbr[il,

comm, requests[i]);

}
for (1 = 0; 1 < n_neighbors; 1i++) {

MPI Send(edge, len, MPI DOUBLE, nbr[il],
}

MPI Waitall (n_neighbors, requests, statuses);

= Does not perform well in practice. Why?

Introduction to MPI, Argonne (06/06/2014)

tag,

tag,

comm) ;

58

Mesh Exchange

= Exchange data on a mesh

Step 1 Step 1 Step 1

4 y s -/ o
r S
\
Step 1 Step 1 [| Step1 | 1
\]
\ /
~~~_—’,
y 27V TN 27V TN
; S ; S
Step 1 [ | Step1 | 1 [ | Step1 | 1
\ / \ ]
y2 \ y2
~~~__‘, ~~~. :‘,
27V TN 27V TN sk 2 B
; A ; S ; A
[] Sstepl L S| Step1 |1 S| Step1 | 1
\ 7 \d 7 e U
\ / \ / \ P
~~~_—’, ~~~_—’, ~~~_—’,

Introduction to MPI, Argonne (06/06/2014) 59



Mesh Exchange

77N

= Exchange data on a mesh

&

277N

Step 2

AY
\
1
7

y 4

~ -

~\ P4

Step 2

Step 2

—-—=

277N

Step 1

N
\-',

~ -

Introduction to MPI, Argonne (06/06/2014)

~ -

[ N
/ \
< L \
Step 2 I Step2 | 1
\ Y [
\ s
~~~_—’,
/’_--~~
/ \
/ \
Step 2 5] Step1 | 1
\ Y [
\ s
~~~_—’,
PR il 27V TS,
\ / \
\ " \
Stepl | 1 \ Step1l | 1
7 \ 7
~~_—’, ~~~ L :‘,
/’-/--~ N '/’_\--~~\
\ / \
Step1l |1 5| Stepl | i
7 ¢ /
y) \ y)
~ s ‘o ’

60



Mesh Exchange

= Exchange data on a mesh

277N

277N

Step 2

Introduction to MPI, Argonne (06/06/2014)

277N

277

N
\-',

Step 2

Step 2

N

Step 2

61



Mesh Exchange

= Exchange data on a mesh

o 5 Introduction to MPI, Argonne (06/06/2014)

62



Mesh Exchange

= Exchange data on a mesh

E S - Introduction to MPI, Argonne (06/06/2014)



Mesh Exchange

= Exchange data on a mesh

Step 4

Li __ : Introduction to MPI, Argonne (06/06/2014) 64



Timeline from IB Cluster

% Legend : mesh-non.. || TimeLine : mesh-nonblocking-optl.slog2 <Process View>
| | Nema¥ L-’YS @» @ % @@% ﬁ' @&@ @ 0
| 7 | gl Il =" 3 | i | S | SRS et FR 2 —=1] :
-i! il B Losvesi/ Max. Degt 4| Zoom Level Global Min Time View init Time Zoom Focus Time View Final Time Ghobal Max Time Time Per Fixel b:
- | @ 0/0 ‘ 1 0.0000448227 00040153265 0.0040153265 0.007085830F 0.0079858703 0.0000038325 | -
R L] - — = e = = = - 14
U] e dativeEx.. |v TimelLinas -| -
I:Il Preview_State [¥] | [¥] = :
Ijl MPE_irecv_waited [ | [] 3 sLoc-2
D MPL_Barrier [ | [#]
— (| A
D MPLComm_rank [l | []
D MPIL_Comm_size ¥l | [¥] D 1
Di MPLirecy bl | b
-I MPL Send V] | [ G-
-I MPL Waitall M | ] 0
3
| Preview_Event [ | []
-l MPE_Comm_finalize ¥l | [#] D 4
MPE_Comm_init ¥
Cys
Cie
Oy7
IAE;
(N
IREL
4] D
[« I | [o] ~|
T 1] [
A @ world_rank| |
| Select | | Deselect | | | | | ‘ ‘ | | |
||| wes 0094 0.0048 0.0052 0.0055 0006 00064 0.0065 0.0072 0.0075
— ] ]| Time (seconds) =

Introduction to MPI, Argonne (06/06/2014) 65



Fix 2: Use Isend and Irecv

for (1 = 0; 1 < n_neighbors; 1i++) {
MPI Irecv(edge, len, MPI DOUBLE, nbr[i], tag,
comm, requests[il);
}
for (1 = 0; 1 < n_neighbors; 1i++) {
MPI Isend(edge, len, MPI DOUBLE, nbr[i]l, tag,
requests[n neighbors + 1i]);
}

MPI Waitall(2 * n_neighbors, requests, statuses);

Introduction to MPI, Argonne (06/06/2014)

comm,

66



Timeline from IB Cluster

%/ Legend : mesh-nonbl... 800 % TimelLine : mesh-nonblocking-opt2.slog2 <Process View>
cov v PN R B R IENEIEY R
e | | | | | |
o Preview_Arrow — T PR . e . . - - =Ty
/ Max. Deith 4| Zoom Level Giobal Wi Time View init Time Zoom Focus Time e Globrai Max Time Time Per Pixel @ ,wl Iy
‘ g message | ! - [10:D000 20045 o5 tnrone 9021102926, (0057625747 0. 0000022939¢ i 2Rl
| Cumui 2 Ex...|v TimaLines | |
]:I Praview_State : :
| P |
! MPE_irecv_waited [ 5L0G-2
D MPL_Barrier |Z| D
| - :
- MPL_Comm_rank
- MEP_Comm_size [v] D 1
- MFPLlrecv
| wee reenc R
MEL Waitalt
| RE] :
Freview_Everit
? MPE_Comm_finalize D 4
MEPE_Comm_init
Os
O :
0
O
Do .
[ 20
| [z
[« Ii \ [»] - B
alt a I :
@ world_rank|*|
‘ Select | ‘ Deselect | 2 ‘ | | | | ‘ | | | I
=k 0.0025 0.00275 0.003 0.00325 00035 000375 o004 0.00425 0.0045 o
closa [l Dl : Tim 6!1:01(\‘5)—2

Note processes 4 and 7 are the only interior processors; these perform more
communication than the other processors

Introduction to MPI, Argonne (06/06/2014) 67



Lesson: Defer Synchronization

Send-receive accomplishes two things:

— Data transfer

— Synchronization
In many cases, there is more synchronization than required

Use non-blocking operations and Mpx_waitall to defer

synchronization

Tools can help out with identifying performance issues

— MPE, Tau and HPCToolkit are popular profiling tools

— Jumpshot tool uses their datasets to show performance problems

graphically

Introduction to MPI, Argonne (06/06/2014)

68



Code Example

= stencil_mpi_nonblocking.c
= Non-blocking sends and receives
= Manually packing and unpacking the data

= Additional communication buffers are needed

—

= Display message queue state using Totalview
— totalview mpiexec —a —n 4 ./stencil_mpi_nonblocking 300 250 100 2 2

Introduction to MPI, Argonne (06/06/2014) 69



What we will cover in this tutorial

= Slightly more advanced topics:

— Group (collective) communication in MPI

— MPI Datatypes

= Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 70



Introduction to Collective Operations in MPI

= Collective operations are called by all processes in a

communicator.

= MPI_BCAST distributes data from one process (the root) to all

others in a communicator.

= MPI_REDUCE combines data from all processes in the
communicator and returns it to one process.

" |n many numerical algorithms, SEND/RECV can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.

Introduction to MPI, Argonne (06/06/2014) 71



MPI Collective Communication

= Communication and computation is coordinated among a
group of processes in a communicator

= Tags are not used; different communicators deliver similar
functionality

= Non-blocking collective operations in MPI-3

— Covered in the advanced tutorial (but conceptually simple)

= Three classes of operations: synchronization, data movement,
collective computation

Introduction to MPI, Argonne (06/06/2014) 72



Synchronization

= MPI BARRIER (comm)
— Blocks until all processes in the group of the communicator comm call
it
— A process cannot get out of the barrier until all other processes have
reached barrier

Introduction to MPI, Argonne (06/06/2014)

73



Collective Data Movement

PO

P1 Broadcast

P2

P3

PO Scatter

P1

P2

Gather
P3

__ Introduction to MPI, Argonne (06/06/2014)

74



More Collective Data Movement

PO

P1 Allgather

P2

P3

PO

Pl Alltoall

P2

P3

i Introduction to MPI, Argonne (06/06/2014) 75



Collective Computation

PO
P1

P2
P3

PO
P1
P2
P3

Reduce

Scan

Introduction to MPI, Argonne (06/06/2014)

76



MPI Collective Routines

= Many Routines: MPI_ALLGATHER, MPI_ALLGATHERV,
MPI_ ALLREDUCE, MPI_ALLTOALL, MPI_ ALLTOALLV,
MPI_ BCAST, MPI_GATHER, MPI_GATHERV, MPI_ REDUCE,
MPI_REDUCESCATTER, MPI_SCAN, MPI_SCATTER,
MPI_SCATTERV

= w“wAll” versions deliver results to all participating processes

= Wy~ yersions (stands for vector) allow the chunks to have different

sizes

= MPI_ALLREDUCE, MPI_REDUCE, MPI_ REDUCESCATTER, and
MPI SCAN take both built-in and user-defined combiner functions

Introduction to MPI, Argonne (06/06/2014) 77



MPI Built-in Collective Computation Operations

"= MPI MAX

"= MPI_ MIN

= MPI PROD

= MPI SUM

"= MPI_LAND

= MPI IOR

= MPI LXOR

"= MPI_BAND

= MPI BOR

= MPI BXOR

= MPI MAXILOC
= MPI MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or
Bitwise and

Bitwise or

Bitwise exclusive or
Maximum and location
Minimum and location

Introduction to MPI, Argonne (06/06/2014)

78



Defining your own Collective Operations

= Create your own collective computations with:
MPI OP_CREATE (user_fn, commutes, &op);
MPI OP_ FREE (&op);

user fn(invec, inoutvec, len, datatype);
= The user function should perform:

inoutvec|[i] = 1invec|[i] op 1inoutvec|[i];

fori from O to len-1

= The user function can be non-commutative, but must be

associative

Introduction to MPI, Argonne (06/06/2014) 79



Example: Calculating Pi

= (Calculating pi via numerical - \
integration N

Divide interval up into subintervals \
Assign subintervals to processes oo \
Each process calculates partial sum
Add all the partial sums together to

get pi

‘., n

n” segments

Width of each segment (w) will be 1/n

owu:7
I

Distance (d(i)) of segment “i” from the origin will be “i * w”

Height of segment “i” will be sqrt(1 — [d(i)]*2)

Introduction to MPI, Argonne (06/06/2014) 80



Example: Plin C

#include <math.h>

int main(int argc, char *argvl[])

{
[...snip...]
/* Tell all processes, the number of segments you want */
w = 1.0 / (double) n;
mypi = 0.0;
for (1 = rank + 1; 1 <= n; i += size)
mypi += w * sqrt(l - (((double) i / n) * ((double) i / n));
if (rank == 0)
printf ("pi is approximately %.16f, Error is %.l1l6f\n", 4 * pi,
fabs((4 * pi) - PI25DT));
[...snip...]
}

Introduction to MPI, Argonne (06/06/2014) 81



What we will cover in this tutorial

= Slightly more advanced topics:

— MPI Datatypes

= Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 82



Necessary Data Transfers

Provide access to remote data through a halo exchange (5 point stencil)

=3

Introduction to MPI, Argonne (06/06/2014)

83



The Local Data Structure

Ill

= Each process has its local “patch” of the global array
— “bx” and “by” are the sizes of the local array
— Always allocate a halo around the patch

— Array allocated of size (bx+2)x(by+2)

Introduction to MPI, Argonne (06/06/2014)

84



Introduction to Datatypes in MPI

= Datatypes allow to (de)serialize arbitrary data layouts into a
message stream
— Networks provide serial channels

— Same for block devices and I/0O

= Several constructors allow arbitrary layouts

— Recursive specification possible

— Declarative specification of data-layout

e “what” and not “how”, leaves optimization to implementation (many
unexplored possibilities!)

— Choosing the right constructors is not always simple

Introduction to MPI, Argonne (06/06/2014)

85



Simple/Predefined Datatypes

= Equivalents exist for all C, C++ and Fortran native datatypes
— Cint & MPLINT
— Cfloat & MPI_FLOAT
— Cdouble & MPI_DOUBLE
— Cuint32_t = MPI_UINT32_T
— Fortran integer = MPI_INTEGER

* For more complex or user-created datatypes, MPI provides
routines to represent them as well

— Contiguous

— Vector/Hvector

— Indexed/Indexed_block/Hindexed/Hindexed block
— Struct

— Some convenience types (e.g., subarray)

Introduction to MPI, Argonne (06/06/2014)



Derived Datatype Example

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

contig contig contig

indexed

vector

struct

Introduction to MPI, Argonne (06/06/2014)

87



MPI_Type contiguous

MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

= Contiguous array of oldtype

= Should not be used as last type (can be replaced by count)

0o 1 2 3 4 5 6 7 8 910 11 12 13 14

15 16 17 18

struct struct struct

I
contig

Introduction to MPI, Argonne (06/06/2014)

88




MPI_Type_ vector

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPIl_Datatype *newtype)

= Specify strided blocks of data of oldtype

= Very useful for Cartesian arrays

struct struct struct struct

|
vector

Introduction to MPI, Argonne (06/06/2014) 89



MPI Type create hvector

MPI_Type_create_hvector(int count, int blocklength,
MPI_Aint stride, MP|_Datatype oldtype,
MPI_Datatype *newtype)

= (Create non-unit strided vectors

= Useful for composition, e.g., vector of structs

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

\ | )
I I

struct struct struct struct
\ )

1
hvector

Introduction to MPI, Argonne (06/06/2014) 90




MPIl _Type create indexed block

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of displacements, MPI_Datatype oldtype,

MPI_Datatype *newtype)

= Pulling irregular subsets of data from a single array

— dynamic codes with index lists, expensive though!
— blen=2
— displs={0,5,8,13,18}

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

)
I
Introduction to MPI, Argonne (06/06/2014) 91

Indexed_block



MPI_Type Indexed

MPI_Type_indexed(int count, int *array_of blocklengths,
int *array_of displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

= Like indexed block, but can have different block lengths
— blen={1,1,2,1,2,1}
— displs={0,3,5,9,13,17}

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
\ )
!

indexed

Introduction to MPI, Argonne (06/06/2014) 92




MPI_Type create_struct

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements]],
MPI_Datatype array_of types]],

MPI_Datatype *newtype)

= Most general constructor, allows different types and arbitrary

arrays (also most costly)

Introduction to MPI, Argonne (06/06/2014)

93




MPI_Type create subarray

MPI_Type_create_subarray(int ndims, int array_of_sizes[],

int array_of subsizes|[], int array_of starts[],

int order, MPI|_Datatype oldtype,

MPI_Datatype *newtype)

= Convenience function for creating
datatypes for array segments

= Specify subarray of n-dimensional
array (sizes) by start (starts) and size
(subsize)

(0,0) | (0,1) | (0,2) | (0,3)
(1,0) | (1,1) | (1,2) | (1,3)
(2,0) 11 (2,1) | (2,2) |](2,3)
(3,0) 11 (3,1) | (3,2) |](3,3)

Introduction to MPI, Argonne (06/06/2014)

94




MPI BOTTOM and MPI_Get_ address

= MPI_BOTTOM is the absolute zero address

— Portability (e.g., may be non-zero in globally shared memory)

= MPI_Get address
— Returns address relative to MPI_BOTTOM

— Portability (do not use “&” operator in C!)

= Very important to

— build struct datatypes

— If data spans multiple arrays

Introduction to MPI, Argonne (06/06/2014)

95



Commit, Free, and Dup

= Types must be committed before use
— Only the ones that are used!

— MPI_Type_commit may perform heavy optimizations (and will
hopefully)

= MPI_Type_free
— Free MPI resources of datatypes

— Does not affect types built from it
= MPI_Type_dup
— Duplicates a type

— Library abstraction (composability)

Introduction to MPI, Argonne (06/06/2014)

96



Other DDT Functions

= Pack/Unpack
— Mainly for compatibility to legacy libraries
— You should not be doing this yourself

= Get_envelope/contents

— Only for expert library developers

— Libraries like MPITypes! make this easier

= MPI_Create_resized

— Change extent and size (dangerous but useful)

http://www.mcs.anl.gov/mpitypes/

Introduction to MPI, Argonne (06/06/2014)

97



Datatype Selection Order

= Simple and effective performance model:

— More parameters == slower
= predefined < contig < vector < index_block < index < struct

= Some (most) MPIs are inconsistent

— But this rule is portable

= Advice to users:

— Try datatype “compression” bottom-up

W. Gropp et al.: Performance Expectations and Guidelines for MPI Derived Datatypes

Introduction to MPI, Argonne (06/06/2014)

98



Code Example

= stencil-mpi-ddt.c
= Non-blocking sends and receives
= Data location specified by MPI datatypes

= Manual packing of data no longer required

Introduction to MPI, Argonne (06/06/2014)

99



What we will cover in this tutorial

= Whatis MPI?
= How to write a simple program in MPI
" Running your application with MPICH

= Slightly more advanced topics:

— Non-blocking communication in MPI
— Group (collective) communication in MPI

— MPI Datatypes

= Conclusions and Final Q/A

_ Introduction to MPI, Argonne (06/06/2014) 100



Conclusions

= Parallelism is critical today, given that that is the only way to
achieve performance improvement with the modern
hardware

= MPIis an industry standard model for parallel programming

— Alarge number of implementations of MPI exist (both commercial and
public domain)

— Virtually every system in the world supports MPI

= Gives user explicit control on data management
= Widely used by many scientific applications with great success

" Your application can be next!

Introduction to MPI, Argonne (06/06/2014) 101



Web Pointers

=  MPI standard : http://www.mpi-forum.org/docs/docs.html

= MPICH : http://www.mpich.org

=  MPICH mailing list: discuss@mpich.org

= MPI Forum : http://www.mpi-forum.org/

=  Other MPIl implementations:
— MVAPICH (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/
— Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-

library/
— Microsoft MPI (MPICH derivative)

— Open MPI : http://www.open-mpi.org/

=  Several MPI tutorials can be found on the web

Introduction to MPI, Argonne (06/06/2014) 102



