Prova di

MATEMATICA GENERALE ESEMPIO ITINERE

30 ottobre 2023

ESEMPIO ITINERE - COGNOME NOME 0123456
Firma leggibile:

ISTRUZIONI

LEGGERE ATTENTAMENTE PRIMA DI PROSEGUIRE

- 1. Attendere il segnale del docente per iniziare l'esame. **NON** sfogliare il compito prima dell'inizio dell'esame.
- 2. Controllare che il nome, cognome e numero di matricola corrispondano esattamente.
- 3. Apporre la propria firma leggibile nel riquadro riportato sopra, e nel **Foglio** delle Risposte.
- 4. I fogli del testo dell'esame sono fronte/retro.
- 5. E' possibile utilizzare i fogli del testo per calcoli o annotazioni.
- 6. Riportare le risposte unicamente nel **Foglio delle Risposte**. Risposte riportate sui fogli del testo saranno ignorate.
- 7. Utilizzare una penna (o pennarello) di colore blue o nero.
- 8. Le risposte devono essere riportate nel **Foglio delle Risposte** annerendo la casella della risposta prescelta.
- 9. E' permessa una sola risposta. Nel caso di risposte multiple, entrambe le risposte saranno ignorate e sarà attribuito un punteggio nullo.
- 10. Non è permesso l'uso del bianchetto.
- 11. I testi e le risposte sono identiche per ogni studente, ma sono disposte in maniera casuale: per esempio, la risposta 1A non necessariamente corrisponde alla risposta 1A di un altro testo.
- 12. Alcune risposte hanno un punteggio negativo. Per questo motivo, se non si è sicuri della risposta, si suggerisce di NON effettuare scelte a caso.

Determinare l'intervallo di convergenza (estremi esclusi) della seguente serie di potenze:

$$\sum_{n=2}^{+\infty} \frac{x^n}{n - \sqrt{n}}$$

|A|Ø $|\mathbf{B}|$ (0,1) (-1,1)

|D| \mathbb{R} [E] (-2,2)

Q-2: Calcolare l'integrale improprio:

$$\int_{-\infty}^{\infty} \frac{e^x}{1 + e^{2x}} dx$$

diverge

 $\boxed{\mathbf{B}} \quad \frac{\pi}{4} \qquad \boxed{\mathbf{C}} \quad \frac{\pi}{3} \qquad \boxed{\mathbf{D}} \quad \pi$

Q-3: Calcolare il polinomio di McLaurin di ordine 2 della seguente funzione (senza valutare l'errore):

$$f(x) = \ln\left(\frac{1}{x^2 + 1}\right)$$

$$A$$
 $(x-1)-(x-1)^2$

Q-4: Discutere il seguente sistema di equazioni lineari ed eventualmente trovare la/le soluzione/i:

$$\begin{cases} x+y+z=3\\ x+y=2\\ y+z=2 \end{cases}$$

$$\boxed{\mathbf{A}} \quad (1-z, -z, z)$$

Q-5: Calcolare l'integrale indefinito:

$$\int \frac{x^2 - 4}{x - 1} dx$$

C
$$\ln\left(\frac{x^3}{3} - 4x\right) + c$$
 D $x^2 + x - 3\ln(x - 1) + c$ E $\frac{x^2}{2} + x + c$

$$\boxed{\mathbf{E}} \quad \frac{x^2}{2} + x + c$$

Q-6: Calcolare l'inversa della matrice:

$$\begin{pmatrix}
1 & 2 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{bmatrix}
\frac{2}{3} & 0 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & \frac{2}{3} & 0 \\
-\frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & \frac{2}{3} & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & \frac{2}{3} & 0 \\
\frac{1}{3} & -\frac{1}{3} & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Q-7: Mediante l'uso della derivata prima, individuare e classificare, se esistono, i punti critici nell'intervallo $(0, +\infty)$ per la seguente funzione:

$$f(x)=e^{-x^2+6\ln x}$$
 A $x_{\max}=3$ B $x_{\min}=\sqrt{3}$ C Sempre crescente D Sempre decrescente

Corrected

Corrected

FOGLIO DELLE RISPOSTE

ESEMI	PIO I	TINE	RE -	CO	GI	NO	\mathbf{ME}	N	OME (01234	56		
Firma l	leggib	ile:		• • • •			• • • •				• • • •		• •
<i>T</i> .	, 1					,	7				, ,	7.	

Le risposte devono essere riportate <u>esclusivamente</u> su questo foglio. Risposte riportate su altri fogli saranno ignorate.

- 1: B C D E SI 2: A B C X E NO
- Q-1:
 A
 B
 D
 E

 Q-2:
 A
 B
 C
 D
 E

 Q-3:
 A
 B
 D
 E

 Q-4:
 A
 B
 C
 D
 E

 Q-5:
 B
 C
 D
 E

 Q-6:
 A
 B
 D
 E

 Q-7:
 A
 B
 C
 D
 I

Corrected