
Introduction to MPI

Rajeev Thakur
Argonne National Laboratory
Email: thakur@mcs.anl.gov

Web: http://www.mcs.anl.gov/~thakur

Xin Zhao
University of Illinois, Urbana-Champaign

Email: xinzhao3@illinois.edu
Web: http://web.engr.illinois.edu/~xinzhao3

Pavan Balaji
Argonne National Laboratory

Email: balaji@anl.gov
Web: http://www.mcs.anl.gov/~balaji

Ken Raffenetti
Argonne National Laboratory
Email: raffenet@mcs.anl.gov

Web: http://www.mcs.anl.gov/~raffenet

Wesley Bland
Argonne National Laboratory
Email: wbland@mcs.anl.gov

Web: http://www.mcs.anl.gov/~wbland

Slides Available at http://www.mcs.anl.gov/~balaji/permalinks/argonne14_mpi.php

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 2

The switch from sequential to parallel computing

 Moore’s law continues to be true, but…
– Processor speeds no longer double every 18-24 months

– Number of processing units double, instead
• Multi-core chips (dual-core, quad-core)

– No more automatic increase in speed for software

 Parallelism is the norm
– Lots of processors connected over a network and coordinating to

solve large problems

– Used every where!
• By USPS for tracking and minimizing fuel routes

• By automobile companies for car crash simulations

• By airline industry to build newer models of flights

Introduction to MPI, Argonne (06/06/2014) 3

Sample Parallel Programming Models

 Shared Memory Programming
– Processes share memory address space (threads model)

– Application ensures no data corruption (Lock/Unlock)

 Transparent Parallelization
– Compiler works magic on sequential programs

 Directive-based Parallelization
– Compiler needs help (e.g., OpenMP)

 Message Passing
– Explicit communication between processes (like sending and receiving

emails)

Introduction to MPI, Argonne (06/06/2014) 4

The Message-Passing Model

 A process is (traditionally) a program counter and address
space.

 Processes may have multiple threads (program counters and
associated stacks) sharing a single address space. MPI is for
communication among processes, which have separate
address spaces.

 Inter-process communication consists of
– synchronization

– movement of data from one process’s address space to another’s.

Process Process

MPI

MPI

Introduction to MPI, Argonne (06/06/2014) 5

The Message-Passing Model (an example)

 Each process has to send/receive data to/from other processes

 Example: Sorting Integers

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Process1 Process2

1 3 5 8 6713 19 23 24 30 35 45

O(N/2 log N/2) O(N/2 log N/2)

O(N log N)

O(N)

Process1

Process1

Introduction to MPI, Argonne (06/06/2014) 6

Standardizing Message-Passing Models with MPI

 Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were
not portable (or very capable)

 Early portable systems (PVM, p4, TCGMSG, Chameleon) were
mainly research efforts

– Did not address the full spectrum of message-passing issues

– Lacked vendor support

– Were not implemented at the most efficient level

 The MPI Forum was a collection of vendors, portability writers and
users that wanted to standardize all these efforts

Introduction to MPI, Argonne (06/06/2014) 7

What is MPI?

 MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the
application can and cannot expect

– Each system can implement it differently as long as the semantics match

 MPI is not…
– a language or compiler specification
– a specific implementation or product

Introduction to MPI, Argonne (06/06/2014) 8

Applications (Science and Engineering)

 MPI is widely used in large scale parallel applications in
science and engineering

– Atmosphere, Earth, Environment

– Physics - applied, nuclear, particle, condensed matter, high pressure,
fusion, photonics

– Bioscience, Biotechnology, Genetics

– Chemistry, Molecular Sciences

– Geology, Seismology

– Mechanical Engineering - from prosthetics to spacecraft

– Electrical Engineering, Circuit Design, Microelectronics

– Computer Science, Mathematics

Introduction to MPI, Argonne (06/06/2014) 9

10

Turbo machinery (Gas turbine/compressor)

Drilling application

Biology application

Astrophysics application

Transportation & traffic
application

Introduction to MPI, Argonne (06/06/2014) 10

Reasons for Using MPI

 Standardization - MPI is the only message passing library which can be
considered a standard. It is supported on virtually all HPC platforms.
Practically, it has replaced all previous message passing libraries

 Portability - There is no need to modify your source code when you port
your application to a different platform that supports (and is compliant
with) the MPI standard

 Performance Opportunities - Vendor implementations should be able to
exploit native hardware features to optimize performance

 Functionality – Rich set of features

 Availability - A variety of implementations are available, both vendor and
public domain

– MPICH is a popular open-source and free implementation of MPI

– Vendors and other collaborators take MPICH and add support for their systems
• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX

Introduction to MPI, Argonne (06/06/2014) 11

Important considerations while using MPI

 All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs

Introduction to MPI, Argonne (06/06/2014) 12

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 13

MPI Basic Send/Receive

 Simple communication model

 Application needs to specify to the MPI implementation:
1. How do you compile and run an MPI application?

2. How will processes be identified?

3. How will “data” be described?

Process 0 Process 1

Send(data)
Receive(data)

Introduction to MPI, Argonne (06/06/2014) 14

Compiling and Running MPI applications (more
details later)

 MPI is a library
– Applications can be written in C, C++ or Fortran and appropriate calls

to MPI can be added where required

 Compilation:
– Regular applications:

• gcc test.c -o test

– MPI applications
• mpicc test.c -o test

 Execution:
– Regular applications

• ./test

– MPI applications (running with 16 processes)
• mpiexec –n 16 ./test

Introduction to MPI, Argonne (06/06/2014) 15

Process Identification

 MPI processes can be collected into groups
– Each group can have multiple colors (some times called context)

– Group + color == communicator (it is like a name for the group)

– When an MPI application starts, the group of all processes is initially
given a predefined name called MPI_COMM_WORLD

 The same group can have many names, but simple programs do not
have to worry about multiple names

 A process is identified by a unique number within each
communicator, called rank
– For two different communicators, the same process can have two

different ranks: so the meaning of a “rank” is only defined when you
specify the communicator

Introduction to MPI, Argonne (06/06/2014) 16

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am %d of %d\n", rank + 1, size);

MPI_Finalize();

return 0;

}

Simple MPI Program Identifying Processes

Introduction to MPI, Argonne (06/06/2014) 17

Basic
requirements

for an MPI
program

Code Example

 intro-hello.c

Introduction to MPI, Argonne (06/06/2014) 18

Data Communication

 Data communication in MPI is like email exchange
– One process sends a copy of the data to another process (or a group

of processes), and the other process receives it

 Communication requires the following information:
– Sender has to know:

• Whom to send the data to (receiver’s process rank)
• What kind of data to send (100 integers or 200 characters, etc)
• A user-defined “tag” for the message (think of it as an email subject;

allows the receiver to understand what type of data is being received)
– Receiver “might” have to know:

• Who is sending the data (OK if the receiver does not know; in this case
sender rank will be MPI_ANY_SOURCE, meaning anyone can send)

• What kind of data is being received (partial information is OK: I might
receive up to 1000 integers)

• What the user-defined “tag” of the message is (OK if the receiver does
not know; in this case tag will be MPI_ANY_TAG)

Introduction to MPI, Argonne (06/06/2014) 19

More Details on Describing Data for Communication

 MPI Datatype is very similar to a C or Fortran datatype
– int MPI_INT

– double MPI_DOUBLE

– char MPI_CHAR

 More complex datatypes are also possible:
– E.g., you can create a structure datatype that comprises of other

datatypes a char, an int and a double.

– Or, a vector datatype for the columns of a matrix

 The “count” in MPI_SEND and MPI_RECV refers to how many
datatype elements should be communicated

Introduction to MPI, Argonne (06/06/2014) 20

MPI Basic (Blocking) Send

MPI_SEND(buf, count, datatype, dest, tag, comm)

 The message buffer is described by (buf, count, datatype).

 The target process is specified by dest and comm.
– dest is the rank of the target process in the communicator specified by
comm.

 tag is a user-defined “type” for the message

 When this function returns, the data has been delivered to the
system and the buffer can be reused.
– The message may not have been received by the target process.

Introduction to MPI, Argonne (06/06/2014) 21

MPI Basic (Blocking) Receive

MPI_RECV(buf, count, datatype, source, tag, comm, status)

 Waits until a matching (on source, tag, comm) message is received
from the system, and the buffer can be used.

 source is rank in communicator comm, or MPI_ANY_SOURCE.
 Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.
 status contains further information:

– Who sent the message (can be used if you used MPI_ANY_SOURCE)
– How much data was actually received
– What tag was used with the message (can be used if you used MPI_ANY_TAG)
– MPI_STATUS_IGNORE can be used if we don’t need any additional information

Introduction to MPI, Argonne (06/06/2014) 22

#include <mpi.h>
#include <stdio.h>

int main(int argc, char ** argv)
{

int rank, data[100];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0)
MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);

else if (rank == 1)
MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

MPI_Finalize();
return 0;

}

Simple Communication in MPI

Introduction to MPI, Argonne (06/06/2014) 23

Code Example

 intro-sendrecv.c

Introduction to MPI, Argonne (06/06/2014) 24

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

8 19 23 35 3045 67 1 3 5 13 24

O(N log N)

1 3 5 8 6713 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0

Introduction to MPI, Argonne (06/06/2014) 25

O(N/2 log N/2)

O(N)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char ** argv)
{

int rank, a[1000], b[500];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);
sort(a, 500);
MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

/* Serial: Merge array b and sorted part of array a */
}
else if (rank == 1) {

MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

sort(b, 500);
MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

MPI_Finalize(); return 0;
}

Parallel Sort using MPI Send/Recv (contd.)

Introduction to MPI, Argonne (06/06/2014) 26

Status Object

 The status object is used after completion of a receive to find the
actual length, source, and tag of a message

 Status object is MPI-defined type and provides information about:
– The source process for the message (status.MPI_SOURCE)

– The message tag (status.MPI_TAG)

– Error status (status.MPI_ERROR)

 The number of elements received is given by:
MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

status return status of receive operation (status)
datatype datatype of each receive buffer element (handle)
count number of received elements (integer)(OUT)

Introduction to MPI, Argonne (06/06/2014) 27

Using the “status” field

 Each “worker process” computes some task (maximum 100
elements) and sends it to the “master” process together with
its group number: the “tag” field can be used to represent the
task
– Data count is not fixed (maximum 100 elements)

– Order in which workers send output to master is not fixed (different
workers = different source ranks, and different tasks = different tags)

Task 1 Task 2

Introduction to MPI, Argonne (06/06/2014) 28

#include <mpi.h>
#include <stdio.h>

int main(int argc, char ** argv)
{

[...snip...]

if (rank != 0) /* worker process */
MPI_Send(data, rand() % 100, MPI_INT, 0, group_id,

MPI_COMM_WORLD);
else { /* master process */

for (i = 0; i < size – 1; i++) {
MPI_Recv(data, 100, MPI_INT, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);
MPI_Get_count(&status, MPI_INT, &count);
printf(“worker ID: %d; task ID: %d; count: %d\n”,

status.MPI_SOURCE, status.MPI_TAG, count);
}

}

[...snip...]
}

Using the “status” field (contd.)

Introduction to MPI, Argonne (06/06/2014) 29

MPI is Simple

 Many parallel programs can be written using just these six functions, only
two of which are non-trivial:
– MPI_INIT – initialize the MPI library (must be the

first routine called)

– MPI_COMM_SIZE - get the size of a communicator

– MPI_COMM_RANK – get the rank of the calling process

in the communicator

– MPI_SEND – send a message to another process

– MPI_RECV – send a message to another process

– MPI_FINALIZE – clean up all MPI state (must be the

last MPI function called by a process)

 For performance, however, you need to use other MPI features

Introduction to MPI, Argonne (06/06/2014) 30

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 31

What is MPICH

 MPICH is a high-performance and widely portable open-
source implementation of MPI

 It provides all features of MPI that have been defined so far
(including MPI-1, MPI-2.0, MPI-2.1, MPI-2.2, and MPI-3.0)

 Active development lead by Argonne National Laboratory and
University of Illinois at Urbana-Champaign
– Several close collaborators who contribute many features, bug fixes,

testing for quality assurance, etc.
• IBM, Microsoft, Cray, Intel, Ohio State University, Queen’s University,

Myricom and many others

 Current release is MPICH-3.1.1

Introduction to MPI, Argonne (06/06/2014) 32

Getting Started with MPICH

 Download MPICH
– Go to http://www.mpich.org and follow the downloads link
– The download will be a zipped tarball

 Build MPICH
– Unzip/untar the tarball
– tar -xzvf mpich-3.1.1.tar.gz

– cd mpich-3.1.1

– ./configure –-prefix=/where/to/install/mpich |& tee c.log

– make |& tee m.log

– make install |& tee mi.log

– Add /where/to/install/mpich/bin to your PATH

Introduction to MPI, Argonne (06/06/2014) 33

Compiling MPI programs with MPICH

 Compilation Wrappers
– For C programs: mpicc test.c –o test

– For C++ programs: mpicxx test.cpp –o test

– For Fortran 77 programs: mpif77 test.f –o test

– For Fortran 90 programs: mpif90 test.f90 –o test

 You can link other libraries are required too
– To link to a math library: mpicc test.c –o test -lm

 You can just assume that “mpicc” and friends have replaced
your regular compilers (gcc, gfortran, etc.)

Introduction to MPI, Argonne (06/06/2014) 34

Running MPI programs with MPICH

 Launch 16 processes on the local node:
– mpiexec –n 16 ./test

 Launch 16 processes on 4 nodes (each has 4 cores)
– mpiexec –hosts h1:4,h2:4,h3:4,h4:4 –n 16 ./test

• Runs the first four processes on h1, the next four on h2, etc.

– mpiexec –hosts h1,h2,h3,h4 –n 16 ./test

• Runs the first process on h1, the second on h2, etc., and wraps around
• So, h1 will have the 1st, 5th, 9th and 13th processes

 If there are many nodes, it might be easier to create a host file
– cat hf

h1:4

h2:2

– mpiexec –hostfile hf –n 16 ./test

Introduction to MPI, Argonne (06/06/2014) 35

Trying some example programs

 MPICH comes packaged with several example programs using
almost ALL of MPICH’s functionality

 A simple program to try out is the PI example written in C
(cpi.c) – calculates the value of PI in parallel (available in the
examples directory when you build MPICH)
– mpiexec –n 16 ./examples/cpi

 The output will show how many processes are running, and
the error in calculating PI

 Next, try it with multiple hosts
– mpiexec –hosts h1:2,h2:4 –n 16 ./examples/cpi

 If things don’t work as expected, send an email to
discuss@mpich.org

Introduction to MPI, Argonne (06/06/2014) 36

Interaction with Resource Managers

 Resource managers such as SGE, PBS, SLURM or Loadleveler
are common in many managed clusters
– MPICH automatically detects them and interoperates with them

 For example with PBS, you can create a script such as:
#! /bin/bash

cd $PBS_O_WORKDIR

No need to provide –np or –hostfile options

mpiexec ./test

 Job can be submitted as: qsub –l nodes=2:ppn=2 test.sub

– “mpiexec” will automatically know that the system has PBS, and ask
PBS for the number of cores allocated (4 in this case), and which
nodes have been allocated

 The usage is similar for other resource managers
Introduction to MPI, Argonne (06/06/2014) 37

Debugging MPI programs

 Parallel debugging is trickier than debugging serial programs
– Many processes computing; getting the state of one failed process is

usually hard

– MPICH provides in-built support for debugging
• It natively interoperates with commercial parallel debuggers such as

Totalview and DDT

 Using MPICH with totalview:
– totalview –a mpiexec –n 6 ./test

 Using MPICH with ddd (or gdb) on one process:
– mpiexec –n 4 ./test : -n 1 ddd ./test : -n 1 ./test

– Launches the 5th process under “ddd” and all other processes normally

Introduction to MPI, Argonne (06/06/2014) 38

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 39

Blocking vs. Non-blocking Communication

 MPI_SEND/MPI_RECV are blocking communication calls
– Return of the routine implies completion

– When these calls return the memory locations used in the message
transfer can be safely accessed for reuse

– For “send” completion implies variable sent can be reused/modified

– Modifications will not affect data intended for the receiver

– For “receive” variable received can be read

 MPI_ISEND/MPI_IRECV are non-blocking variants
– Routine returns immediately – completion has to be separately tested for

– These are primarily used to overlap computation and communication to
improve performance

Introduction to MPI, Argonne (06/06/2014) 40

Blocking Communication

 In blocking communication.
– MPI_SEND does not return until buffer is empty (available for reuse)

– MPI_RECV does not return until buffer is full (available for use)

 A process sending data will be blocked until data in the send buffer is emptied
 A process receiving data will be blocked until the receive buffer is filled
 Exact completion semantics of communication generally depends on the

message size and the system buffer size
 Blocking communication is simple to use but can be prone to deadlocks

if (rank == 0) {
MPI_SEND(..to rank 1..)

MPI_RECV(..from rank 1..)

Usually deadlocks else if (rank == 1) {
MPI_SEND(..to rank 0..) reverse send/recv
MPI_RECV(..from rank 0..)

}

Introduction to MPI, Argonne (06/06/2014) 41

42

time

Blocking Send-Receive Diagram

Introduction to MPI, Argonne (06/06/2014) 42

Non-Blocking Communication

 Non-blocking (asynchronous) operations return (immediately) ‘‘request

handles” that can be waited on and queried
– MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

– MPI_IRECV(buf, count, datatype, src, tag, comm, request)

– MPI_WAIT(request, status)

 Non-blocking operations allow overlapping computation and communication
 One can also test without waiting using MPI_TEST

– MPI_TEST(request, flag, status)

 Anywhere you use MPI_SEND or MPI_RECV, you can use the pair of
MPI_ISEND/MPI_WAIT or MPI_IRECV/MPI_WAIT

Introduction to MPI, Argonne (06/06/2014) 43

Multiple Completions

 It is sometimes desirable to wait on multiple requests:

– MPI_Waitall(count, array_of_requests, array_of_statuses)

– MPI_Waitany(count, array_of_requests, &index, &status)

– MPI_Waitsome(incount, array_of_requests, outcount,

array_of_indices, array_of_statuses)

 There are corresponding versions of TEST for each of these

Introduction to MPI, Argonne (06/06/2014) 44

45

Non-Blocking Send-Receive Diagram

time

Introduction to MPI, Argonne (06/06/2014) 45

Message Completion and Buffering

 For a communication to succeed:
– Sender must specify a valid destination rank
– Receiver must specify a valid source rank (including MPI_ANY_SOURCE)
– The communicator must be the same
– Tags must match
– Receiver’s buffer must be large enough

 A send has completed when the user supplied buffer can be reused

 Just because the send completes does not mean that the receive has
completed
– Message may be buffered by the system
– Message may still be in transit

*buf =3;
MPI_Send(buf, 1, MPI_INT …)
buf = 4; / OK, receiver will always
receive 3 */

*buf =3;
MPI_Isend(buf, 1, MPI_INT …)
*buf = 4; /*Not certain if receiver
gets 3 or 4 or anything else */
MPI_Wait(…);

Introduction to MPI, Argonne (06/06/2014) 46

A Non-Blocking communication example

P0

P1

Blocking
Communication

P0

P1

Non-blocking
Communication

Introduction to MPI, Argonne (06/06/2014) 47

int main(int argc, char ** argv)

{

[...snip...]

if (rank == 0) {

for (i=0; i< 100; i++) {

/* Compute each data element and send it out */

data[i] = compute(i);

MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD,

&request[i]);

}

MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

}

else {

for (i = 0; i < 100; i++)

MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

}

[...snip...]

}

A Non-Blocking communication example

Introduction to MPI, Argonne (06/06/2014) 48

2D Poisson Problem

(i,j)
(i+1,j)(i-1,j)

(i,j-1)

(i,j+1)

Introduction to MPI, Argonne (06/06/2014) 49

Regular Mesh Algorithms

 Many scientific applications involve the solution of partial
differential equations (PDEs)

 Many algorithms for approximating the solution of PDEs
rely on forming a set of difference equations
– Finite difference, finite elements, finite volume

 The exact form of the differential equations depends on
the particular method
– From the point of view of parallel programming for these

algorithms, the operations are the same

 Five-point stencil is a popular approximation solution

50Introduction to MPI, Argonne (06/06/2014)

Necessary Data Transfers

51Introduction to MPI, Argonne (06/06/2014)

Necessary Data Transfers

52Introduction to MPI, Argonne (06/06/2014)

Necessary Data Transfers

 Provide access to remote data through a halo exchange (5 point stencil)

53Introduction to MPI, Argonne (06/06/2014)

Understanding Performance: Unexpected Hot Spots

 Basic performance analysis looks at two-party exchanges

 Real applications involve many simultaneous communications

 Performance problems can arise even in common grid exchange
patterns

 Message passing illustrates problems present even in shared
memory
– Blocking operations may cause unavoidable memory stalls

Introduction to MPI, Argonne (06/06/2014) 54

Mesh Exchange

 Exchange data on a mesh

9 10 11

6 7 8

3 4 5

0 1 2

Introduction to MPI, Argonne (06/06/2014) 55

Sample Code

 What is wrong with this code?

for (i = 0; i < n_neighbors; i++) {
MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}
for (i = 0; i < n_neighbors; i++) {
MPI_Recv(edge, len, MPI_DOUBLE, nbr[i], tag, comm, status);

}

Introduction to MPI, Argonne (06/06/2014) 56

Deadlocks!

 All of the sends may block, waiting for a matching receive (will
for large enough messages)

 The variation of
if (has up nbr)
MPI_Recv(… up …)

…

if (has down nbr)
MPI_Send(… down …)

sequentializes (all except the bottom process blocks)

Introduction to MPI, Argonne (06/06/2014) 57

Fix 1: Use Irecv

 Does not perform well in practice. Why?

Introduction to MPI, Argonne (06/06/2014) 58

for (i = 0; i < n_neighbors; i++) {

MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag,

comm, requests[i]);

}

for (i = 0; i < n_neighbors; i++) {

MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}

MPI_Waitall(n_neighbors, requests, statuses);

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 59

Step 1 Step 1 Step 1

Step 1 Step 1 Step 1

Step 1 Step 1 Step 1

Step 1 Step 1 Step 1

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 60

Step 2 Step 2 Step 2

Step 2 Step 2 Step 1

Step 2 Step 1 Step 1

Step 1 Step 1 Step 1

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 61

Step 2 Step 3 Step 2

Step 3 Step 3 Step 2

Step 3 Step 2 Step 2

Step 2 Step 2 Step 2

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 62

Step 2 Step 3 Step 2

Step 3 Step 3 Step 3

Done Step 3 Step 3

Done Step 3 Done

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 63

Done Done Done

Done Step 4 Step 3

Done Step 3 Done

Done Done Done

Mesh Exchange

 Exchange data on a mesh

Introduction to MPI, Argonne (06/06/2014) 64

Done Done Done

Done Done Done

Done Step 4 Done

Done Done Done

Timeline from IB Cluster

Introduction to MPI, Argonne (06/06/2014) 65

Fix 2: Use Isend and Irecv

Introduction to MPI, Argonne (06/06/2014) 66

for (i = 0; i < n_neighbors; i++) {

MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag,

comm, requests[i]);

}

for (i = 0; i < n_neighbors; i++) {

MPI_Isend(edge, len, MPI_DOUBLE, nbr[i], tag, comm,

requests[n_neighbors + i]);

}

MPI_Waitall(2 * n_neighbors, requests, statuses);

Timeline from IB Cluster

Note processes 4 and 7 are the only interior processors; these perform more
communication than the other processors

Introduction to MPI, Argonne (06/06/2014) 67

Lesson: Defer Synchronization

 Send-receive accomplishes two things:
– Data transfer

– Synchronization

 In many cases, there is more synchronization than required

 Use non-blocking operations and MPI_Waitall to defer
synchronization

 Tools can help out with identifying performance issues
– MPE, Tau and HPCToolkit are popular profiling tools

– Jumpshot tool uses their datasets to show performance problems
graphically

Introduction to MPI, Argonne (06/06/2014) 68

Code Example

 stencil_mpi_nonblocking.c

 Non-blocking sends and receives

 Manually packing and unpacking the data

 Additional communication buffers are needed

 Display message queue state using Totalview
– totalview mpiexec –a –n 4 ./stencil_mpi_nonblocking 300 250 100 2 2

Introduction to MPI, Argonne (06/06/2014) 69

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 70

Introduction to Collective Operations in MPI

 Collective operations are called by all processes in a
communicator.

 MPI_BCAST distributes data from one process (the root) to all
others in a communicator.

 MPI_REDUCE combines data from all processes in the
communicator and returns it to one process.

 In many numerical algorithms, SEND/RECV can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.

Introduction to MPI, Argonne (06/06/2014) 71

MPI Collective Communication

 Communication and computation is coordinated among a
group of processes in a communicator

 Tags are not used; different communicators deliver similar
functionality

 Non-blocking collective operations in MPI-3
– Covered in the advanced tutorial (but conceptually simple)

 Three classes of operations: synchronization, data movement,
collective computation

Introduction to MPI, Argonne (06/06/2014) 72

Synchronization

 MPI_BARRIER(comm)

– Blocks until all processes in the group of the communicator comm call
it

– A process cannot get out of the barrier until all other processes have
reached barrier

Introduction to MPI, Argonne (06/06/2014) 73

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

Introduction to MPI, Argonne (06/06/2014) 74

More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

Introduction to MPI, Argonne (06/06/2014) 75

Collective Computation

P0
P1
P2
P3

P0

P1
P2
P3

A
B

D
C

A
B

D
C

f(ABCD)

f(A)
f(AB)

f(ABC)
f(ABCD)

Reduce

Scan

Introduction to MPI, Argonne (06/06/2014) 76

MPI Collective Routines

 Many Routines: MPI_ALLGATHER, MPI_ALLGATHERV,
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV,

MPI_BCAST, MPI_GATHER, MPI_GATHERV, MPI_REDUCE,

MPI_REDUCESCATTER, MPI_SCAN, MPI_SCATTER,

MPI_SCATTERV

 “All” versions deliver results to all participating processes

 “V” versions (stands for vector) allow the chunks to have different
sizes

 MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and
MPI_SCAN take both built-in and user-defined combiner functions

Introduction to MPI, Argonne (06/06/2014) 77

MPI Built-in Collective Computation Operations

 MPI_MAX

 MPI_MIN

 MPI_PROD

 MPI_SUM

 MPI_LAND

 MPI_LOR

 MPI_LXOR

 MPI_BAND

 MPI_BOR

 MPI_BXOR

 MPI_MAXLOC

 MPI_MINLOC

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location

Introduction to MPI, Argonne (06/06/2014) 78

Defining your own Collective Operations

 Create your own collective computations with:
MPI_OP_CREATE(user_fn, commutes, &op);

MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

 The user function should perform:
inoutvec[i] = invec[i] op inoutvec[i];

for i from 0 to len-1

 The user function can be non-commutative, but must be
associative

Introduction to MPI, Argonne (06/06/2014) 79

Example: Calculating Pi

1

1 Calculating pi via numerical
integration
– Divide interval up into subintervals
– Assign subintervals to processes
– Each process calculates partial sum
– Add all the partial sums together to

get pi

“n” segments

1. Width of each segment (w) will be 1/n
2. Distance (d(i)) of segment “i” from the origin will be “i * w”
3. Height of segment “i” will be sqrt(1 – [d(i)]^2)

Introduction to MPI, Argonne (06/06/2014) 80

#include <mpi.h>

#include <math.h>

int main(int argc, char *argv[])

{

[...snip...]

/* Tell all processes, the number of segments you want */

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

w = 1.0 / (double) n;

mypi = 0.0;

for (i = rank + 1; i <= n; i += size)

mypi += w * sqrt(1 – (((double) i / n) * ((double) i / n));

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (rank == 0)

printf("pi is approximately %.16f, Error is %.16f\n", 4 * pi,

fabs((4 * pi) - PI25DT));

[...snip...]

}

Example: PI in C

Introduction to MPI, Argonne (06/06/2014) 81

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 82

Necessary Data Transfers

 Provide access to remote data through a halo exchange (5 point stencil)

83Introduction to MPI, Argonne (06/06/2014)

The Local Data Structure

 Each process has its local “patch” of the global array
– “bx” and “by” are the sizes of the local array
– Always allocate a halo around the patch
– Array allocated of size (bx+2)x(by+2)

bx

by

84Introduction to MPI, Argonne (06/06/2014)

Introduction to Datatypes in MPI

 Datatypes allow to (de)serialize arbitrary data layouts into a
message stream
– Networks provide serial channels

– Same for block devices and I/O

 Several constructors allow arbitrary layouts
– Recursive specification possible

– Declarative specification of data-layout
• “what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

– Choosing the right constructors is not always simple

Introduction to MPI, Argonne (06/06/2014) 85

Simple/Predefined Datatypes

 Equivalents exist for all C, C++ and Fortran native datatypes
– C int MPI_INT
– C float MPI_FLOAT
– C double MPI_DOUBLE
– C uint32_t MPI_UINT32_T
– Fortran integer MPI_INTEGER

 For more complex or user-created datatypes, MPI provides
routines to represent them as well
– Contiguous
– Vector/Hvector
– Indexed/Indexed_block/Hindexed/Hindexed_block
– Struct
– Some convenience types (e.g., subarray)

Introduction to MPI, Argonne (06/06/2014) 86

Derived Datatype Example

Introduction to MPI, Argonne (06/06/2014) 87

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

contig contig contig

vector

indexed

struct

181715

MPI_Type_contiguous

 Contiguous array of oldtype

 Should not be used as last type (can be replaced by count)

MPI_Type_contiguous(int count, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 88

0 1 2 3 4 5 6 7 8 9 1
0

1
1

contig
0 1 2 3 4 5 6 7 8 9 10 11 12 14 16

struct struct struct

contig

13

MPI_Type_vector

 Specify strided blocks of data of oldtype

 Very useful for Cartesian arrays

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 89

vector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

vector

19 20

struct struct

0 1 2 3 4 5 6 7 8 9 1
0

1
1

MPI_Type_create_hvector

 Create non-unit strided vectors

 Useful for composition, e.g., vector of structs

MPI_Type_create_hvector(int count, int blocklength,
MPI_Aint stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

hvector

19

struct struct

MPI_Type_create_indexed_block

 Pulling irregular subsets of data from a single array
– dynamic codes with index lists, expensive though!

– blen=2

– displs={0,5,8,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 91

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Indexed_block

MPI_Type_indexed

 Like indexed_block, but can have different block lengths
– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

indexed

MPI_Type_create_struct

 Most general constructor, allows different types and arbitrary
arrays (also most costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[],
MPI_Datatype array_of_types[],
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 93

0 1 2 3 4

struct

MPI_Type_create_subarray

 Convenience function for creating
datatypes for array segments

 Specify subarray of n-dimensional
array (sizes) by start (starts) and size
(subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[],
int order, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Introduction to MPI, Argonne (06/06/2014) 94

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_BOTTOM and MPI_Get_address

 MPI_BOTTOM is the absolute zero address
– Portability (e.g., may be non-zero in globally shared memory)

 MPI_Get_address
– Returns address relative to MPI_BOTTOM

– Portability (do not use “&” operator in C!)

 Very important to
– build struct datatypes

– If data spans multiple arrays

Introduction to MPI, Argonne (06/06/2014) 95

Commit, Free, and Dup

 Types must be committed before use
– Only the ones that are used!

– MPI_Type_commit may perform heavy optimizations (and will
hopefully)

 MPI_Type_free
– Free MPI resources of datatypes

– Does not affect types built from it

 MPI_Type_dup
– Duplicates a type

– Library abstraction (composability)

Introduction to MPI, Argonne (06/06/2014) 96

Other DDT Functions

 Pack/Unpack
– Mainly for compatibility to legacy libraries

– You should not be doing this yourself

 Get_envelope/contents
– Only for expert library developers

– Libraries like MPITypes1 make this easier

 MPI_Create_resized
– Change extent and size (dangerous but useful)

http://www.mcs.anl.gov/mpitypes/

Introduction to MPI, Argonne (06/06/2014) 97

Datatype Selection Order

 Simple and effective performance model:
– More parameters == slower

 predefined < contig < vector < index_block < index < struct
 Some (most) MPIs are inconsistent

– But this rule is portable

 Advice to users:
– Try datatype “compression” bottom-up

W. Gropp et al.: Performance Expectations and Guidelines for MPI Derived Datatypes

Introduction to MPI, Argonne (06/06/2014) 98

Code Example

 stencil-mpi-ddt.c

 Non-blocking sends and receives

 Data location specified by MPI datatypes

 Manual packing of data no longer required

Introduction to MPI, Argonne (06/06/2014) 99

bx

by

What we will cover in this tutorial

 What is MPI?

 How to write a simple program in MPI

 Running your application with MPICH

 Slightly more advanced topics:

– Non-blocking communication in MPI

– Group (collective) communication in MPI

– MPI Datatypes

 Conclusions and Final Q/A

Introduction to MPI, Argonne (06/06/2014) 100

Conclusions

 Parallelism is critical today, given that that is the only way to
achieve performance improvement with the modern
hardware

 MPI is an industry standard model for parallel programming
– A large number of implementations of MPI exist (both commercial and

public domain)

– Virtually every system in the world supports MPI

 Gives user explicit control on data management

 Widely used by many scientific applications with great success

 Your application can be next!

Introduction to MPI, Argonne (06/06/2014) 101

Web Pointers

 MPI standard : http://www.mpi-forum.org/docs/docs.html

 MPICH : http://www.mpich.org

 MPICH mailing list: discuss@mpich.org

 MPI Forum : http://www.mpi-forum.org/

 Other MPI implementations:
– MVAPICH (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/

– Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-
library/

– Microsoft MPI (MPICH derivative)

– Open MPI : http://www.open-mpi.org/

 Several MPI tutorials can be found on the web

Introduction to MPI, Argonne (06/06/2014) 102

