
Introduction to MPI

Rajeev Thakur
Argonne National Laboratory
Email: thakur@mcs.anl.gov

Web: http://www.mcs.anl.gov/~thakur

Xin Zhao
University of Illinois, Urbana-Champaign

Email: xinzhao3@illinois.edu
Web: http://web.engr.illinois.edu/~xinzhao3

Pavan Balaji
Argonne National Laboratory

Email: balaji@anl.gov
Web: http://www.mcs.anl.gov/~balaji

Ken Raffenetti
Argonne National Laboratory
Email: raffenet@mcs.anl.gov

Web: http://www.mcs.anl.gov/~raffenet

Wesley Bland
Argonne National Laboratory
Email: wbland@mcs.anl.gov

Web: http://www.mcs.anl.gov/~wbland

Slides Available at http://www.mcs.anl.gov/~balaji/permalinks/argonne14_mpi.php

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 2

The switch from sequential to parallel computing

 Moore’s law continues to be true, but…
– Processor speeds no longer double every 18-24 months

– Number of processing units double, instead
• Multi-core chips (dual-core, quad-core)

– No more automatic increase in speed for software

 Parallelism is the norm
– Lots of processors connected over a network and coordinating to

solve large problems

– Used every where!
• By USPS for tracking and minimizing fuel routes

• By automobile companies for car crash simulations

• By airline industry to build newer models of flights

Introduction to MPI, Argonne (06/06/2014) 3

Sample Parallel Programming Models

 Shared Memory Programming
– Processes share memory address space (threads model)

– Application ensures no data corruption (Lock/Unlock)

 Transparent Parallelization
– Compiler works magic on sequential programs

 Directive-based Parallelization
– Compiler needs help (e.g., OpenMP)

 Message Passing
– Explicit communication between processes (like sending and receiving

emails)

Introduction to MPI, Argonne (06/06/2014) 4

The Message-Passing Model

 A process is (traditionally) a program counter and address
space.

 Processes may have multiple threads (program counters and
associated stacks) sharing a single address space. MPI is for
communication among processes, which have separate
address spaces.

 Inter-process communication consists of
– synchronization

– movement of data from one process’s address space to another’s.

Process Process

MPI

MPI

Introduction to MPI, Argonne (06/06/2014) 5

The Message-Passing Model (an example)

 Each process has to send/receive data to/from other processes

 Example: Sorting Integers

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Process1 Process2

1 3 5 8 6713 19 23 24 30 35 45

O(N/2 log N/2) O(N/2 log N/2)

O(N log N)

O(N)

Process1

Process1

Introduction to MPI, Argonne (06/06/2014) 6

Standardizing Message-Passing Models with MPI

 Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were
not portable (or very capable)

 Early portable systems (PVM, p4, TCGMSG, Chameleon) were
mainly research efforts

– Did not address the full spectrum of message-passing issues

– Lacked vendor support

– Were not implemented at the most efficient level

 The MPI Forum was a collection of vendors, portability writers and
users that wanted to standardize all these efforts

Introduction to MPI, Argonne (06/06/2014) 7

What is MPI?

 MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the
application can and cannot expect

– Each system can implement it differently as long as the semantics match

 MPI is not…
– a language or compiler specification
– a specific implementation or product

Introduction to MPI, Argonne (06/06/2014) 8

Applications (Science and Engineering)

 MPI is widely used in large scale parallel applications in
science and engineering

– Atmosphere, Earth, Environment

– Physics - applied, nuclear, particle, condensed matter, high pressure,
fusion, photonics

– Bioscience, Biotechnology, Genetics

– Chemistry, Molecular Sciences

– Geology, Seismology

– Mechanical Engineering - from prosthetics to spacecraft

– Electrical Engineering, Circuit Design, Microelectronics

– Computer Science, Mathematics

Introduction to MPI, Argonne (06/06/2014) 9

10

Turbo machinery (Gas turbine/compressor)

Drilling application

Biology application

Astrophysics application

Transportation & traffic
application

Introduction to MPI, Argonne (06/06/2014) 10

Reasons for Using MPI

 Standardization - MPI is the only message passing library which can be
considered a standard. It is supported on virtually all HPC platforms.
Practically, it has replaced all previous message passing libraries

 Portability - There is no need to modify your source code when you port
your application to a different platform that supports (and is compliant
with) the MPI standard

 Performance Opportunities - Vendor implementations should be able to
exploit native hardware features to optimize performance

 Functionality – Rich set of features

 Availability - A variety of implementations are available, both vendor and
public domain

– MPICH is a popular open-source and free implementation of MPI

– Vendors and other collaborators take MPICH and add support for their systems
• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX

Introduction to MPI, Argonne (06/06/2014) 11

Important considerations while using MPI

 All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs

Introduction to MPI, Argonne (06/06/2014) 12

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 13

MPI Basic Send/Receive

 Simple communication model

 Application needs to specify to the MPI implementation:
1. How do you compile and run an MPI application?

2. How will processes be identified?

3. How will “data” be described?

Process 0 Process 1

Send(data)
Receive(data)

Introduction to MPI, Argonne (06/06/2014) 14

Compiling and Running MPI applications (more
details later)

 MPI is a library
– Applications can be written in C, C++ or Fortran and appropriate calls

to MPI can be added where required

 Compilation:
– Regular applications:

• gcc test.c -o test

– MPI applications
• mpicc test.c -o test

 Execution:
– Regular applications

• ./test

– MPI applications (running with 16 processes)
• mpiexec –n 16 ./test

Introduction to MPI, Argonne (06/06/2014) 15

Process Identification

 MPI processes can be collected into groups
– Each group can have multiple colors (some times called context)

– Group + color == communicator (it is like a name for the group)

– When an MPI application starts, the group of all processes is initially
given a predefined name called MPI_COMM_WORLD

 The same group can have many names, but simple programs do not
have to worry about multiple names

 A process is identified by a unique number within each
communicator, called rank
– For two different communicators, the same process can have two

different ranks: so the meaning of a “rank” is only defined when you
specify the communicator

Introduction to MPI, Argonne (06/06/2014) 16

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am %d of %d\n", rank + 1, size);

MPI_Finalize();

return 0;

}

Simple MPI Program Identifying Processes

Introduction to MPI, Argonne (06/06/2014) 17

Basic
requirements

for an MPI
program

Code Example

 intro-hello.c

Introduction to MPI, Argonne (06/06/2014) 18

Data Communication

 Data communication in MPI is like email exchange
– One process sends a copy of the data to another process (or a group

of processes), and the other process receives it

 Communication requires the following information:
– Sender has to know:

• Whom to send the data to (receiver’s process rank)
• What kind of data to send (100 integers or 200 characters, etc)
• A user-defined “tag” for the message (think of it as an email subject;

allows the receiver to understand what type of data is being received)
– Receiver “might” have to know:

• Who is sending the data (OK if the receiver does not know; in this case
sender rank will be MPI_ANY_SOURCE, meaning anyone can send)

• What kind of data is being received (partial information is OK: I might
receive up to 1000 integers)

• What the user-defined “tag” of the message is (OK if the receiver does
not know; in this case tag will be MPI_ANY_TAG)

Introduction to MPI, Argonne (06/06/2014) 19

More Details on Describing Data for Communication

 MPI Datatype is very similar to a C or Fortran datatype
– int MPI_INT

– double MPI_DOUBLE

– char MPI_CHAR

 More complex datatypes are also possible:
– E.g., you can create a structure datatype that comprises of other

datatypes a char, an int and a double.

– Or, a vector datatype for the columns of a matrix

 The “count” in MPI_SEND and MPI_RECV refers to how many
datatype elements should be communicated

Introduction to MPI, Argonne (06/06/2014) 20

MPI Basic (Blocking) Send

MPI_SEND(buf, count, datatype, dest, tag, comm)

 The message buffer is described by (buf, count, datatype).

 The target process is specified by dest and comm.
– dest is the rank of the target process in the communicator specified by
comm.

 tag is a user-defined “type” for the message

 When this function returns, the data has been delivered to the
system and the buffer can be reused.
– The message may not have been received by the target process.

Introduction to MPI, Argonne (06/06/2014) 21

MPI Basic (Blocking) Receive

MPI_RECV(buf, count, datatype, source, tag, comm, status)

 Waits until a matching (on source, tag, comm) message is received
from the system, and the buffer can be used.

 source is rank in communicator comm, or MPI_ANY_SOURCE.
 Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.
 status contains further information:

– Who sent the message (can be used if you used MPI_ANY_SOURCE)
– How much data was actually received
– What tag was used with the message (can be used if you used MPI_ANY_TAG)
– MPI_STATUS_IGNORE can be used if we don’t need any additional information

Introduction to MPI, Argonne (06/06/2014) 22

#include <mpi.h>
#include <stdio.h>

int main(int argc, char ** argv)
{

int rank, data[100];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0)
MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);

else if (rank == 1)
MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

MPI_Finalize();
return 0;

}

Simple Communication in MPI

Introduction to MPI, Argonne (06/06/2014) 23

Code Example

 intro-sendrecv.c

Introduction to MPI, Argonne (06/06/2014) 24

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

8 19 23 35 3045 67 1 3 5 13 24

O(N log N)

1 3 5 8 6713 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0

Introduction to MPI, Argonne (06/06/2014) 25

O(N/2 log N/2)

O(N)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char ** argv)
{

int rank, a[1000], b[500];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);
sort(a, 500);
MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

/* Serial: Merge array b and sorted part of array a */
}
else if (rank == 1) {

MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

sort(b, 500);
MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

MPI_Finalize(); return 0;
}

Parallel Sort using MPI Send/Recv (contd.)

Introduction to MPI, Argonne (06/06/2014) 26

Status Object

 The status object is used after completion of a receive to find the
actual length, source, and tag of a message

 Status object is MPI-defined type and provides information about:
– The source process for the message (status.MPI_SOURCE)

– The message tag (status.MPI_TAG)

– Error status (status.MPI_ERROR)

 The number of elements received is given by:
MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

status return status of receive operation (status)
datatype datatype of each receive buffer element (handle)
count number of received elements (integer)(OUT)

Introduction to MPI, Argonne (06/06/2014) 27

Using the “status” field

 Each “worker process” computes some task (maximum 100
elements) and sends it to the “master” process together with
its group number: the “tag” field can be used to represent the
task
– Data count is not fixed (maximum 100 elements)

– Order in which workers send output to master is not fixed (different
workers = different source ranks, and different tasks = different tags)

Task 1 Task 2

Introduction to MPI, Argonne (06/06/2014) 28

#include <mpi.h>
#include <stdio.h>

int main(int argc, char ** argv)
{

[...snip...]

if (rank != 0) /* worker process */
MPI_Send(data, rand() % 100, MPI_INT, 0, group_id,

MPI_COMM_WORLD);
else { /* master process */

for (i = 0; i < size – 1; i++) {
MPI_Recv(data, 100, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
MPI_Get_count(&status, MPI_INT, &count);
printf(“worker ID: %d; task ID: %d; count: %d\n”,

status.MPI_SOURCE, status.MPI_TAG, count);
}

}

[...snip...]
}

Using the “status” field (contd.)

Introduction to MPI, Argonne (06/06/2014) 29

MPI is Simple

 Many parallel programs can be written using just these six functions, only
two of which are non-trivial:
– MPI_INIT – initialize the MPI library (must be the

first routine called)

– MPI_COMM_SIZE - get the size of a communicator

– MPI_COMM_RANK – get the rank of the calling process

in the communicator

– MPI_SEND – send a message to another process

– MPI_RECV – send a message to another process

– MPI_FINALIZE – clean up all MPI state (must be the

last MPI function called by a process)

 For performance, however, you need to use other MPI features

Introduction to MPI, Argonne (06/06/2014) 30

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 31

What is MPICH

 MPICH is a high-performance and widely portable open-
source implementation of MPI

 It provides all features of MPI that have been defined so far
(including MPI-1, MPI-2.0, MPI-2.1, MPI-2.2, and MPI-3.0)

 Active development lead by Argonne National Laboratory and
University of Illinois at Urbana-Champaign
– Several close collaborators who contribute many features, bug fixes,

testing for quality assurance, etc.
• IBM, Microsoft, Cray, Intel, Ohio State University, Queen’s University,

Myricom and many others

 Current release is MPICH-3.1.1

Introduction to MPI, Argonne (06/06/2014) 32

Getting Started with MPICH

 Download MPICH
– Go to http://www.mpich.org and follow the downloads link
– The download will be a zipped tarball

 Build MPICH
– Unzip/untar the tarball
– tar -xzvf mpich-3.1.1.tar.gz

– cd mpich-3.1.1

– ./configure –-prefix=/where/to/install/mpich |& tee c.log

– make |& tee m.log

– make install |& tee mi.log

– Add /where/to/install/mpich/bin to your PATH

Introduction to MPI, Argonne (06/06/2014) 33

Compiling MPI programs with MPICH

 Compilation Wrappers
– For C programs: mpicc test.c –o test

– For C++ programs: mpicxx test.cpp –o test

– For Fortran 77 programs: mpif77 test.f –o test

– For Fortran 90 programs: mpif90 test.f90 –o test

 You can link other libraries are required too
– To link to a math library: mpicc test.c –o test -lm

 You can just assume that “mpicc” and friends have replaced
your regular compilers (gcc, gfortran, etc.)

Introduction to MPI, Argonne (06/06/2014) 34

Running MPI programs with MPICH

 Launch 16 processes on the local node:
– mpiexec –n 16 ./test

 Launch 16 processes on 4 nodes (each has 4 cores)
– mpiexec –hosts h1:4,h2:4,h3:4,h4:4 –n 16 ./test

• Runs the first four processes on h1, the next four on h2, etc.

– mpiexec –hosts h1,h2,h3,h4 –n 16 ./test

• Runs the first process on h1, the second on h2, etc., and wraps around
• So, h1 will have the 1st, 5th, 9th and 13th processes

 If there are many nodes, it might be easier to create a host file
– cat hf

h1:4

h2:2

– mpiexec –hostfile hf –n 16 ./test

Introduction to MPI, Argonne (06/06/2014) 35

Trying some example programs

 MPICH comes packaged with several example programs using
almost ALL of MPICH’s functionality

 A simple program to try out is the PI example written in C
(cpi.c) – calculates the value of PI in parallel (available in the
examples directory when you build MPICH)
– mpiexec –n 16 ./examples/cpi

 The output will show how many processes are running, and
the error in calculating PI

 Next, try it with multiple hosts
– mpiexec –hosts h1:2,h2:4 –n 16 ./examples/cpi

 If things don’t work as expected, send an email to
discuss@mpich.org

Introduction to MPI, Argonne (06/06/2014) 36

Interaction with Resource Managers

 Resource managers such as SGE, PBS, SLURM or Loadleveler
are common in many managed clusters
– MPICH automatically detects them and interoperates with them

 For example with PBS, you can create a script such as:
#! /bin/bash

cd $PBS_O_WORKDIR

No need to provide –np or –hostfile options

mpiexec ./test

 Job can be submitted as: qsub –l nodes=2:ppn=2 test.sub

– “mpiexec” will automatically know that the system has PBS, and ask
PBS for the number of cores allocated (4 in this case), and which
nodes have been allocated

 The usage is similar for other resource managers
Introduction to MPI, Argonne (06/06/2014) 37

Debugging MPI programs

 Parallel debugging is trickier than debugging serial programs
– Many processes computing; getting the state of one failed process is

usually hard

– MPICH provides in-built support for debugging
• It natively interoperates with commercial parallel debuggers such as

Totalview and DDT

 Using MPICH with totalview:
– totalview –a mpiexec –n 6 ./test

 Using MPICH with ddd (or gdb) on one process:
– mpiexec –n 4 ./test : -n 1 ddd ./test : -n 1 ./test

– Launches the 5th process under “ddd” and all other processes normally

Introduction to MPI, Argonne (06/06/2014) 38

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 39

Blocking vs. Non-blocking Communication

 MPI_SEND/MPI_RECV are blocking communication calls
– Return of the routine implies completion

– When these calls return the memory locations used in the message
transfer can be safely accessed for reuse

– For “send” completion implies variable sent can be reused/modified

– Modifications will not affect data intended for the receiver

– For “receive” variable received can be read

 MPI_ISEND/MPI_IRECV are non-blocking variants
– Routine returns immediately – completion has to be separately tested for

– These are primarily used to overlap computation and communication to
improve performance

Introduction to MPI, Argonne (06/06/2014) 40

Blocking Communication

 In blocking communication.
– MPI_SEND does not return until buffer is empty (available for reuse)

– MPI_RECV does not return until buffer is full (available for use)

 A process sending data will be blocked until data in the send buffer is emptied
 A process receiving data will be blocked until the receive buffer is filled
 Exact completion semantics of communication generally depends on the

message size and the system buffer size
 Blocking communication is simple to use but can be prone to deadlocks

if (rank == 0) {
MPI_SEND(..to rank 1..)

MPI_RECV(..from rank 1..)

Usually deadlocks  else if (rank == 1) {
MPI_SEND(..to rank 0..)  reverse send/recv
MPI_RECV(..from rank 0..)

}

Introduction to MPI, Argonne (06/06/2014) 41

42

time

Blocking Send-Receive Diagram

Introduction to MPI, Argonne (06/06/2014) 42

Non-Blocking Communication

 Non-blocking (asynchronous) operations return (immediately) ‘‘request

handles” that can be waited on and queried
– MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

– MPI_IRECV(buf, count, datatype, src, tag, comm, request)

– MPI_WAIT(request, status)

 Non-blocking operations allow overlapping computation and communication
 One can also test without waiting using MPI_TEST

– MPI_TEST(request, flag, status)

 Anywhere you use MPI_SEND or MPI_RECV, you can use the pair of
MPI_ISEND/MPI_WAIT or MPI_IRECV/MPI_WAIT

Introduction to MPI, Argonne (06/06/2014) 43

Multiple Completions

 It is sometimes desirable to wait on multiple requests:

– MPI_Waitall(count, array_of_requests, array_of_statuses)

– MPI_Waitany(count, array_of_requests, &index, &status)

– MPI_Waitsome(incount, array_of_requests, outcount,

array_of_indices, array_of_statuses)

 There are corresponding versions of TEST for each of these

Introduction to MPI, Argonne (06/06/2014) 44

45

Non-Blocking Send-Receive Diagram

time

Introduction to MPI, Argonne (06/06/2014) 45

Message Completion and Buffering

 For a communication to succeed:
– Sender must specify a valid destination rank
– Receiver must specify a valid source rank (including MPI_ANY_SOURCE)
– The communicator must be the same
– Tags must match
– Receiver’s buffer must be large enough

 A send has completed when the user supplied buffer can be reused

 Just because the send completes does not mean that the receive has
completed
– Message may be buffered by the system
– Message may still be in transit

*buf =3;
MPI_Send(buf, 1, MPI_INT …)
buf = 4; / OK, receiver will always
receive 3 */

*buf =3;
MPI_Isend(buf, 1, MPI_INT …)
*buf = 4; /*Not certain if receiver
gets 3 or 4 or anything else */
MPI_Wait(…);

Introduction to MPI, Argonne (06/06/2014) 46

A Non-Blocking communication example

P0

P1

Blocking
Communication

P0

P1

Non-blocking
Communication

Introduction to MPI, Argonne (06/06/2014) 47

int main(int argc, char ** argv)

{

[...snip...]

if (rank == 0) {

for (i=0; i< 100; i++) {

/* Compute each data element and send it out */

data[i] = compute(i);

MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD,

&request[i]);

}

MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

}

else {

for (i = 0; i < 100; i++)

MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

}

[...snip...]

}

A Non-Blocking communication example

Introduction to MPI, Argonne (06/06/2014) 48

2D Poisson Problem

(i,j)
(i+1,j)(i-1,j)

(i,j-1)

(i,j+1)

Introduction to MPI, Argonne (06/06/2014) 49

Regular Mesh Algorithms

 Many scientific applications involve the solution of partial
differential equations (PDEs)

 Many algorithms for approximating the solution of PDEs
rely on forming a set of difference equations
– Finite difference, finite elements, finite volume

 The exact form of the differential equations depends on
the particular method
– From the point of view of parallel programming for these

algorithms, the operations are the same

 Five-point stencil is a popular approximation solution

50Introduction to MPI, Argonne (06/06/2014)

Necessary Data Transfers

51Introduction to MPI, Argonne (06/06/2014)

Necessary Data Transfers

52Introduction to MPI, Argonne (06/06/2014)

Necessary Data Transfers

 Provide access to remote data through a halo exchange (5 point stencil)

53Introduction to MPI, Argonne (06/06/2014)

Understanding Performance: Unexpected Hot Spots

 Basic performance analysis looks at two-party exchanges

 Real applications involve many simultaneous communications

 Performance problems can arise even in common grid exchange
patterns

 Message passing illustrates problems present even in shared
memory
– Blocking operations may cause unavoidable memory stalls

Introduction to MPI, Argonne (06/06/2014) 54

Mesh Exchange

 Exchange data on a mesh

9 10 11

6 7 8

3 4 5

0 1 2

Introduction to MPI, Argonne (06/06/2014) 55

Sample Code

 What is wrong with this code?

for (i = 0; i < n_neighbors; i++) {
MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}
for (i = 0; i < n_neighbors; i++) {
MPI_Recv(edge, len, MPI_DOUBLE, nbr[i], tag, comm, status);

}

Introduction to MPI, Argonne (06/06/2014) 56

Deadlocks!

 All of the sends may block, waiting for a matching receive (will
for large enough messages)

 The variation of
if (has up nbr)
MPI_Recv(… up …)

…

if (has down nbr)
MPI_Send(… down …)

sequentializes (all except the bottom process blocks)

Introduction to MPI, Argonne (06/06/2014) 57

Fix 1: Use Irecv

 Does not perform well in practice. Why?

Introduction to MPI, Argonne (06/06/2014) 58

for (i = 0; i < n_neighbors; i++) {

MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag,

comm, requests[i]);

}

for (i = 0; i < n_neighbors; i++) {

MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}

MPI_Waitall(n_neighbors, requests, statuses);

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 59

Step 1 Step 1 Step 1

Step 1 Step 1 Step 1

Step 1 Step 1 Step 1

Step 1 Step 1 Step 1

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 60

Step 2 Step 2 Step 2

Step 2 Step 2 Step 1

Step 2 Step 1 Step 1

Step 1 Step 1 Step 1

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 61

Step 2 Step 3 Step 2

Step 3 Step 3 Step 2

Step 3 Step 2 Step 2

Step 2 Step 2 Step 2

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 62

Step 2 Step 3 Step 2

Step 3 Step 3 Step 3

Done Step 3 Step 3

Done Step 3 Done

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 63

Done Done Done

Done Step 4 Step 3

Done Step 3 Done

Done Done Done

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 64

Done Done Done

Done Done Done

Done Step 4 Done

Done Done Done

Timeline from IB Cluster

Introduction to MPI, Argonne (06/06/2014) 65

Fix 2: Use Isend and Irecv

Introduction to MPI, Argonne (06/06/2014) 66

for (i = 0; i < n_neighbors; i++) {

MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag,

comm, requests[i]);

}

for (i = 0; i < n_neighbors; i++) {

MPI_Isend(edge, len, MPI_DOUBLE, nbr[i], tag, comm,

requests[n_neighbors + i]);

}

MPI_Waitall(2 * n_neighbors, requests, statuses);

Timeline from IB Cluster

Note processes 4 and 7 are the only interior processors; these perform more
communication than the other processors

Introduction to MPI, Argonne (06/06/2014) 67

Lesson: Defer Synchronization

 Send-receive accomplishes two things:
– Data transfer

– Synchronization

 In many cases, there is more synchronization than required

 Use non-blocking operations and MPI_Waitall to defer
synchronization

 Tools can help out with identifying performance issues
– MPE, Tau and HPCToolkit are popular profiling tools

– Jumpshot tool uses their datasets to show performance problems
graphically

Introduction to MPI, Argonne (06/06/2014) 68

Code Example

 stencil_mpi_nonblocking.c

 Non-blocking sends and receives

 Manually packing and unpacking the data

 Additional communication buffers are needed

 Display message queue state using Totalview
– totalview mpiexec –a –n 4 ./stencil_mpi_nonblocking 300 250 100 2 2

Introduction to MPI, Argonne (06/06/2014) 69

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 70

Introduction to Collective Operations in MPI

 Collective operations are called by all processes in a
communicator.

 MPI_BCAST distributes data from one process (the root) to all
others in a communicator.

 MPI_REDUCE combines data from all processes in the
communicator and returns it to one process.

 In many numerical algorithms, SEND/RECV can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.

Introduction to MPI, Argonne (06/06/2014) 71

MPI Collective Communication

 Communication and computation is coordinated among a
group of processes in a communicator

 Tags are not used; different communicators deliver similar
functionality

 Non-blocking collective operations in MPI-3
– Covered in the advanced tutorial (but conceptually simple)

 Three classes of operations: synchronization, data movement,
collective computation

Introduction to MPI, Argonne (06/06/2014) 72

Synchronization

 MPI_BARRIER(comm)

– Blocks until all processes in the group of the communicator comm call
it

– A process cannot get out of the barrier until all other processes have
reached barrier

Introduction to MPI, Argonne (06/06/2014) 73

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

Introduction to MPI, Argonne (06/06/2014) 74

More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

Introduction to MPI, Argonne (06/06/2014) 75

Collective Computation

P0
P1
P2
P3

P0

P1
P2
P3

A
B

D
C

A
B

D
C

f(ABCD)

f(A)
f(AB)

f(ABC)
f(ABCD)

Reduce

Scan

Introduction to MPI, Argonne (06/06/2014) 76

MPI Collective Routines

 Many Routines: MPI_ALLGATHER, MPI_ALLGATHERV,
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV,

MPI_BCAST, MPI_GATHER, MPI_GATHERV, MPI_REDUCE,

MPI_REDUCESCATTER, MPI_SCAN, MPI_SCATTER,

MPI_SCATTERV

 “All” versions deliver results to all participating processes

 “V” versions (stands for vector) allow the chunks to have different
sizes

 MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and
MPI_SCAN take both built-in and user-defined combiner functions

Introduction to MPI, Argonne (06/06/2014) 77

MPI Built-in Collective Computation Operations

 MPI_MAX

 MPI_MIN

 MPI_PROD

 MPI_SUM

 MPI_LAND

 MPI_LOR

 MPI_LXOR

 MPI_BAND

 MPI_BOR

 MPI_BXOR

 MPI_MAXLOC

 MPI_MINLOC

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location

Introduction to MPI, Argonne (06/06/2014) 78

Defining your own Collective Operations

 Create your own collective computations with:
MPI_OP_CREATE(user_fn, commutes, &op);

MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

 The user function should perform:
inoutvec[i] = invec[i] op inoutvec[i];

for i from 0 to len-1

 The user function can be non-commutative, but must be
associative

Introduction to MPI, Argonne (06/06/2014) 79

Example: Calculating Pi

1

1 Calculating pi via numerical
integration
– Divide interval up into subintervals
– Assign subintervals to processes
– Each process calculates partial sum
– Add all the partial sums together to

get pi

“n” segments

1. Width of each segment (w) will be 1/n
2. Distance (d(i)) of segment “i” from the origin will be “i * w”
3. Height of segment “i” will be sqrt(1 – [d(i)]^2)

Introduction to MPI, Argonne (06/06/2014) 80

#include <mpi.h>

#include <math.h>

int main(int argc, char *argv[])

{

[...snip...]

/* Tell all processes, the number of segments you want */

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

w = 1.0 / (double) n;

mypi = 0.0;

for (i = rank + 1; i <= n; i += size)

mypi += w * sqrt(1 – (((double) i / n) * ((double) i / n));

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (rank == 0)

printf("pi is approximately %.16f, Error is %.16f\n", 4 * pi,

fabs((4 * pi) - PI25DT));

[...snip...]

}

Example: PI in C

Introduction to MPI, Argonne (06/06/2014) 81

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 82

Necessary Data Transfers

 Provide access to remote data through a halo exchange (5 point stencil)

83Introduction to MPI, Argonne (06/06/2014)

The Local Data Structure

 Each process has its local “patch” of the global array
– “bx” and “by” are the sizes of the local array
– Always allocate a halo around the patch
– Array allocated of size (bx+2)x(by+2)

bx

by

84Introduction to MPI, Argonne (06/06/2014)

Introduction to Datatypes in MPI

 Datatypes allow to (de)serialize arbitrary data layouts into a
message stream
– Networks provide serial channels

– Same for block devices and I/O

 Several constructors allow arbitrary layouts
– Recursive specification possible

– Declarative specification of data-layout
• “what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

– Choosing the right constructors is not always simple

Introduction to MPI, Argonne (06/06/2014) 85

Simple/Predefined Datatypes

 Equivalents exist for all C, C++ and Fortran native datatypes
– C int  MPI_INT
– C float  MPI_FLOAT
– C double  MPI_DOUBLE
– C uint32_t  MPI_UINT32_T
– Fortran integer  MPI_INTEGER

 For more complex or user-created datatypes, MPI provides
routines to represent them as well
– Contiguous
– Vector/Hvector
– Indexed/Indexed_block/Hindexed/Hindexed_block
– Struct
– Some convenience types (e.g., subarray)

Introduction to MPI, Argonne (06/06/2014) 86

Derived Datatype Example

Introduction to MPI, Argonne (06/06/2014) 87

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

contig contig contig

vector

indexed

struct

181715

MPI_Type_contiguous

 Contiguous array of oldtype

 Should not be used as last type (can be replaced by count)

MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 88

0 1 2 3 4 5 6 7 8 9 1
0

1
1

contig
0 1 2 3 4 5 6 7 8 9 10 11 12 14 16

struct struct struct

contig

13

MPI_Type_vector

 Specify strided blocks of data of oldtype

 Very useful for Cartesian arrays

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 89

vector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

vector

19 20

struct struct

0 1 2 3 4 5 6 7 8 9 1
0

1
1

MPI_Type_create_hvector

 Create non-unit strided vectors

 Useful for composition, e.g., vector of structs

MPI_Type_create_hvector(int count, int blocklength,
MPI_Aint stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

hvector

19

struct struct

MPI_Type_create_indexed_block

 Pulling irregular subsets of data from a single array
– dynamic codes with index lists, expensive though!

– blen=2

– displs={0,5,8,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 91

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Indexed_block

MPI_Type_indexed

 Like indexed_block, but can have different block lengths
– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

indexed

MPI_Type_create_struct

 Most general constructor, allows different types and arbitrary
arrays (also most costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[],
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 93

0 1 2 3 4

struct

MPI_Type_create_subarray

 Convenience function for creating
datatypes for array segments

 Specify subarray of n-dimensional
array (sizes) by start (starts) and size
(subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[],
int order, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 94

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_BOTTOM and MPI_Get_address

 MPI_BOTTOM is the absolute zero address
– Portability (e.g., may be non-zero in globally shared memory)

 MPI_Get_address
– Returns address relative to MPI_BOTTOM

– Portability (do not use “&” operator in C!)

 Very important to
– build struct datatypes

– If data spans multiple arrays

Introduction to MPI, Argonne (06/06/2014) 95

Commit, Free, and Dup

 Types must be committed before use
– Only the ones that are used!

– MPI_Type_commit may perform heavy optimizations (and will
hopefully)

 MPI_Type_free
– Free MPI resources of datatypes

– Does not affect types built from it

 MPI_Type_dup
– Duplicates a type

– Library abstraction (composability)

Introduction to MPI, Argonne (06/06/2014) 96

Other DDT Functions

 Pack/Unpack
– Mainly for compatibility to legacy libraries

– You should not be doing this yourself

 Get_envelope/contents
– Only for expert library developers

– Libraries like MPITypes1 make this easier

 MPI_Create_resized
– Change extent and size (dangerous but useful)

http://www.mcs.anl.gov/mpitypes/

Introduction to MPI, Argonne (06/06/2014) 97

Datatype Selection Order

 Simple and effective performance model:
– More parameters == slower

 predefined < contig < vector < index_block < index < struct
 Some (most) MPIs are inconsistent

– But this rule is portable

 Advice to users:
– Try datatype “compression” bottom-up

W. Gropp et al.: Performance Expectations and Guidelines for MPI Derived Datatypes

Introduction to MPI, Argonne (06/06/2014) 98

Code Example

 stencil-mpi-ddt.c

 Non-blocking sends and receives

 Data location specified by MPI datatypes

 Manual packing of data no longer required

Introduction to MPI, Argonne (06/06/2014) 99

bx

by

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 100

Conclusions

 Parallelism is critical today, given that that is the only way to
achieve performance improvement with the modern
hardware

 MPI is an industry standard model for parallel programming
– A large number of implementations of MPI exist (both commercial and

public domain)

– Virtually every system in the world supports MPI

 Gives user explicit control on data management

 Widely used by many scientific applications with great success

 Your application can be next!

Introduction to MPI, Argonne (06/06/2014) 101

Web Pointers

 MPI standard : http://www.mpi-forum.org/docs/docs.html

 MPICH : http://www.mpich.org

 MPICH mailing list: discuss@mpich.org

 MPI Forum : http://www.mpi-forum.org/

 Other MPI implementations:
– MVAPICH (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/

– Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-
library/

– Microsoft MPI (MPICH derivative)

– Open MPI : http://www.open-mpi.org/

 Several MPI tutorials can be found on the web

Introduction to MPI, Argonne (06/06/2014) 102

